初中数学七年级上册第二章《有理数》教案
北师大版数学七年级上册2.1《有理数》教案
北师大版数学七年级上册2.1《有理数》教案一. 教材分析《有理数》是北师大版数学七年级上册第二章第一节的内容,本节课主要介绍了有理数的定义、分类以及有理数的运算。
有理数是中学数学中的基础概念,对于学生理解数学的本质和后续学习其他数学知识具有重要意义。
本节课的内容是学生进一步学习实数、方程、函数等知识的基础。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算也有一定的了解。
但学生在理解有理数的定义和分类方面可能会存在一定的困难。
因此,在教学过程中,教师需要引导学生从实际问题出发,理解有理数的概念,并通过具体的例子让学生掌握有理数的分类。
三. 教学目标1.了解有理数的定义,掌握有理数的分类。
2.能够进行有理数的运算。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体的案例,让学生理解和掌握有理数的概念和运算;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的问题和案例。
2.准备教学PPT。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生思考:什么是整数?什么是分数?整数和分数有什么关系?从而引出有理数的概念。
2.呈现(15分钟)呈现有理数的定义和分类,让学生了解有理数的四种类型:正整数、负整数、正分数、负分数。
并通过具体的例子让学生理解和掌握有理数的分类。
3.操练(15分钟)让学生进行有理数的运算练习,包括加、减、乘、除等。
教师可以设置一些具有代表性的题目,让学生在课堂上进行讲解和讨论,从而加深对有理数运算的理解。
4.巩固(10分钟)通过一些填空题和选择题,让学生巩固所学的内容。
教师可以设置一些易错题,让学生在解答过程中发现问题,从而加深对有理数概念和运算的理解。
5.拓展(5分钟)引导学生思考:有理数和无理数有什么关系?从而引出实数的概念。
七年级上册第第2章有理数精典教学案华东师大版初中数学
七年级上册教案
教师:
班级:
2013.9
第一节认识负数预设课时:3 实际完成课时:
第二节有理数的分类预设课时:3 实际完成课时:
第三节数轴预设课时:3 实际完成课时:
下列图形中不是数轴的是()
下面正确的是()
第四节相反数预设课时:3 实际完成课时:
第五节绝对值预设课时:3 实际完成课时:
第六节有理数大小的比较预设课时:3 实际完成课时:
第七节有理数的加法1
预设课时:3 实际完成课时:
3)如果小丽第一秒向西走5米,第二秒原地不动,两秒后这个人从起点向东运动了
第七节有理数的加法2 预设课时:3 实际完成课时:
第八节有理数的减法预设课时:3 实际完成课时:
第九节有理数的加减混合运算预设课时:3 实际完成课时:
第十节有理数的乘法预设课时:3 实际完成课时:
第十一节有理数的除法预设课时:3 实际完成课时:
第十二节有理数的乘方预设课时:3 实际完成课时:
第十三节科学记数法、近似数和有效数字预设课时:3 实际完成课时:
千米,用科学记数法表示(保留
C
由四舍五入取得的近似数,它精确到(
C D、十亿位
第十四节有理数的混合运算预设课时:3 实际完成课时:。
初一上册数学《有理数》教案(精选5篇)
初一上册数学《有理数》教案(精选5篇)初一上册数学《有理数》篇1教学目的:1.了解计算器的性能,并会操作和使用;2.会用计算器求数的平方根;重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;难点:乘方和开方运算;教学过程:1.计算器的使用介绍(科学计算器)初一上册数学一单元教案.png2.用计算器进行加、减、乘、除、乘方、开方运算例1用计算器求下列各式的值.(1)(-3.75)+(-22.5) (2)51.7(-7.2)解(1)初一上册数学一单元教案.png(-3.75)+(-22.5)=-26.25(2)初一上册数学一单元教案.png51.7(-7.2)=-372.24说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.随堂练习用计算器求值1.9.23+10.22.(-2.35)×(-0.46)答案1.37.8 2.1.081初一上册数学《有理数》教案篇2教学目标:知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法教学难点:会把所给的各数填入它所属于的集合里教学方法:问题引导法学习方法:自主探究法一、情境诱导在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?把整数和分数起个名字叫有理数。
(点题并板书课题)二、自学指导学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
初中数学北师大版七年级上册第二章《有理数》教案
初中数学北师大版七年级上册第二章《有理数》教案本节课的目标是让学生理解正负数的概念,能够判断一个数是正数还是负数,并会用正负数表示具有相反意义的量。
