(数学试卷高一)算法与程序框图练习题及答案
高中数学《算法---程序框图》典型例题练习(含答案)
高中数学《算法---程序框图》典型例题练习(含答案)算法与程序框图在高考中常以小题出现,难度不大,主要考察循环结构。
在处理这类问题时关键在于计算的准确。
一、基础知识:读框图时,要抓住“看头,审尾,记过程”这三点1、看头:观察框图中变量的个数,以及赋予的初始值2、审尾:强调细致的“审查”循环结束时,变量所取到的最后一个值,这也是易错点3、记过程:为了保证计算的准确,在读取框图的过程中,可详细记录循环体中每经过一个步骤,变量取值的变化情况,以便于在跳出循环时能快速准确得到输出变量的值二、典型例题:例1:执行下图所示的程序框图,若输入2x =,则输出y 的值为 .思路:通过框图的判断语句可知y 关于x 的函数为:2321,01,012,1x x y x x x x x −<⎧⎪=+≤<⎨⎪+≥⎩,所以当2x =时,322212y =+⋅=答案:12例2:阅读右边的程序框图,运行相应的程序,则输出的值为( )A .3B .4C .5D .6思路:循环的流程如下:① 1,2i a ==② 2,5i a ==③ 3,16i a ==④ 4,65i a ==i循环终止,所以4i =答案:B例3:某程序框图如图所示,若输出的57S =,则判断框内为( )A. 4?k >B. 5?k >C. 6?k >D. 7?k >思路:循环的流程如下:① 2,4k S ==② 3,11k S ==③ 4,26k S ==④ 5,57k S ==所以应该在此时终止,所以填入4?k >答案:A例4:执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A. 120B. 720C. 1440D. 5040思路:循环的流程如下:① 1p =② 2,2k p ==③ 3,6k p ==④ 4,24k p ==⑤ 5,120k p ==⑥ 6,720k p ==答案:B例5:右图是一个算法的流程图,则输出S 的值是______ 第4题思路:循环的流程如下: ① 1123S =+=② 22,327n S ==+=③ 33,7215n S ==+=④ 44,15231n S ==+=⑤ 55,31263n S ==+=循环结束,所以63S =答案:63S =例6:执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是( )A .5B .6C .22D .33思路:因为输出的2i =,说明只经过了一次循环。
算法与程序框图-习题(含答案)
算法与程序框图-习题(含答案)算法与程序框图习题(含答案)一、单选题1.执行如图所示的程序框图输出的结果是()A.8 B.6 C.5 D.32.已知某程序框图如图所示,则执行该程序后输出的结果是A.−1 B.12C . 1D . 23.下图是把二进制的数11111(2)化成十进制数的一个程序框图,则判断框内应填入的条件是( )A . i >4B . i ≤5C . i ≤4D . i >54.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首待:“我有一壶酒,携着游春走,遇店添一倍,逢有饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x =0,问一开始输入的x =( )A . 3132B . 1516C . 78D . 34 5.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙 子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位用纵式表示,十位,千位,十万位用横式表示,以此类推,例如2268用算筹表示就是=||丄|||.执行如图所示程序框图,若输人的x=1, y = 2,则输出的S用算筹表示为A. B. C.D.6.在ΔOAB中,∠AOB=120o,OA=OB= 2√3,边AB的四等分点分别为A1,A2,A3,A1靠近A,执行下图算法后结果为()A. 6 B. 7 C. 8 D. 97.宋元时期名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长五尺,若输入的a,b分别是5,2,则输出的n=()A.2 B.3 C.4 D.58.如图所示的程序框图,输出的S=A. 18 B. 41C. 88 D. 1839.执行图1所示的程序框图,则S的值为()图1A . 16B . 32C . 64D . 128二、填空题10.我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即为方程组{5x +3y +z 3=100,x +y +z =100的解.其解题过程可用框图表示如下图所示,则框图中正整数m 的值为 ______.11.运行如图所示的程序,若输入的是−2018,则输出的值是__________.12.下图给出的伪代码运行结果x是_________ .13.如图是一个算法的流程图,则输出的n的值是________.14.执行如图所示的程序框图,输出的值为____________.15.如图所示是一算法的伪代码,执行此算法时,输出的结果是.16.执行如图所示的程序框图,若输出的a值大于 2 015,那么判断框内的条件应为________.17.如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a,b分别为98、63,则输出的a=_______.18.执行如图所示的程序框图,若M=1,则输出的S =__________;若输出的S =14,则整数M = __________.三、解答题19.编写一个程序,求满足1+12+13+⋅⋅⋅+1n >10的n 的最小值.20.