高中文科数学线性规划部分常见题型整理

合集下载

高考线性规划题型归纳

高考线性规划题型归纳

线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .图2xy O2 2 x=2y =2 x + y =2BA解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________.2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。

线性规划的常见题型

线性规划的常见题型

线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。

最新高中文科数学线性规划部分常见题型整理资料讲解

最新高中文科数学线性规划部分常见题型整理资料讲解

高中文科数学线性规划部分常见题型整理1.图中的平面区域(阴影部分包括边界)可用不等式组表示为 (A .20≤≤xB .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x 3.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( D )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x一、求线性目标函数的取值范围4.若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选 A5.已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x ,则x y 的取值范围是( A )A.⎥⎦⎤⎢⎣⎡6,59B.[]6,3C.[)∞+⎥⎦⎤⎝⎛∞-,659, D.(][)∞+∞-,63,二、求可行域的面积7.不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4 B 、1 C 、5 D 、无穷大解:如图作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B8.已知R y x ∈,,则不等式组⎪⎩⎪⎨⎧≥+-≤-≥02|||1|x x y x y 表示的平面区域的面积是__45______.9.不等式组⎪⎩⎪⎨⎧<+>>123400y x y x 表示的平面区域的面积是____,平面区域内的整点坐标 .三、求可行域中整点个数10.满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y xy+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围11.已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值12.已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是 ( ) A 、13,1 B 、13,2C 、13,45D、解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C13.若变量x y 、满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =+的最小值为 (A )A.2B.3C.5D.614.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( C )A . 5 B. 3 C. 7 D. -8六、求约束条件中参数的取值范围19.已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3) 解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七、线性规划的实际应用20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品木料(单位m3)第一种第二种圆桌0.18 0.08衣柜0.09 0.28解:设生产圆桌x只,生产衣柜y个,利润总额为z元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+5628.008.07209.018.0yxyxyx而z=6x+10y.如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l:6x+10y=0,即l:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上点M,且与原点距离最大,此时z=6x+10y取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0yxyx,得M点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A、B两种规格的金属板,每张面积分别为2m2、3 m2,用A种金属板可造甲产品3个,乙产品5个,用B种金属板可造甲、乙产品各6个,则A、B两种金属板各取多少张时,能完成计划并能使总用料面积最省?( A )A.A用3张,B用6张B.A用4张,B用5张C.A用2张,B用6张D.A用3张,B用5张一、单项选择题1.下列纳税人中应缴纳城建税的是()。