同时,培养学生树立分类讨论的思想。
在情景导入中,教师引导学生回忆小学学过的数的类型,包括整数、分数和零。
然后通过实际例子,引导学生认识到正负数是表示相反意义的量。
接下来,学生进行自主研究合作探究。
在探究活动1中,学生需要用正负数表示具有相反意义的量。
这个活动可以让学生通过实际例子来理解正负数的概念,并能够灵活运用正负数表示具有相反意义的量。
探究活动2中,学生需要分类讨论有理数的分类及其分类标准。
这个活动可以培养学生的分类讨论思想,让他们能够更加深入地理解有理数的分类及其分类标准。
在教学过程中,教师采用“启迪诱导-自主探究”教学模式,引导学生观察、思考、分析、讨论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法。
在探究活动中,学生积极参与,能够独立思考和合作探究,有效地提高了知识的可接受程度。
总之,本节课通过情景导入和自主研究合作探究的方式,让学生更加深入地理解了正负数的概念和有理数的分类及其分类标准,同时培养了学生的分类讨论思想。
以及零分数.活动的实际效果:通过引入负数的概念,学生的数的范围得到了扩大,从而理解了整数包括正整数、负整数和零,分数包括正分数、负分数以及零分数的概念.教师可以通过实际生活中的例子,如温度、海拔等来帮助学生理解这些概念.探究活动3:正负数的加减法引导学生通过实际生活中的例子,如温度变化、海拔高度等,理解正负数的加减法.例如:温度从-5℃上升到3℃,变化了多少度?海拔从-100米上升到50米,上升了多少米?通过这些例子,学生可以理解正负数加减法的规律,即同号相加,异号相减,绝对值大的数减去绝对值小的数.活动的实际效果:通过实际生活中的例子,学生理解了正负数的加减法,并掌握了同号相加、异号相减、绝对值大的数减去绝对值小的数的规律.同时,学生也能够将这些规律应用到实际生活中,解决实际问题.探究活动3:有理数概念及分类1.有理数概念有理数指整数和分数的集合。
浙教版数学七年级上册第二章《有理数的运算》复习教学设计
浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
七年级数学有理数教案5篇
七年级数学有理数教案5篇一、有理数的意义1.有理数的分类学问点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;假如一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴学问点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不行,是推断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(由于全部的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮忙理解肯定值的意义,3)比拟有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数学问点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 肯定值学问点:一个数a的肯定值就是数轴上表示数a的点与原点的距离,数a的肯定值记作∣a∣;肯定值的意义:一个正数的肯定值是它本身,一个负数的肯定值是它的相反数,零的肯定值是零,即若a0,则∣a∣=a. 若a=0,则∣a∣=0. 若a0,则∣a∣=﹣a ;肯定值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
二、有理数的运算1. 有理数的加法学问点:有理数的加法法则:1)同号两数相加,取一样的符号,并把肯定值相加;2)异号两数相加,①肯定值相等时,和为零(即互为相反数的两个数相加得0);②肯定值不相等时,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号一样的数结合在一起计算比拟简便,若有互为相反的数,可利用它们的和为0的特点。
七年级上册数学有理数教案
七年级上册数学有理数教案七班级上册数学有理数教案1教学目标1.使学生正确理解的意义,掌握的三要素;2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.难点:正确理解有理数与上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,老师指出,这就是我们本节课所要学习的内容——.二、讲授新课让学生观察挂图——放大的温度计,同时老师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数) 在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个,并在上画出表示下列各数的点:例2 指出上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们讨论问题提供了新的方法.本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再讨论.五、作业1.在下面上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};课堂教学设计说明从学生已有知识、阅历出发讨论新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.教学中,的三要素中的每一要素都要仔细分析它的作用,使学生从直观认识上升到理性认识.直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等.七班级上册数学有理数教案2教学目的:掌握坐标变化与图形平移的关系;进展学生的形象思维能力和数形结合意识。