在空间直角坐标系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).(1)求|AB|的长度; (2)写出A 、B两点经此程序框图执行运算后的开始↓↓结束对应点A 0,B 0的坐标,并求出在方向上的投影.21.按右图所示的程序框图操作:(Ⅰ)写出输出的数所组成的数集.(Ⅱ)如何变更A 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}n 2的前7项?(Ⅲ)如何变更B 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}2n 3-的前7项?22.已知函数y =21,1{1,1 1 33,1x x x x x x -<-+-≤≤>,编写一个程序求函数值.23.在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含 5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客OA 0OB购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.24.图C16所示的程序框图表示了一个什么样的算法?试用当型循环写出它的算法并画出相应的程序框图.25.25.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.26.函数y={−x +1, x >0,0,x =0,x +1,x <0,试写出给定自变量x,求函数值y 的算法. 27.求函数()()222y={22x x x x -≥-<的值的程序框图如图所示.(1)指出程序框图中的错误,并写出算法;(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.①要使输出的值为正数,输入的x的值应满足什么条件?②要使输出的值为8,输入的x值应是多少?③要使输出的y值最小,输入的x值应是多少?参考答案1.A【解析】【分析】根据程序框图循环结构运算,依次代入求解即可。
数学算法和程序框图试题答案及解析
数学算法和程序框图试题答案及解析1.运行如图所示的程序,若结束时输出的结果不小于3,则的取值范围为()A.B.C.D.【答案】D【解析】第一次运行后,第二次运行后,第三次运行后,此时,停止循环,则,即.2.一个算法的程序框图如右图所示,若该程序输出的P位于区间内,则判断框内应填入的条件是()A.B.C.D.【答案】C【解析】因为第一次循环,第二次循环,第三次循环,第四次循环,第五次循环,第六次循环,此时应结束循环,所以判断框中应填选C.【考点】程序框图3.执行如图所示的程序框图,输出的S值为时,则输入的的值为()A.B.C.D.【答案】D【解析】在程序执行过程中,的值依次为;;;,程序结束,输出的S值为.故,即.【命题意图】本题考查程序框图基础知识,意在考查学生基本运算能力和逻辑推理能力. 4.已知函数y=,写出求该函数函数值的算法及程序框图.【答案】见解析【解析】算法如下:第一步,输入x.第二步,如果x>0,则y=-2;如果x=0,则y=0;如果x<0,则y=2.第三步,输出函数值y.相应的程序框图如图所示.5.设计算法求+++…+的值,并画出程序框图.【答案】见解析【解析】算法如下:第一步,令S=0,i=1;第二步,若i≤2 011成立,则执行第三步;否则,输出S,结束算法;第三步,S=S+;第四步,i=i+1,返回第二步.程序框图:6.根据下列算法语句, 当输入x为60时, 输出y的值为()A.25B.30C.31D.61【答案】C【解析】,故选择C。
解答要注意条件的运用和判断。
【考点】本题考查算法程序,重点突出对条件语句的考查.是容易题。
7.如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则()A.A+B为a1,a2,…,aN的和B.为a1,a2,…,aN的算术平均数C.A和B分别是a1,a2,…,aN中最大的数和最小的数D.A和B分别是a1,a2,…,aN中最小的数和最大的数【答案】C【解析】由程序框图可知,当x>A时,A=x;当x≤A且x<B时,B=x,所以A是a1,a2,…,a N 中的最大数,B是a1,a2,…,aN中的最小数.故选C.8.执行如图所示的程序框图,则输出的S值是()A.-1B.C.D.4【答案】A【解析】本小题主要考查程序框图的应用.解题的突破口为分析i与6的关系.当i=1时,S==-1;当i=2时,S==;当i=3时,S==;当i=4时,S==4;当i=5时,S==-1;当i=6时程序终止,故而输出的结果为-1.9.程序框图如图所示,则该程序运行后输出的值是________.【答案】【解析】本题主要考查算法的程序框图及其应用.当i=1时,T==1,而i=1+1=2,不满足条件i>5;接下来,当i=2时,T=,而i=2+1=3,不满足条件i>5;接下来,当i=3时,T ==,而i=3+1=4,不满足条件i>5;接下来,当i=4时,T==,而i=4+1=5,不满足条件i>5;接下来,当i=5时,T==,而i=5+1=6,满足条件i>5;此时输出T =,故应填.10.某程序框图如图所示,现将输出值依次记为:若程序运行中输出的一个数组是则数组中的()A.32B.24C.18D.16【答案】A【解析】解:运行第一次,输出 , , ,运行第二次,输出运行第三次,输出运行第四次,输出运行第五次,输出运行第六次,输出所以选A.11.若如图所示的程序框图输出的S是30,则在判断框中M表示的“条件”应该是( ) A.B.C.D.【答案】B【解析】首先执行程序到,则应该填,故选B.12.某程序框图如图所示,若,则该程序运行后,输出的的值为()A.33B.31C.29D.27【答案】B【解析】若,,则;;满足条件继续,;不满足条件,输出,结束.13.