高中数学线性规划各类习题

高中数学线性规划各类习题

线性规划基础知识:一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数;称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题;通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识:一. 1.点Px 0;y 0在直线Ax+By+C=0上;则点P 坐标适合方程;即Ax 0+By 0+C=02. 点Px 0;y 0在直线Ax+By+C=0上方左上或右上;则当B>0时;Ax 0+By 0+C>0;当B<0时;Ax 0+By 0+C<03. 点Px 0;y 0在直线Ax+By+C=0下方左下或右下;当B>0时;Ax 0+By 0+C<0;当B<0时;Ax 0+By 0+C>0注意:1在直线Ax+By+C=0同一侧的所有点;把它的坐标x;y 代入Ax+By+C;所得实数的符号都相同;2在直线Ax+By+C=0的两侧的两点;把它的坐标代入Ax+By+C;所得到实数的符号相反; 即:1.点Px 1;y 1和点Qx 2;y 2在直线 Ax+By+C=0的同侧;则有Ax 1+By 1+C Ax 2+By 2+C>02.点Px 1;y 1和点Qx 2;y 2在直线 Ax+By+C=0的两侧;则有Ax 1+By 1+C Ax 2+By 2+C<0 二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0或<0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; ②二元一次不等式Ax+By+C ≥0或≤0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时;不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点x;y;把它的坐标x;y 代入Ax+By+C;所得到的实数的符号都相同;所以只需在此直线的某一侧取一个特殊点x 0;y 0;从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地;当C ≠0时;常把原点作为特殊点;当C=0时;可用0;1或1;0当特殊点;若点坐标代入适合不等式则此点所在的区域为需画的区域;否则是另一侧区域为需画区域..例题:1. 如图1所示;已知ABC ∆中的三顶点(2,4),(1,2),(1,0)A B C -;点(,)P x y 在ABC∆内部及边界运动;请你探究并讨论以下问题:若目标函数是1y z x-=或z =知道其几何意义吗 你能否借助其几何意义求得min z 和max z2. 如图1所示;已知ABC ∆中的三顶点(2,4),(1,2),(1,0)A B C -;点(,)P x y 在ABC ∆内部及边界运动;请你探究并讨论以下问题: ①z x y =+在 处有最大值 ;在 处有最小值 ; ②z x y =-在 处有最大值 ;在 处有最小值3. 若x 、y 满足条件⎪⎩⎪⎨⎧≤+-≥+-≤-+.0104010230122y x y x y x ,,求y x z 2+=的最大值和最小值 4. 设实数x y ,满足20240230x y x y y --⎧⎪+-⎨⎪-⎩≤,≥,≤,;则yz x =的最大值是__________. 5. 已知05≥-+y x ;010≤-+y x .求22y x +的最大、最小值6. 已知2040250x y x y x y -+⎧⎪+-⎨⎪--⎩,,,≥≥≤求221025z x y y =+-+的最小值7. 给出平面区域如右图所示;若使目标函数z=ax+y a > 0 取得最大值的最优解有无穷多个;则a 的值为 A.41 B.53 C.4 D.35 8.已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩;则3z x y =+的最大值为()A 12 ()B 11 ()C 3()D -19.设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩;则2+3x y 的最大值为A .20B .35C .45D .5510.若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩;则3z x y =-的最小值为 ..11.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩;D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域;则2z x y =-在D 上的最大值为 .12.某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克;B 原料1千克. 每桶甲产品的利润是300元;每桶乙产品的利润是400元. 公司在生产这两种产品的计划中;要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划;从每天生产的甲、乙两种产品中;公司共可获得的最大利润是A 、1800元B 、2400元C 、2800元D 、3100元13.若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____.14.设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为 .15.设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω;平面区域是2Ω与1Ω关于直线3490x y --=对称;对于1Ω中的任意一点A 与2Ω中的任意一点B; ||AB 的最小值等于A.285B.4C. 125 D.216. 设不等式组⎩⎨⎧≤≤≤≤20,20y x ;表示平面区域为D;在区域D 内随机取一个点;则此点到坐标原点的距离大于2的概率是A 4πB 22π-C 6πD 44π-17.若实数x 、y 满足10,0x y x -+≤⎧⎨>⎩则y x 的取值范围是 A.0;1 B.(]0,1C.1;+∞D.[)1,+∞18.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba 的取值范围是 .19.设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x yB x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭;则A B 所表示的平面图形的面积为A 34πB 35πC 47πD 2π20.在平面直角坐标系xOy ;已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥;则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为A .2B .1C .12D .1421.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域;则当a 从-2连续变化到1时;动直线x y a +=扫过A 中的那部分区域的面积为 .22.若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分;则k 的值是A 73B 37C 43D 34高23.若0,0≥≥b a ;且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时;恒有1≤+by ax ;则以a ;b 为坐标点(,)P a b 所形成的平面区域的面积等于__________.24.在平面直角坐标系中;若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩α为常数所表示的平面区域内的面积等于2;则a 的值为A. -5B. 1C. 2D. 325.若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203;则实数m 的最大值为A .21B .1C .23D .226.设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ;使函数(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是A .1;3B .2;10C .2;9D .10;927.设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩ 表示的平面区域为D;若指数函数y=xa 的图像上存在区域D 上的点;则a 的取值范围是A 1;3B 2;3C 1;2D 3; +∞28.设m 为实数;若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩}22{(,)|25}x y x y ⊆+≤;则m 的取值范围是___________.29.若实数x ;y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9;则实数m = A 2- B 1- C 1 D 230.若x;y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩;目标函数2z ax y =+仅在点1;0处取得最小值;则a 的取值范围是A .1-;2B .4-;2C .(4,0]-D . (2,4)-31.设m >1;在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y x y 目标函数z=x+my 的最大值小于2; 则m 的取值范围为A .)21,1(+B .),21(+∞+C .1;3D .),3(+∞32.设x;y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ;若目标函数(0,0)z ax by a b =+>> 的值是最大值为12;则23a b +的最小值为A. 625B. 38C. 311D. 433.设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩;若目标函数()0,0z abx y a b =+>> 的最大值为8;则a b +的最小值为________.1.略2.①点A;6;边界BC;1②点C;1;点B;-33.24.3 25.最大、最小值分别是50和2256.297.B8.B9.D10.-111.212.C13.[3,0]-14.-3;315.B16.D17.C18.[] 7e,19.D20.B21.7 422.A23.124.D25.B26.C27.A28.4 [0,]329.C30.B31.A32.A33.4。