苏科版数学七年级上册第二章《有理数》教学设计
苏科版数学七年级上册第二章《有理数》教学设计一. 教材分析苏科版数学七年级上册第二章《有理数》是学生学习初中数学的重要内容,它为学生提供了一种处理数和形的有效工具。
本章主要介绍了有理数的概念、性质和运算,包括整数、分数、相反数、绝对值、有理数的加减乘除等。
这些内容不仅在数学领域有广泛的应用,也为学生后续学习函数、几何等知识打下了基础。
二. 学情分析七年级的学生已经掌握了小学数学的基本知识,对数的概念有一定的了解。
但是,他们对有理数的理解往往是表面的,缺乏深入的理解和灵活的应用。
此外,学生的学习习惯和方法有待提高,需要通过有效的教学设计引导学生主动探索、理解和运用知识。
三. 教学目标1.了解有理数的概念,掌握有理数的性质和运算方法。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.引导学生通过自主学习、合作学习,培养学生的学习兴趣和自信心。
四. 教学重难点1.有理数的定义和性质2.有理数的运算方法3.有理数在实际问题中的应用五. 教学方法1.情境教学法:通过生活实例和实际问题引入有理数的概念,使学生能够直观地理解有理数的意义。
2.引导发现法:引导学生通过自主探究、合作交流,发现有理数的性质和运算方法。
3.巩固练习法:通过大量的练习题,让学生在实践中掌握有理数的运算技巧。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。
2.练习题:准备一系列有针对性的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具,用于板书和演示。
七. 教学过程1.导入(5分钟)利用生活实例或实际问题,如计算购物时的找零,引入有理数的概念。
引导学生思考:为什么需要有理数来表示这样的问题?让学生体会有理数在实际生活中的重要性。
2.呈现(15分钟)讲解有理数的定义,介绍整数、分数的概念,解释相反数、绝对值等概念。
通过示例和讲解,让学生理解有理数的性质,如:相反数的性质、绝对值的性质等。
3.操练(20分钟)让学生进行有理数的加减乘除运算,引导学生发现运算规律。
七年级数学上册第2章《有理数》教学设计(北师大版)
第二章有理数及其运算1.有理数一、学生起点分析学生的知识技能基础:学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。
学生活动经验基础:学生在小学通过对温度计的认识活动,学习了用负数解决一些简单的比较大小的问题。
刚进入初中的学生掌握正数、负数的概念程度参差不齐,结合实际正确的表示具有相反意义的量,建立有理数的概念是学习的难点。
二、学习任务分析“有理数”是初中数学学习的重要基础。
本节课的内容是正、负数的概念和有理数的分类。
通过和学生生活贴近的实例引入负数激发学生对数学学习的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。
为此,本节课的学习任务是:1.在具体情境中,进一步认识负数,理解有理数的意义。
2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。
3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。
三、教学过程设计本节课设计了五个教学环节:第一环节:复习回顾,引入新课,第二环节:创设情境,探索新知,第三环节:实际应用,巩固提高,第四环节:合作交流,能力提升,第五环节:小结反思,布置作业。
第一环节:复习回顾,引入新课活动内容观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米.(登录优教同步学习网,搜索“新课导入:认识正数与负数”)教师出示上图,提出问题:(1)生活中我们会遇到用负数表示的量,你能说出一些例子吗?(2)你对负数有什么样的认识?(3)有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。
活动目的:通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的学习做了铺垫。
数学七年级上册第二章《有理数》教案 (9)