执行程序框图,则输出的S是()A.5040B.4850C.2450D.2550【答案】C【解析】由程序框图分析可知:第一次循环:第二次循环:第三次循环:…,当时循环结束,此时,故输出的结果为2450,选C.14.某程序框图如图所示,该程序运行后输出的值是()A.63B.31C.27D.15【答案】A【解析】程序框图运行如下:15.某程序框图如图所示,则该程序运行后输出的值为.【答案】7【解析】开始时,,进入循环,;,继续循环,;,继续循环,;,跳出循环,故.16.执行如图所示的算法流程图,则最后输出的等于.【答案】63【解析】第一次循环,第二次循环,第三次循环,第四次循环,第六次循环,终止循环,输出.17.若某程序框图如右图所示,则该程序运行后输出的值为.【答案】8【解析】,不满足是奇数,,不满足;,不满足是奇数,,不满足;,满足是奇数,,不满足;,不满足是奇数,,不满足;,不满足是奇数,,不满足;,不满足是奇数,,不满足;,不满足是奇数,,满足,输出.18.在下图算法框图中,若输入,程序运行的结果那么判断框中应填入的关于的判断条件是()A.B.C.D.【答案】B.【解析】由,而输出,由程序框图使用列举法可得:,,结束算法,输出,因此判断框内条件应为“”故选B.【命题意图】本题考查定积分,算法框图中的顺序结构,条件结构、循环结构以及相应语句等基础知识,意在考查分析问题、解决问题的能力、基本运算能力及推理能力.19.对任意函数,,可按如图构造一个数列发生器,记由数列发生器产生数列{}.若定义函数,且输入,则数列{}的项构成的集合为()A.B.C.D.【答案】C【解析】∵的定义域,把代入可得,把代入可得,把代入可得,因为,所以数列只有三项:,,.【命题意图】本题考查程序框图基础知识,意在考查学生基本运算能力和运算能力.20.如图所示,程序框图(算法流程图)的输出结果是,那么判断框中应填入的关于的判断条件是()A.B.C.D.【答案】B【解析】经分析,此时满足题意,循环终止,故选B.【命题意图】本题主要考程序框图和循环结构等基础知识,意在考查学生是否理解和认识,并能利用程序框图解决问题的能力.。
高一数学算法与程序框图试题
高一数学算法与程序框图试题1.执行如图的程序框图,输出的S是()A.﹣378B.378C.﹣418D.418【答案】D【解析】解答算法框图的问题,要依次执行各个步骤,特别注意循环结构的终止条件,本题中是k≥﹣20就终止循环,因此累加变量累加到值40最后输出S=﹣2﹣0+2+4+…+40,于是计算得到结果.解:据题意输出S=﹣2﹣0+2+4+ (40)其表示一首项为﹣2,公差为2的等差数列前22项之和,故S=×22=418.故选D.点评:本题考查了循环结构、流程图的识别、条件框等算法框图的应用,还考查了对多个变量计数变量、累加变量的理解与应用,属于基础题.2.执行如图的程序框图,如果输入a=10,b=11,则输出的S等于()A.B.C.D.【答案】C【解析】分析已知中的程序框图,我们易得程序框图中循环结构的功能是计算并输出的值,结合已知中输入a=10,b=11,结合程序中的选择结构,我们计算出进入循环时的a值,即可得到答案.解:∵输入a=10,b=11,不满足分支结构中的条件a≥b,故进行循环时a=b=11,则程序的功能为计算数列的值∵===故选C点评:本题考查的知识点是循环结构,本题易忽略循环结构前条件结构的作用,而错将进入循环的a值定为10,而错选B答案.3.下面的程序框图能判断任意输入的数x的奇偶性.其中判断框内的条件是()A.m=0B.m=1C.x=0D.x=1【答案】B【解析】本题考查了选择结构,由程序框图所体现的算法可知判断一个数是奇数还是偶数,看这个数除以2的余数是1还是0,从而得到判断框条件.解:由程序框图所体现的算法可知判断一个数是奇数还是偶数,看这个数除以2的余数是1还是0.由图可知应该填m=1.故选B点评:选择结构是考试中常考的知识点,根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.4.看下面的四段话,其中不是解决问题的算法的是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2﹣1=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再由3+3=6,6+4=10,10+5=15,最终结果为15【答案】C【解析】A选项B选项D选项均是解决问题的算法,而选项C只是一个真命题,没解决什么问题.解:A选项:从济南到北京旅游,先坐火车,再坐飞机抵达,解决了怎样去的问题,所以A错误;B选项:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1,解决了怎样接一元一次方程的问题,所以B错误;D选项:求1+2+3+4+5的值,先计算1+2=3,再由3+3=6,6+4=10,10+5=15,最终结果为15,解决了怎样求数的和的问题,所以D错误;故选C.点评:本题考查了算法的概念和理解,注重算法的用途和意义.5.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值;其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③【答案】D【解析】由算法的概念可知:算法是先后顺序的,结果明确性,每一步操作明确的,根据已知直角三角形两直角边长为a,b,求斜边长c的一个算法的先后顺序,即可判断选项的正误.解:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.点评:本题考查算法的概念,解题关键是算法的作用,格式.6.若f(x)在区间[a,b]内单调,且f(a)•f(b)<0,则f(x)在区间[a,b]内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定【答案】C【解析】根据零点存在定理,我们易得到函数f(x)在区间[a,b]上有零点,再根据函数f(x)在区间[a,b]内单调,即可得结论.