(word完整版)线性规划五类经典题型

(word完整版)线性规划五类经典题型

线性规划五类经典题型类型一:一般线性规划题 类型二:构造类型三:待定系数法 类型四:整点问题类型五:含参数线性规划问题 类型一:一般线性规划题4 已知实数x ,y 满足线性约束条件错误!(1)z =2x -3y 的最大值和最小值;(2)z =x2+y 2-10y +25的最小值;(3)则错误!的最大值为____________;(4)z =错误!的范围; (5)求yx yx ++22的取值范围;(6)求错误!的取值范围。

[来源:Z #xx #]2。

若实数x ,y 满足约束条件错误!则|3x -4y -10|的最大值为________。

答案494解析 错误!表示一个三角形ABC 及其内部,其中A (1,0),B (0,0),C (错误!,错误!),且可行域在直线3x-4y -10=0上方,因此|3x -4y -10|=-3x +4y +10,过点C (错误!,错误!)时取最大值,为错误!.类型二:构造1(2012江苏高考)已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则错误!的取值范围是________.[解析] 由条件可得错误!令错误!=x ,错误!=y ,则问题转化为约束条件为错误!求目标函数z =错误!=错误!的取值范围.作出不等式组所表示的平面区域(如图中阴影部分),过原点作y =e x的切线,切线方程为y =e x ,切点P (1,e )在区域内.故当直线y =zx 过点P (1,e)时,z min =e ;当直线y =zx 过点C 错误!时,z max =7,故错误!∈[e,7].2已知函数3211()32f x x ax bx c =+++在1x 处取得极大值,在2x处取得极小值,满足12(1,0),(0,1)x x ∈-∈,则242a b a +++的取值范围是________.3、已知ABC ∆的三边长,,a b c 满足2b c a +≤,2c a b +≤,求b a的取值范围.4.已知实数y x ,满足x y -≤≤42且x ≥ 0,则122222-+-+-++y x xy y x y x 的最大值为______。

高考数学线性规划题型总结

高考数学线性规划题型总结

高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。

高考线性规划必考题型非常全)

高考线性规划必考题型非常全)

线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。

例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。

它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。

它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。

高中简单线性规划基础题型总结

高中简单线性规划基础题型总结

高中简单线性规划基础题型总结熊明军简单线性规划属于操作性知识,是高考必考知识点,历年不变,必有一选择或填空题。

下面结合例题,总结高中简单线性规划问题的基础题型,方便同学们快速掌握相关内容。

线性规划问题的基础题型,可根据目标函数的特点,将其分为三类: 类型一(直线):by ax z +=【理论】点到直线的距离。

【步骤】①作出可行域;②作出直线by ax +=0;③判断可行域顶点到直线by ax +=0的距离:()max max ,z y x P d ⇒⇒和()min min ,'z y x P d ⇒⇒【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求y x z 2-=的最值。

【解析】分三步走:①作出可行域:②作出直线y x 20-=:③判断直线y x 20-=到可行域顶点C B A 、、间的距离:平移、目测或代点都能判断,得()()11231,3,max max =⨯-=⇒⇒=z B l B d d ;()()119279,7,min min -=⨯-=⇒⇒=z C l C d d 。

类型二(圆):()()22b y a x z -+-= 【理论】两点之间的距离。

【步骤】①作出可行域;②作出圆()()222b y a x d -+-=;③判断可行域上的点到圆心()b a ,的距离(即半径r ):()max max max ,z y x P d r ⇒⇒=和()min min min ,'z y x P d r ⇒⇒=【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求()()2211-+-=y x z 的最值。

【解析】分三步走:①作出可行域:②作出圆()()22211-+-=y x d :r d =且半径r 由小到大逐渐作圆。

③判断圆心()1,1到可行域上点间的距离,也就是与可行域有交点的圆中半径r 的大小:目测或用圆规作圆都能判断,得()()()()10019179,7,22max max max =-+-=⇒⇒==z C D C d d r ;()()211411,2222min min min min =⎪⎪⎭⎫ ⎝⎛+-+==⇒==d z l D d d r AB . 类型三(斜率):m n x a b y m a m n x m a b y a n mx b ay z --⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--= 【理论】两点确定的直线的斜率。