2.5有理数的大小比较【名师说课】课程标准分析本节课的课程标准要求是让学生会利用绝对值比较两个负数的大小,在此基础上,进而掌握有理数大小比较的一般方法,会比较任意有理数的大小.通过掌握有理数比较大小的各种方法,培养学生的逻辑思维能力.在不断加深对有理数比较大小的方法的认识的同时,体会数形结合的数学思想.由有理数中两个负数大小比较的过程,体会数学中转化思想的应用.教材分析1.地位与作用:有理数的大小比较是在小学学过对两个正数的大小比较的基础上,以及本章第2节中利用数轴对正数与零、负数与零、正数与负数的大小比较已初步认识的情况下学习的,对前面学习的基础依赖较重,同时它又是为后面学习有理数的加减打基础的,所以它在教材中起一个纽带的作用,既为前面学过的旧知识作一个总结,又为后面的新知识的学习做好衔接.2.重点与难点:本节的重点是有理数大小比较的方法步骤,难点是有理数大小比较的方法的灵活选择与两个负数的大小比较.教法分析本节教学的基础是:(1)小学阶段对两个正数的大小比较知识;(2)数轴一节中正数与零、负数与零、正数与负数的大小比较.所以在教学中对小学阶段学过的两个正的小数或分数的大小比较知识作适当的复习,减少新课学习中的困难.比较两个负数的大小是本节教学的难点,要充分利用数轴和绝对值的知识,通过演示,将数轴上在原点左侧表示的数的“点距原点越远”,与“这个数的绝对值越大”相对应起来,也可多举一些实例,让学生在直观上感受到两个负数大小比较法则的合理性.两个负数比较大小的过程是一个完整的推理过程,要有意识地培养学生的推理能力,并注意数学上转化思想的渗透,对例题和习题中出现的需先化简再比较大小的一些数,要培养学生良好的解题习惯,仔细读题,化简后再进行比较;两个以上数的比较大小,应强调将这些数按从小到大或从大到小顺序排列,再用同方向的不等号连接.教学中应通过师生互动,学生自我探究,让学生充分参与到学习过程中.学法分析1.学习中应注意结合数轴,理解本节的关键法则:两个负数,绝对值大的反而小.2.两个负数的大小比较是本节的重难点,也是中考热点之一,要充分利用绝对值和数轴的知识来比较有理数的大小,利用绝对值可以不用数轴就能比较有理数大小,但用数轴比较有理数的大小仍是一种既直观又简便的方法,我们可以根据需要自由选择.【教学目标】知识与技能会用绝对值比较两个负数的大小.过程与方法掌握有理数大小比较的一般方法.情感态度与价值观由两个负数比较大小的过程,体会数学上转化思想的应用,培养学生的推理能力.【教学重难点】重点:有理数大小比较的方法、步骤及各种方法的灵活选择.难点:两个负数的大小比较.【教学过程】一、旧知回顾设计意图:温故而知新,有利于学生衔接前后知识,为新知作铺垫,并能调动学生的学习热情.师:1.在数轴上表示两个有理数,如何比较它们的大小呢?2.试在数轴上画出-2,-5表示的点.让学生完成,概括得出数轴上右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于负数.二、探究新知设计意图:学生通过观察归纳,有利于他们概括能力的培养.1.学生分组讨论:两个负数的大小比较与这两个数的绝对值有何关系?2.概括得出:两个负数,绝对值大的反而小.3.例如:比较-34和-23的大小.因为|-34|=34=912,|-23|=23=812,又因为:912>812,即|-34|>|-23|,所以-34<-23. 通过规范两个负数大小比较的解题步骤,加强对学生数学逻辑推理的培养.4.随堂练习:比较下列各对数的大小:①-1与-0.01;②-|-2|与0;③-0.3与-13;④-(-19)与-|-110|. 学生分组完成,用投影展示错误,进行剖析.(通过以上练习,强化学生对法则的理解)三、拓展训练设计意图:通过字母比较培养学生抽象思维能力.教师出示例题:已知a >0,b <0,且|b |>|a |,比较a ,-a ,b ,-b 的大小.分析:方法一:可通过数轴来比较大小,先在数轴上找出a ,-a ,b ,-b 的大致位置再比较.方法二:直接通过计算各数的绝对值,然后比较大小,对于a ,-b 两个正数,绝对值大的原数也大;对于-a ,b 两个负数,绝对值大的反而小.四、巩固练习设计意图:进一步巩固有理数大小的比较法则.1.比较大小,并用“<”连接.(1)-34,-712,-56; (2)-(-10),-|-10|,9,-|+18|,0.2.有理数a 、b 在数轴上表示如下图,用“>”或“<”填空.(1)a ________b ; (2)|a |________|b |;(3)-a ______-b ; (4)1a ________1b. 五、课堂小结设计意图:通过提问,让学生知识系统化.你学会了比较有理数的大小有几种方法?答:有两种方法,方法一:利用数轴把这些数用数轴上的点表示出来,然后“根据数轴上右边的数总比左边的数大”来比较.方法二:利用比较法则:正数大于零,负数小于零,两个负数的绝对值大的反而小来进行.六、课后作业1.比较下列每对数的大小:(1)-0.1与-0.001;(2)-(+19)和-|-110|. 【答案】(1)因为|-0.1|=0.1,|-0.001|=0.001,且0.1>0.001,所以-0.1<-0.001;(2)因为-(+19)=-19,且|-19|=19;-|-110|=-110,且|-110|=110;19>110,所以-(+19)<-|-110|. 