解:因为f(a)f(b)<0,所以,f(a)与f(b)异号,即:f(a)>0,f(b)<0;或者f(a)<0,f(b)>0显然,在[a,b]内,必有一点,使得f(x)=0.又f(x)在区间[a,b]上单调,所以,这样的点只有一个故选C点评:本题考查的知识点是根的存在性及根的个数判断,正确理解零点存在定理是解答本题的关键.7.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89,B=96,C=99;第二步:;第三步:;第四步:输出计算的结果.【答案】S=A+B+C;.【解析】由题意,第二步,求和,第三步,计算平均成绩.解:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.故答案为:S=A+B+C;.点评:本题考查算法知识,考查学生分析解决问题的能力,属于基础题.8.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=直接计算.第一步;第二步;第三步输出计算的结果.【答案】取n=100;计算.【解析】由条件知构成等差数列,再前n项和公式求得其值.解:由条件知构成等差数列,从而前n项和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入计算.故答案为:取n=100;计算.点评:本题考查算法知识,考查等差数列的前n项和公式的应用.9.写出1×2×3×4×5×6的一个算法.【答案】见解析【解析】按照逐一相乘的程序进行,即可写出相应的算法.解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.点评:本题考查算法的书写,考查学生分析解决问题的能力,属于基础题.10.写出按从小到大的顺序重新排列x,y,z三个数值的算法.【答案】见解析【解析】本题主要设计从小到大的顺序重新排列x,y,z的程序,利用赋值语句,采用顺序结构,弄清几个步骤即可写出答案.解:算法如下:(1)输入x,y,z三个数值;(2)从三个数值中挑出最小者并换到x中;(3)从y,z中挑出最小者并换到y中;(4)输出排序的结果.点评:本题主要考查了赋值语句,以及设计程序框图解决实际问题.属于基础题.。
高一数学算法与框图试题答案及解析
高一数学算法与框图试题答案及解析1.有下面的程序,运行该程序,要使输出的结果是30,在“”处应添加的条件是______________.【答案】(答案不唯一如:等)【解析】第一次循环:;第二次循环:;第三次循环:;第四次循环:;第五次循环:.故应添加的条件是(答案不唯一如:等)。
【考点】循环语句的理解。
2.阅读下面程序框图运行相应的程序,若输入的值为-8,则输出的值为()A.0B.1C.D.【答案】D【解析】将-8带入程序框图中进行计算,x=-8绝对值大于4,进行下一步,x=12,绝对值依然大于4,再进行下一步,x=8,x=4满足条件,输出,故选择D项。
【考点】程序框图的计算3.下面是计算应纳税所得额的算法过程,其算法如下:第一步输入工资x(注x<=5000);第二步如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300)第三步输出税款y, 结束。
请写出该算法的程序框图和程序。
(注意:程序框图与程序必须对应)【答案】详见解析【解析】根据第一步,开始后,应设计一个数据输入框,由第二步,可知需要设计一个分支嵌套结构,最后还要在结束前有一个数据输出框,根据已知中数据,易得到程序的框图;由框图,将框图中的输入、分支、输出转化为对应语句后,即可得到程序的语句试题解析:【考点】程序语句与程序框图4.将两个数交换,使,下面语句正确一组是()【答案】A【解析】先把的值赋给中间变量,这样,再把的值赋给变量,这样,把的值赋给变量,这样.【考点】赋值语句5.将二进制数转化为四进制数,正确的是()A.B.C.D.【答案】B【解析】先将二进制转化为十进制,即再将28转化为四进制,,选B【考点】二进制6.阅读如图的程序框图,则输出的.【答案】30【解析】第一次循环得到:;第二次循环得到:;第三次循环得到:;第四次循环得到:;满足,所以输出30【考点】程序框图7.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入()A.B.C.D.【答案】A【解析】程序执行中的数据变化如下:成立,输出【考点】程序框图8.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.B.C.D.【答案】D【解析】由题意得,,即函数为奇函数,存在零点,即方程有解,对于函数,则,即函数为奇函数;同时当时,,此时,即函数存在零点,所以输入函数,则输出函数.【考点】1、函数的奇偶性;2、函数零点的应用;3、程序框图.【易错点晴】本题考查了函数的奇偶性及函数零点的应用,属于基础题,解答的关键是把握程序框图的输入与输出,同时把握函数的奇偶性及函数零点的概念是解答的基础,其中函数的零点的处理方法是解答的一个易错点.9.(2015秋•运城期末)执行如图的程序框图,若输人a=319,b=87,则输出的a是()A.19B.29C.57D.76【答案】B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:第一次执行循环体后:c=58,a=87,b=58,不满足退出循环的条件;第二次执行循环体后:c=29,a=58,b=29,不满足退出循环的条件;第三次执行循环体后:c=0,a=29,b=0,满足退出循环的条件;故输出的a值为29,故选:B【考点】程序框图.10.执行如图所示的程序框图,若输出的,则判断框中应填入()A.?B.C.D.【答案】D【解析】第一次运行第二次运行第三次运行第四次运行第五次运行第六次运行输出,判断框中应填入,故选D.