高中文科数学线性规划部分常见题型整理

高中文科数学线性规划部分常见题型整理

高中文科数学线性规划部分常见题型整理1)A .20≤≤xB .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x3.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( D )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x一、求线性目标函数的取值范围4.若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A5.已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x ,则x y 的取值范围是( A )A.⎥⎦⎤⎢⎣⎡6,59 B.[]6,3C.[)∞+⎥⎦⎤⎝⎛∞-,659, D.(][)∞+∞-,63, 二、求可行域的面积7.不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4 B 、1 C 、5 D 、无穷大解:如图作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B8.已知R y x ∈,,则不等式组⎪⎩⎪⎨⎧≥+-≤-≥02|||1|x x y x y 表示的平面区域的面积是__45______.9.不等式组⎪⎩⎪⎨⎧<+>>123400y x y x 表示的平面区域的面积是____,平面区域内的整点坐标 .三、求可行域中整点个数10.满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围11.已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值12.已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C13.若变量x y、满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则2z x y=+的最小值为(A)A.2B.3C.5D.614.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( C )A . 5 B. 3 C. 7 D. -8六、求约束条件中参数的取值范围19.已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选C七、线性规划的实际应用20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品第 一 种第 二 种圆桌0.180.08衣柜0.090.28解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?( A )A.A用3张,B用6张B.A用4张,B用5张C.A用2张,B用6张D.A用3张,B用5张。

高考中的十种线性规划题型

高考中的十种线性规划题型
规划问题的一般步骤:
① 准 确 画 出 可 行 域;

易错点:
距离的最值的最优解是在可行
域的顶点还是边界处。
(
练习 3.
2
0
1
6 年江 苏 卷 )已 知 实 数 x,
y
x-2
y+4≥0,

2
2
满足
2
x+y-2≥0,则 x +y 的 取 值 范 围
3
x-y-3≤0,


根据目标 函 数 的 几 何 意 义 找 到 最 优 解;③ 求
x,
x≥1,

x+y
x+y≤3, 若 z=2
y 满足约束条件
,
x-3)

y≥a(



2
2
,则 A ∩B 所 表
|(
x-1)+ (
y)
y -1)≤1}
答案:
D
x-y≥0,

则 a 的取值范围是(
(
练习 9.
2
0
1
2 年 重 庆 卷 )设 平 面 点 集 A
3
A. π
4
练习 1
2.(
2
0
0
7 年 北 京 卷 )若 不 等 式 组
y 满足约



x-1≥0,

y
则 的最大值为
x
x+y-4≤0,

束条件
x-y≤0,
{
(
,
x,
|
x-y ≥1,
ax +y >4,
x -ay ≤2}
y)
则(

高中数学线性规划题型一览

高中数学线性规划题型一览

线性规划问题中目标函数常见类型梳理线性规划问题中目标函数的求解是线性规划问题的重点也是难点,对于目标函数的含义学生往往理解的不深不透,只靠死记硬背,生搬硬套,导致思路混乱,解答出错。

本文将有关线性规划问题中目标函数的常见类型梳理如下,以期对大家起到一定的帮助。

一 基本类型——直线的截距型(或截距的相反数)例1.已知实数x 、y 满足约束条件0503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,则24z x y =+的最小值为( )A .5B .-6C .10D .-10 分析:将目标函数变形可得124zy x =-+,所求的目标函数的最小值即一组平行直线12y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。

解析:由实数x 、y 满足的约束条件,作可行域如图所示:当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =⨯+⨯-=-,答案选B 。

点评:深刻地理解目标函数的含义,正确地将其转化为直线的斜率是解决本题的关键。

二 直线的斜率型例2.已知实数x 、y 满足不等式组2240x y x ⎧+≤⎨≥⎩,求函数31y z x +=+的值域.解析:所给的不等式组表示圆224x y +=的右半圆(含边界),1z x =+可理解为过定点(1,3)P --,斜率为z 的直线族.则问题的几何意义为:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1)z --==--.过点P 所作半圆的切线的斜率最小.设切点为(,)B a b ,则过B 点的切线方程为4ax by +=.又B 在半圆周上,P 在切线上,则有22434a b a b ⎧+=⎨--=⎩解得25a b ⎧-+=⎪⎪⎨⎪=⎪⎩因此m i n 33z =。

八种经典线性规划例题最全总结(经典)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于由右图可知,故0<m<3,选C七、比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。

八种经典线性规划例题最全总结(经典)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,故0<m<3,选 C七、比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划题型整理与例题(含答案)

线性规划题型整理与例题(含答案)

积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

高中线性规划知识点及高考真题

高中线性规划知识点及高考真题

高中必修5线性规划
简单的线性规划问题
一、知识梳理
1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.
2.可行域:约束条件所表示的平面区域称为可行域.
3. 整点:坐标为整数的点叫做整点.
4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.
5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.
二、疑难知识导析
1.对于不含边界的区域,要将边界画成虚线.
2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.
3. 平移直线y=-kx+P时,直线必须经过可行域.
4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.
5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1寻找线性约束条件,线性目标函数;2由二元一次不等式表示的平面区域做出可行域;3在可行域内求目标函数的最优解.
积储知识:。