2.比较下列每对数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)-45与-|-34|;(4)-π与-|-3.14|. 【答案】(1)化简得:-(-5)=5,-|-5|=-5,因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3,因为负数小于0,所以-(+3)<0.(3)化简得:-|-34|=-34,这是两个负数的大小比较,因为|-45|=45=1620,|-34|=34=1520,且1620>1520,所以-45<-|-34|. (4)化简得:-|-3.14|=-3.14.这是两个负数比较大小,因为|-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.3.已知有理数a 、b 、c 在数轴上位置如下图:则|c -1|+|a -c |+|a -b |化简后的结果是______.A .b -1B .2a -b -1C .1+2a -b -2cD .1-2c +b【答案】D【板书设计】一、旧知回顾二、探究新知三、拓展训练四、巩固练习五、课堂小结六、课后作业。
数学七年级上册第二章《有理数》教案 (6)
2.2.2在数轴上比较数的大小
【教学目标】
知识与技能
能利用数轴比较两个有理数的大小.
过程与方法
通过数轴概念的学习,初步体会数形结合的数学思想.
【教学重难点】
重点:利用数轴比较数大小.
【教学过程】
活动1:在数轴上比较数的大小
设计意图:通过数形结合的体现,培养学生的归纳、观察分析能力,通过观察获得数学猜想,体验数学的探索过程,让学生感受数学直观与抽象之间的联系.
师:由数轴来观察,得出有理数的大小比较法则,正数都大于零,负数都小于零,正数都大于负数.
生:让学生理解,记忆.
师:出示例题,按从小到大的顺序排列.
生:让学生观察后完成.
总结方法:先在数轴上描出数,再利用法则比较大小,或直接应用法则比较大小.活动2:课堂小结
设计意图:通过小结,回顾本节课的知识,使学生对数轴有一个系统全面的认识.小结:学生相互谈一谈对数的认识.
【板书设计】
活动1:在数轴上比较数的大小
活动2:课堂小结。
初一上册数学《有理数》教案
初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
七年级数学有理数教案5篇
七年级数学有理数教案5篇以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。
这里给大家分享一些关于七年级数学有理数教案,方便大家学习。
七年级数学有理数教案篇1教学目标1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标:能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程一、创设情境、提出问题某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决分组讨论扣的分怎样表示?用前面学的数能表示吗?数怎么不够用了?引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.2、下面说法中正确的是().a.“向东5米”与“向西10米”不是相反意义的量;b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.三、小结回顾、纳入体系学生交流回顾、讨论总结,教师补充如下:概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.七年级数学有理数教案篇2一、知识与技能理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、二、过程与方法经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、三、情感态度与价值观体会数学与现实生活的联系,提高学生学习数学的兴趣、教学重点、难点与关键1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、2、难点:省略括号和加号的加法算式的运算方法、3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、教具准备投影仪、四、教学过程一、复习提问,引入新课1、叙述有理数的加法、减法法则、2、计算、(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);(4)(—8)—6;(5)5—14、五、新授我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、六、巩固练习1、课本第24页练习、(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、原式=1+3—4—0。
七年级数学有理数教案15篇