【考点】程序框图.11.执行如图的程序,若输入的,,则输出的___________.【答案】【解析】本题是一个利用辗转相除法求除以的余数问题,因为,,;,,;,,;,,所以输出的,故答案填.【考点】循环语句.【方法点睛】本题是一个利用循环语句求余数的问题,属于容易题.解决此类问题的基本思路与方法是,把较大的数除以较小的数,并求出所得的余数;再将上面的除数作被除数,所得的余数作除数,并求出新的余数……以此类推,反复重复以上步骤,直到余数为零结束循环,即可求得所需的结果.12.为了鼓励市民节约用水,太原市对已实施“一户一表、水表出户”的居民生活用水的收费标准规定如下:一级水量每户每月9立方米及以下,每立方米销售价格2.30元;二级水量每户每月9立方米以上至13.5立方米,每立方米销售价格为4.60元;三级水量每户每月13.5立方米及以上,每立方米销售价格为6.90元.(1)写出太原市居民每户每月生活用水费用(单位:元)与其用水量(单位:立方米)之间的关系式;(2)如图是按上述规定计算太原市居民每户每月生活用水费用的程序框图,但步骤没有全部给出,请将其补充完整(将答案写在下列横线上).①-______________;②_______________;③______________.【答案】(1);(2)①,②,③.【解析】对于问题(1),可设出居民每户每月生活用水吨,再根据题意对进行分段讨论,进而可得居民每户每月生活用水费用(单位:元)与其用水量(单位:立方米)之间的关系式;对于问题(2),根据(1)的结论便可补充完整居民每户每月生活用水费用的程序框图.试题解析:(1)设居民每户每月生活用水吨,根据题目条件可得;(2)根据(1)的结论可知居民每户每月生活用水费用的程序框图中应对应填写:①、②、③.【考点】1、分段函数;2、程序框图.13.执行下面的程序框图,如果输入的是6,那么输出的是()A.120B.720C.1440D.5040【答案】B【解析】,;;;;;此时输出所以为B.【考点】1.程序框图;14.如右图所示的程序框图中,输出S的值为( )A.10B.12C.15D.18【答案】C【解析】程序执行中的数据变化如下:成立,输出【考点】程序框图15.为调查海口市中学生平均每人每天参加体育锻炼时间(单位:分钟),按锻炼时间分下列四种情况统计:①分钟;②分钟;③分钟;④30分钟以上.有10000名中学生参加了此项活动,如图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在分钟内的学生的频率是___________.【答案】0.38【解析】由程序框图,可得该程序框图的功能是计算平均每天参加体育锻炼时间不在在分钟内的学生的人数,即6200,即平均每天参加体育锻炼时间在分钟内的学生的人数为10000-6200=3800,所以平均每天参加体育锻炼时间在分钟内的学生的频率为0.38;故填0.38.【考点】1.程序框图;2.统计.【思路点睛】本题以程序框图为载体考查统计中的频数和频率等知识;解决本题的关键是先分析程序框图,通过程序框图的循环结构判定程序框图的功能,并与该问题中的实际问题结合,要注意程序框图中两个变量的不同,这是处理程序框图问题的关键,也是易错之处.16.将53化为二进制的数,结果为()A.B.C.D.【答案】D【解析】利用“除k取余法”,可得D.【考点】十进制化k进制.17.下面程序运行后,得到的a,b,c分别为()a = 1b= 2c = 3a = bb = cc = aPRINTA, b, cENDA.2,3, 2B.2,3,1C.3,2,1D.3,2,3【答案】A【解析】由赋值语句的含义可知,要特别注意的值,它是由的初始值赋给后又赋给的.【考点】赋值语句.18.某程序框图如图所示,若输出的S=57,则判断框内()(图中K=K+1,S=2S+K)A.k>4?B.k>5?C.k>6?D.k>7?【答案】A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.程序在运行过程中各变量值变化如下:K S 是否继续循环循环前 1 1 /第一圈 2 4 是第二圈 3 11 是第三圈 4 26 是第四圈 5 57 否故退出循环的条件应为k>4故选A.【考点】程序框图.19.已知某程序框图如图所示,则该程序运行后输出的结果为()A.B.C.D.【答案】A【解析】程序运行过程中,各变量的值如下表示:是否继续循环循环前第一圈是第二圈是第三圈是第四圈是第五圈是…第圈是第圈是第圈是第圈是…第圈是第圈是第圈否所以最后输出的值为,即.故选A.【考点】程序框图.20.如果输入,那么执行下图中算法的结果是()A.输出3B.输出4C.输出5D.程序出错,输不出任何结果【答案】C【解析】选C.【考点】流程图【名师】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.21.根据下边的图,当输入为2016时,输出的A.28B.10C.4D.2【答案】B【解析】由图所示的程序框图,输入,由判断框的条件,进过循环执行后,输出,再执行可得输出的【考点】算法程序框图的应用.22.某程序框图如图所示,若输出的S=57,则判断框内为( )A.k>4B.k>5C.k>6D.k>7【答案】A【解析】程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前 1 1/第一圈 2 4 是第二圈 3 11 是第三圈 4 26 是第四圈 5 57 否故退出循环的条件应为k>4【考点】程序框图23.执行如图所示的程序框图,如果输入的,则输出的s属于()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]【答案】A【解析】此程序为分段函数,当时,,当时,,所以函数的值域为:,故选A.【考点】程序框图24.