高考线性规划题型归纳

高考线性规划题型归纳

线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题2x-y<2<x-y>-1,则z=2x+3y 的最大值为x+y>1解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

例1、设变量x 、y 满足约束条件 习题1、若x 、y 满足约束条件 /则z=x+2y 的取值范围是()A 、[2,6]B 、[2,5]C 、 [3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y 二0,将By=21向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A。

'勺・、Ix=2 x+y ■=2二已知线性约束条件,探相嵐性目标关系最值问题例2、已知 x >1,<x -y +1<0,则x 2+y 2的最小值是2x —y —2<0解析:如图2,只要画出满足约束条件的可行域,而 示可行域内一点到原点的距离的平方。

由图易知A (1,2)-z o件的最优解。

x 2+y 2的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关V-2A 是满足条图2x 2+y 2表系几何意义的前提下,作出可行域,寻求最优解。

值分别是(即|AO12=13,最小值为原点到直线2x +y -2=0的距离的平方,即为4,选C,最小值为x +y 一2W0<x 一y +2>0表示的平面区域是一个三角形。

y >0易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为:S =-\BC I -1AO1=1X 4X2=4.从而选B 。

22点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A、B两种规格的金属板,每张面积分别为2m2、3 m2,用A种金属板可造甲产品3个,乙产品5个,用B种金属板可造甲、乙产品各6个,则A、B两种金属板各取多少张时,能完成计划并能使总用料面积最省?( A )
A.A用3张,B用6张B.A用4张,B用5张
20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?
产 品
木料(单位m3)
A、9个 B、10个 C、13个 D、14个
解:|x|+|y|≤2等价于
作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D
四、求线性目标函数中参数的取值范围
11.已知x、y满足以下约束条件 ,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为( )
A、-3 B、3 C、-1 D、1
解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为 ,选C
13.若变量 满足约束条件 ,则 的最小值为(A)
A.2B.3C.5D.6
14.设 满足约束条件 ,则 的最大值为( C )
A. 5 B. 3 C. 7 D. -8
六、求约束条件中参数的取值范围
19.已知|2x-y+m|<3表ห้องสมุดไป่ตู้的平面区域包含点(0,0)和(-1,1),则m的取值范围是( )
A、(-3,6) B、(0,6) C、(0,3) D、(-3,3)
解:|2x-y+m|<3等价于
由右图可知 ,故0<m<3,选C
七、线性规划的实际应用
高中文科数学线性规划部分常见题型整理
1.图中的平面区域(阴影部分包括边界)可用不等式组表示为( C )
A. B.
C. D.
3.已知点P(x0,y0)和点A(1,2)在直线 的异侧,则( D )
A. B. 0
C. D.
一、求线性目标函数的取值范围
4.若x、y满足约束条件 ,则z=x+2y的取值范围是 ( )
解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D
五、求非线性目标函数的最值
12.已知x、y满足以下约束条件 ,则z=x2+y2的最大值和最小值分别是 ( )
A、13,1B、13,2
C、13, D、 ,
解:如图作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B
8.已知 ,则不等式组 表示的平面区域的面积是__ ______.
9.不等式组 表示的平面区域的面积是____,平面区域内的整点坐标.
三、求可行域中整点个数
10.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有( )
第 一 种
第 二 种
圆 桌
0.18
0.08
衣 柜
0.09
0.28
解:设生产圆桌x只,生产衣柜y个,利润总额为z元,那么 而z=6x+10y.
如上图所示,作出以上不等式组所表示的平面区域,即可行域.
作直线l:6x+10y=0,即l:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上点M,且与原点距离最大,此时z=6x+10y取最大值解方程组 ,得M点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.
A、[2,6] B、[2,5] C、[3,6] D、(3,5]
解:如图,作出可行域,作直线l:x+2y=0,将
l向右上方平移,过点A(2,0)时,有最小值
2,过点B(2,2)时,有最大值6,故选A
5.已知变量x、y满足约束条件 ,则 的取值范围是( A )
A. B. C. D.
二、求可行域的面积
7.不等式组 表示的平面区域的面积为 ( )A、4 B、1 C、5 D、无穷大
C.A用2张,B用6张D.A用3张,B用5张
相关文档
最新文档