七年级数学有理数教案15篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!七年级数学有理数教案15篇七年级数学有理数教案(15篇)教案中的教学活动和方法都经过了反复实践和优化,具有很强的可操作性。
苏科版数学七年级上册第二章 有理数---相关概念教教学设计
苏科版数学七年级上册第二章有理数—相关概念教教学设计一. 教材分析《苏科版数学七年级上册》第二章主要介绍了有理数的相关概念,包括有理数的定义、分类、运算及其性质。
这一章节是有理数部分的基础,对于学生掌握整个初中数学知识体系具有重要意义。
教材内容安排合理,循序渐进,通过实例引入有理数的概念,使学生能够更好地理解和掌握。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些简单的数学概念和运算规则有所了解。
但部分学生可能对有理数的定义和性质理解不透彻,因此在教学过程中需要加强对学生的引导,让学生充分参与到课堂活动中来。
三. 教学目标1.理解有理数的定义,掌握有理数的分类及性质。
2.掌握有理数的运算规则,能够熟练进行有理数的加、减、乘、除运算。
3.培养学生的逻辑思维能力和团队合作精神。
四. 教学重难点1.有理数的定义及其分类。
2.有理数的性质。
3.有理数的运算规则。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的定义和性质。
2.运用实例分析法,让学生通过实际问题理解有理数的应用。
3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计好课堂练习题目和课后作业。
3.安排好课堂讨论和小组合作学习的时间和内容。
七. 教学过程1.导入(5分钟)利用实例引入有理数的概念,如分数、整数等,让学生初步感知有理数。
2.呈现(10分钟)呈现有理数的定义、分类和性质,引导学生主动探究,理解有理数的概念。
3.操练(10分钟)进行有理数的加、减、乘、除运算,让学生在实际操作中掌握运算规则。
4.巩固(10分钟)通过课堂练习题目,巩固所学内容,检查学生对有理数的理解和掌握程度。
5.拓展(10分钟)利用小组合作学习法,让学生探讨有理数在实际问题中的应用,拓展学生思维。
6.小结(5分钟)对本节课的主要内容进行总结,强调有理数的定义、性质和运算规则。
7.家庭作业(5分钟)布置适量的课后作业,巩固所学知识。
初中数学北师大版七年级上册第二章《有理数》教案
七年级第二章第一节有理数课型:新授课教学目标:1.理解正负数的概念,会判断一个数是正数还是负数.(重点)2.会用正负数表示具有相反意义的量;有理数的分类及其分类的标准.(难点)3.培养学生树立分类讨论的思想.教法和学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.课前准备:准备课件,学生课前进行相关预习工作.教学过程:一、情景导入明确目标:大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:整数、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……为了表示“没有东西”、“没有羊”、……,我们要用到0.瓦罐没有东西了——有了0 二人分一只西瓜,用数如何表示半只西瓜——有了分数货币购物,用数如何表示10元5角3分——有了小数用小学学过的数能表示下列数吗?零上5ºC零下5ºC但在实际生活中,还有许多量不能用上述所说的整数,零或分数、小数表示.例如,加1分和扣1分,如果只用小学学过的数,都记作1分,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.活动的实际效果:本环节利用问题情境的设置,紧紧扣住了学生的心弦,学生带着需要解决的问题来进行学习,极大的调动了学生学习的自觉性和积极性,有效的提高了知识的可接受程度.同学们能举例子吗?活动的实际效果:学生从身边的生活中找带有“-”号的数,他们很感兴趣,积极发言,当他们举出一些例子以后就会发现:零上为正的话,零下就为负;盈利为正,亏损就为负;海平面以上为正,海平面以下就为负,从而意识到“正”“负”是表示相反意义的量,这样学生认识到可以用正负数表示生活中具有相反意义的量.学生回答后,教师提出:怎样区别相反意义的量才好呢?二.自主学习合作探究探究活动1.用正负数表示具有相反意义的量根据课本第23页计算某班两个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.活动的实际效果:在学生的交流过程中,老师进行监控指导,确保每个小组讨论的质量并沿着正确的思考方向发展.每个小组的同学都能积极说出自己的想法,组内语言表达好的同学给语言表达稍差的同学作了良好的示范,这样起到了组内帮助的作用,各个小组的学生发表了他们的不同表达方法后,大家一致总结出:用带“-”号的数表示比0分低的得分,用带“+”号的数表示比0分高的得分是最方便简洁的方法.在此基础上给同学们讲授了“-1”和“+1”的读法.学生学习了“+”、“-”表示方法后,完成表格,虽然这里包含了有理数的运算,但学生根据生活经验可以完成,此处也为了以后的运算作了铺垫.