某程序框图如图所示,该程序运行后输出的n值是8,则从集合中所有满足条件的S值为()A.0B.1C.3D.4【答案】A【解析】经过第一次循环得到的结果为,n=1,不输出,满足判断框的条件即;经过第二次循环得到的结果为,n=2,不输出,满足判断框的条件即;经过第三次循环得到的结果为,n=3,不输出,满足判断框的条件即;经过第四次循环得到的结果为,n=4,不输出,满足判断框的条件即;经过第五次循环得到的结果为,n=5,不输出,满足判断框的条件即;经过第六次循环得到的结果为,n=6,不输出,满足判断框的条件即;经过第七次循环得到的结果为,n=7,不输出,满足判断框的条件即;经过第八次循环得到的结果为,n=8,输出,不满足判断框的条件即.∵,∴.故答案为:A.【考点】循环结构的作用 .25.在下边程序中,如果输入的值是20,则输出的值是【答案】150【解析】由条件可知,本程序实际为分段函数所以输出的y值为150 .【考点】程序框图 .26.给出一个算法:根据以上算法,可求得的值为___________.【答案】【解析】根据题意得:,所以.【考点】条件语句;分段函数.27.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【答案】B【解析】由a=14,b=18,a<b,则b变为18-14=4,由a>b,则a变为14-4=10,由a>b,则a变为10-4=6,由a>b,则a变为6-4=2,由a<b,则b变为4-2=2,由a=b=2,则输出的a=2【考点】程序框图28.计算__________.(用二进制表示)【答案】【解析】11011(2)-101(2)=1×20+1×21+1×22+1×23-1×20+0×21+1×22=11.故答案为:11.【点睛】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于记忆型题,计算题.29.辗转相除法是求两个正整数的()的方法.A.平均数B.标准差C.最大公约数D.最小公倍数【答案】C【解析】辗转相除法是与更相减损术是数学中见的求最大公约数的方法.故本题选.30.对应的二进制数是()A.B.C.D.【答案】A【解析】对应的十进制数是,则对应的二进制数是。
数学算法和程序框图试题答案及解析
数学算法和程序框图试题答案及解析1.运行下图框图输出的是,则①应为()A.B.C.D.【答案】C【解析】假设填入的条件为,第一次循环,成立,,;第二次循环,成立,,;第三次循环,成立,,;依此类推,第次循环,成立,,,不成立,跳出循环体,输出,解得,故选C.2.如图是计算的值的一个流程图,则常数a的最大值是.【答案】【解析】由算法循环结构可得当时,,当时,,如此下去,当时,,可得的范围为:,即的最大值为.3.已知数列各项均为正数,如图的程序框图中,若输入的,则输出的值是()A.B.C.D.【答案】B.【解析】读程序框图可知数列通项公式,故选B.【考点】本题考查算法初步与程序框图、裂项法求数列的前项和等知识,意在考查读懂算法语句,进行简单计算的能力.4.执行如图所示的程序框图,输出的S值为()A.1B.C.D.【答案】C【解析】第一次执行循环:,;第二次执行循环:,,满足≥2,结束循环,输出.【考点】本小题考查了对算法程序框图的三种逻辑结构的理解,考查了数据处理能力和算法思想的应用.5.如果执行如图所示的程序框图,输入x=-1,n=3,则输出的数S=________.【答案】-4【解析】考查程序框图和数列的求和,考查考生的当型循环结构,关键是处理好循环次数,不要多加情况,或者少算次数.解决此类型试题,最好按循环依次写出结果.当i=2时S=-3,当i=1时S=5,当i=0时S=-4,当i=-1时,不满足条件,退出循环,输出结果S=-4.6.如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【答案】D【解析】本题主要考查循环结构的程序框图的应用,同时要兼顾考查学习概率的模拟方法中圆周率π的模拟,通过阅读题目和所给数据可知试验了1000次,M代表落在圆内的点的个数,根据几何概型,=,对应的圆周率π为P=.7.执行右面的程序框图,如果输入的n是4,则输出的P是A.8B.5C.3D.2【答案】C【解析】第一次执行结果:p="1,s=1,t=1,k=2;"第二次执行结果:p=2,s=1,t=2,k=3;第三次执行结果:p=3,s=2,t=3,k=4;结束循环,输出p的值4.8.执行右面的程序框图,如果输入的N是6,那么输出的是()A.120B.720C.1440D.5040【答案】B【解析】B按照算法的程序化思想,有程序框图执行下面的计算可得:,此时,按终止条件结束,输出9.程序框图如图所示:如果上述程序运行的结果S=1320,那么判断框中应填入( )A.K<10!B.K≤10!C.K<9? !D.K≤11!【答案】A【解析】以此运行循环语句直到S=1320,可得判断框中应填入K<10!,故选A.10.右面是“二分法”解方程的流程图.在①~④处应填写的内容分别是( )A.f(a)f(m)<0;a=m;是;否B.f(b)f(m)<0;b=m;是;否C.f(b)f(m)<0;m=b;是;否D.f(b)f(m)<0;b=m;否;是【答案】B【解析】根据二分法的概念可知选B.11.在数列中,.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是 ( )A.B.C.D.【答案】C【解析】因为当i=0时运算的结果为s=1,当i=1时运算的结果为s=1+3,所以当i=10时输出前10项的和.12.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.B.C.D.【答案】D【解析】∵A和C中的函数不是奇函数,不满足条件,故排除A、C;又∵中的函数图象与轴没有交点,不存在零点,而D中既是奇函数,而且函数图象与也有交点,故D符合输出的条件,故选D.13.运行如图所示的程序框图,若输出的是,则①应为()A.n≤5B.n≤6C.n≤7D.n≤8【答案】C【解析】由程序框图算法可知,,由于输出,即,解得,故①应为“”,故选14.执行如图所示的程序框图.若输入,则输出的值是( )A.B.C.D.【答案】C【解析】这是一个循环结构,循环的结果依次为:.最后输出5.15.运行右图所示框图的相应程序,若输入的值分别为和,则输出的值是()A.0B.1C.2D.-1【答案】C【解析】因为,,所以,由算法框图可知,运行后输出的值为.16.若某程序框图如右图所示,则该程序运行后输出的值为.【答案】8【解析】,不满足是奇数,,不满足;,不满足是奇数,,不满足;,满足是奇数,,不满足;,不满足是奇数,,不满足;,不满足是奇数,,不满足;,不满足是奇数,,不满足;,不满足是奇数,,满足,输出.17.某店一个月的收入和支出总共记录了 N个数据,,。