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;活动的实际效果:通过对生活实际中的一些量的表示,体会正负数是两个具有相反意义的量;教师讲解:强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.例1(1) 某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2) 在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么?即时练习1:⑴任意写出5个正数与5个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.(2)教材第25页随堂练习第1题.(3)教材第26页知识技能第2题.活动的实际效果:本环节教师和学生一起完成例1,对学生理解正负数是表示相反意义的量以及解题格式起到示范的作用.随后展开竞赛,完成随堂练习第1题、知识技能第2题,前一环节的学习是从实际上升到理论,这一次的练习是由理论到实际应用,后者比前者在理解上来的更为深刻些探究活动2: 新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,.正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数,探究活动3: 有理数概念有理数的分类1.有理数概念整数和分数统称为有理数,2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.活动的实际效果:将所学的数分类上,学生有很多不同的分法,意见分歧比较大,但只要是合理,教师都给予了肯定,因为学生不可能得出有理数这一概念,这时教师讲解有理数的概念,并进行有理数的分类,让学生领会数学的分类思想,对有理数有了整体的认识.学生独立完成随堂练习后两题,进一步巩固对有理数的掌握.即时练习2:1.教材第25页随堂练习第2题.2.教材第26页随堂练习第3题.三.总结知识拓展提高1.通过本节课的学习你获得了那些知识?教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?活动的实际效果:每位同学在组内都能积极发言,认真回顾本节课所学知识,学生独立总结回答,既提高了学生的归纳总结能力又提高了学生的语言表达能力.达标检测:1、在-2;+1/2;-3.5;11中,正数是;负数是.2、+1350米表示高于海平面1350米,低于海平面200米,记作.3、如果上升10米记作+10米,那么下降12米,记作.4、如果规定向西走30米记作+30米,那么-40米,表示.5.如果零上5记作+5,那么零下3 记作.6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,记作.7.教材第25页随堂练习第2题.8.教材第26页随堂练习第3题.实际效果:大部分学生能当堂达标,完成效果良好,教师当堂批阅一半的学生.板书设计:教学反思:在认真学习《数学课程标准》的基础上,本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.推荐理由:教案中问题的设计、学情预设、过渡语言、引导语言、激励评价语言等极有利于以学生为主体,有利于自主性、合作性、探究性的学习方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第二章第一节有理数
课型:新授课
教学目标:
1.理解正负数的概念,会判断一个数是正数还是负数.(重点)
2.会用正负数表示具有相反意义的量;有理数的分类及其分类的标准.(难点)
3.培养学生树立分类讨论的思想.
教法和学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起
到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.
课前准备:准备课件,学生课前进行相关预习工作.
教学过程:
一、情景导入明确目标:
大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:整数、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有东西”、“没有羊”、……,我们要用到0.
瓦罐没有东西了——有了0 二人分一只西瓜,用数如何表示
半只西瓜——有了分数
货币购物,用数如何表示10元5角3分——有了小数
用小学学过的数能表示下列数吗?
零上5ºC
零下5ºC
但在实际生活中,还有许多量不能用上述所说的整数,零或分数、小数表示.例如,加1分和扣1分,如果只用小学学过的数,都记作1分,就不能把它们区别清楚.它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.
活动的实际效果:本环节利用问题情境的设置,紧紧扣住了学生的心弦,学生带着需要解决的问题来进行学习,极大的调动了学生学习的自觉性和积极性,有效的提高了知识的可接受程度.
同学们能举例子吗?