(完整word)高中数学算法框图习题及详解.doc
专题复习:算法框图高中数学算法框图习题(含答案详解)一、1. (理 )如所示算法程序框运行,入a= tan315 ,°b= sin315 ,°c= cos315 ,° 出果 ()2 2A. 2 B .-2 C.- 1 D .1[答案 ] C[解析 ] a、 b、 c 三数中的最小,又cos315 °>0, sin315 =°-2此程序框是出 2,2tan315 =°- 1<-2,故 C.2.下列程序运行后出果()x= 1;for i = 1 10x= 2]A.1B.23 C. 113 D.以上都不[答案 ] B[解析 ] 每一次循 x 都重新,与原来 x 的无关,故最后出x 的只与最后一次循 i 的有关,∵i =10,∴ x=23.1( 共 6 个 2)的的算法的程序框,中的判断框中填3. (理 )下面是求 12+12+⋯+ 2A . i ≤5? B. i <5? C.i ≥5? D. i>5?[答案 ] A[解析 ] 由于所给计算的表达式中共有 6 个2,故只需 5 次循环即可,由此控制循环次数的变量i 应满足 i≤ 5.故选 A.4. (理 )已知数列 { a n} 中, a1= 1, a n+1= a n+ n,利用如图所示的程序框图计算该数列第10 项,则判断框中应填的语句是( )A . n>10B . n≤ 10 C. n<9 D. n≤ 9[答案 ] D[解析 ] 本题在算法与数列的交汇处命题,考查了对程序框图的理解能力.数列{ a } 是n一个递推数列,因为递推公式为a1 n +1 n 10 9= 1, a = a + n,故 a =a+9,因为循环体为m=m +1, n= n+ 1,当 n= 10 时结束循环,故判断框内应为n≤ 9.5. (理 )下列程序运行后输出结果为()S= 1;n= 1;while S<100S = S* n ;n = n + 3;endnA . 4B .10C . 13D . 16[答案 ]C[解析 ]S = 1<100,进行第一次循环后S = 1, n = 4; S = 1<100再进行第二次循环.循环后 S = 4,n = 7;第三次循环后 S = 28,n = 10;第四次循环后 S = 280,n = 13.因 故不再循环,跳出循环后输出 n = 13. 6. (文 )在如图的程序框图中,若输入 m = 77,n = 33,则输出的 n 的值是( S = 280>100,)A . 3B . 7C . 11D . 33[答案 ] C[解析 ] 这个程序框图执行的过程是:第一次循环: m = 77,n = 33, r =11;第二次循环: m = 33,n = 11, r = 0.因为 r =0,则结束循环,输出n = 11.7.下面的程序框图,若输入 a = 0,则输出的结果为 ( )A . 1022B . 2046C . 1024D . 2048[答案 ] B[解析 ]由程序框图中的循环结构可得到递推公式, a = 2a + 2,且 a = 0,由 ak +1k1k +1a k +1 + 2=2a k + 2 可得, a k +1+ 2= 2(a k + 2),即 = 2 且 a 1+ 2= 2,∴ { a k + 2} 是以 2 为公比, 2a + 2k为首项的等比数列, ∴ a + 2= 2×2 k - 1k,即 ak11= 2k = 2 - 2,从而a = 2 - 2= 2046,故选k11B.[点评 ]本题的关键是弄清输出的a 的值为数列{ a n } 的第几项,k =1 算出的是a 2,k = 2满足条件得a 3,故k =10满足条件计算后得到a 11,k = 11不满足,故输出的是a 11 而不是a 10,有不少人在这里搞不清楚,以为判断条件是k ≤ 10,故最后输出的是 a 10,这是没有完整理解算法的典型表现. 因为对同一个判断条件k ≤10,a =2a + 2 与 k = k + 1 语句的先后顺序不同输出结果也不同, 还与 k 的初值有关等等, 故应统盘考虑, 解决的一个有效途径就是循环几次把握其规律.【解答题】8.为了让学生更多的了解“数学史”知识,其中学高二年级举办了一次“追寻先哲的足迹, 倾听数学的声音”的数学史知识竞赛活动,共有 800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分 )进行统计.请你根据频率分布表,解答下列问题:序号 (i) 分组 (分数 ) 组中值 (G i) 频数 (人数 ) 频率 (F i)1 [60,70) 65 ①0.122 [70,80) 75 20 ②3 [80,90) 85 ③0.244 [90,100] 95 ④⑤合计50 1(1)填充频率分布表中的空格 (在解答中直接写出对应空格序号的答案);(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85 分的同学能获奖,请估计在参加的 800 名学生中大概有多少同学获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出S 的值.[解析 ] (1)∵样本容量为50,∴①为 6,②为 0.4,③为 12,④为 12,⑤为 0.24.(2)在 [80,90) 之间, 85 分以上约占一半,∴12× 0.24+ 0.24 × 800= 288,即在参加的800 名学生中大概有288 名同学获奖.(3)由流程图知S= G1 F1+ G2F2+ G3F3+G4F 4=65×0.12+ 75× 0.4+ 85× 0.24+ 95× 0.24= 81.。