活动的实际效果:
学生从身边的生活中找带有“-”号的数,他们很感兴趣,积极发言,当他们举出一些例子以后就会发现:零上为正的话,零下就为负;盈利为正,亏损就为负;海平面以上为正,海平面以下就为负,从而意识到“正”“负”是表示相反意义的量,这样学生认识到可以用正负数表示生活中具有相反意义的量.
学生回答后,教师提出:怎样区别相反意义的量才好呢?
二.自主学习合作探究
探究活动1. 用正负数表示具有相反意义的量
根据课本第23页计算某班两个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.
活动的实际效果:在学生的交流过程中,老师进行监控指导,确保每个小组讨论的质量并沿着正确的思考方向发展.每个小组的同学都能积极说出自己的想法,组内语言表达好的同学给语言表达稍差的同学作了良好的示范,这样起到了组内帮助的作用,各个小组的学生发表
了他们的不同表达方法后,大家一致总结出:用带
“-”号的数表示比0分低的得分,用带“+”号的数表示比0分高的得分是最方便简洁的方法.在此基础上给同学们讲授了“-1”和“+1”的读法.学生学习了“+”、“-”表示方法后,完成表格,虽然这里包含了有理数的运算,但学生根据生活经验可以完成,此处也为了以后的运算作了铺垫.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
活动的实际效果:通过对生活实际中的一些量的表示,体会正负数是两个具有相反意义的量;
教师讲解:强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.
例1
(1) 某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?
(2) 在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么?
即时练习1:
⑴任意写出5个正数与5个负数,并分别把它们填入相应的大括号里:
正数集合:{…},
负数集合:{…}.
(2)教材第25页随堂练习第1题.
(3)教材第26页知识技能第2题.
活动的实际效果:
本环节教师和学生一起完成例1,对学生理解正负数是表示相反意义的量以及解题格式起到示范的作用.随后展开竞赛,完成随堂练习第1题、知识技能第2题,前一环节的学习是从实际上升到理论,这一次的练习是由理论到实际应用,后者比前者在理解上来的更为深刻些
探究活动2: 新的整数、分数概念
引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,.正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数,
探究活动3: 有理数概念有理数的分类
1.有理数概念
整数和分数统称为有理数,
2.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充.
教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.
活动的实际效果:
将所学的数分类上,学生有很多不同的分法,意见分歧比较大,但只要是合理,教师都给予了肯定,因为学生不可能得出有理数这一概念,这时教师讲解有理数的概念,并进行有理数的分类,让学生领会数学的分类思想,对有理数有了整体的认识.学生独立完成随堂练习后两题,进一步巩固对有理数的掌握.
即时练习2:
1.教材第25页随堂练习第2题.
2.教材第26页随堂练习第3题.
三.总结知识拓展提高
1.通过本节课的学习你获得了那些知识?
教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
活动的实际效果:
每位同学在组内都能积极发言,认真回顾本节课所学知识,学生独立总结回答,既提高了学生的归纳总结能力又提高了学生的语言表达能力.
达标检测:
1、在-2;+1/2;-3.5;11中,正数是;负数是 .
2、+1350米表示高于海平面1350米,低于海平面200米,记作 .
3、如果上升10米记作+10米,那么下降12米,记作 .
4、如果规定向西走30米记作+30米,那么-40米,表示 .
5.如果零上5记作+5,那么零下3 记作 .
6.某仓库运进面粉
7.5吨记作+7.5,那么运出3.8吨,记作 .
7.教材第25页随堂练习第2题.
8.教材第26页随堂练习第3题.
实际效果:大部分学生能当堂达标,完成效果良好,教师当堂批阅一半的学生.
板书设计:
教学反思:
在认真学习《数学课程标准》的基础上,本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化.
本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;
2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.
推荐理由:教案中问题的设计、学情预设、过渡语言、引导语言、激励评价语言
等极有利于以学生为主体,有利于自主性、合作性、探究性的学习方法。
教学过程结构合理、思路清晰,能体现师生互动、生生互动的空间,并能注重学生的个性发展;有利于学生创新精神和求异思维的培养;有利于突破重点、难点,情景导入能贴近学生生活经验,及时抓住学生的注意力;过渡衔接流畅、自然,媒体实用合理.
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。