高一数学算法和程序框图试题
高一数学算法和程序框图试题1.按如图的程序框图运行后,输出的S应为()A.7B.15C.26D.40【答案】B【解析】第一次执行循环体时,;第二次执行循环体时,;第一次执行循环体时,;此时终止循环,输出.【考点】程序框图的应用.2.下图为某算法的程序框图,则程序运行后输出的结果是()A.2B.1C.3D.4【答案】C【解析】这里外是一个循环结构,一共循环了次,而内部是一个选择结构,根据条件确定的值是还是,然后把的值加给,次循环结束后,输出的值,便是正确答案,结果选择C.只要读懂题意,然后把人设想成计算机,按步骤逐步操作,最后就能得到正确答案.【考点】算法中的程序框图和循环结构与选择结构的嵌套.3.运行如图的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数≥是增函数的概率为( )A.B.C.D.【答案】C【解析】由程序框图可知:初始条件1.是,所以,从而;2.是,所以,从而;3.是,所以,从而;4.是,所以,从而;5.是,所以,从而;6.是,所以,从而;7.是,所以,从而;8.否.从而集合;而函数≥是增函数必须且只需>0,故所求概率P,故选C.【考点】1.程序框图;2.概率.4.函数请设计算法框图,要求输入自变量,输出函数值.【答案】详见解析.【解析】这是求一个分段函数(分三段)的函数值,由输入的自变量的值,求出其对应的函数值,首先就应判数该自变量的值是否小于零,所以要用条件结构,若是则可用第一支解析式求得其函数值,若否,则还要看是否等于零?因此需要嵌套另一个条件结构,若是则用第二支解析式求得,若否则用第三支解析式求得其函数值.试题解析:【考点】算法框图中的条件结构.5.给出如下程序.(其中x满足:0<x<12)程序:(1)请写出该程序表示的函数关系式.(2)若该程序输出的结果为6,则输入的x值.【答案】(1)函数关系式为(2)【解析】(1)根据条件语句的限制条件判断出函数为分段函数,然后写出解析式.(2)分段函数求值.(1)函数关系式为 ( 6分)(2) (12分)【考点】程序框图中条件语句的嵌套.6.若某程序框图如图所示,则输出的p的值是()A.21B.286C.30D.55【答案】C【解析】当;;;输出的.【考点】算法流程图.7.(12分)(1)已知函数,编写程序求函数值(只写程序)(2)画出程序框图:求和:(只画程序框图,循环体不对不得分)【答案】(1)程序详见试题解析;(2)详见试题解析.【解析】本题考查算法语句及算法框图,重点是循环结构的运用.(1)INPUT xIF x<0 THENy=2*x+1ELSEIF x<="1" THENy=x^3ELSEy=SQR(x)END IFEND IFPRINT yEND -----6分(2)程序框图略,循环体不对不得分 -----12分【考点】算法语句、算法框图.8.用秦九韶算法计算多项式在时的值时,的值为( )A.-845B.220C.-57D.34【答案】C【解析】原多项式变形为,即,【考点】秦九韶算法求多项式的值点评:利用秦九韶算法求多项式的值首先要将多项式改写为每个括号内为关于x的一次式的形式,由内层括号到外层括号依次为9.如果执行下面的程序框图,那么输出的().A.-2450B.-2550C.-2650D.-2652【答案】C【解析】退出循环体时,k=-52,所以.10..执行右图所示程序框图所表达的算法,其输出的结果应为.【答案】45【解析】本程序是求S=1+2+3+…+9=.11.执行右面的程序框图,如果输入的N是6,那么输出的p是( )A.120B.720C.1440D.5040【答案】B【解析】解:经过第一次循环得到 k="1," p=1 经过第二次循环得到 k="2," p="2" 经过第三次循环得到 k="3" ,p=6 ;经过第四次循环得 k="4," p=24经过第五次循环得 k="5" ,p=120 ;经过第六次循环得 k="6" ,p=720此时执行输出720,故选B12.将二进制数101110(2)化为十进制,结果为 ______ .【答案】46【解析】解:因为二进制数101110(2)化为十进制即: 101110(2)=1=13.设计求|x-2|的算法,并画出流程图【答案】算法如下:⑴若x<2,则|x-2|等于2-x,⑵若x≥2,则|x-2|等于x-2其流程图如图:【解析】略14.执行右框程序后,输出的i的值是 ( ).A.5B.6C.10D.11【答案】D【解析】此题考查算法的循环语句;符合条件小于等于10,第一次执行后:,判断符合条件小于等于10,然后执行第二次,第二次执行后,判断不符合条件,所以循环结束,最后输出i等于11,选D15..计算机执行下面的程序,输出的结果是A.1,3B.4,9C.4,12D.4,8【答案】C【解析】略16.右边程序运行后,输出的值为.【答案】120【解析】略17.(本题满分12分)阅读以上流程图,若记y=f(x)(1)写出y=f(x)的解析式,并求函数的值域,(2)若x0满足f(x)<0 且f(f(x))=1,求x0.【答案】(1)[-2 +∞)(2)x=或【解析】(1)f(x)==当x≤0时,f(x)≥0 当0<x<时-2<f(x)<2当x≥时f(x)≥3综合:函数f(x)的值域[-2 +∞)(2)∵f(x0)<0 ∴∴f(x)=2cos2x<0 f(f(x))=f(2cos2x)=4cos22x=1∴cos2x0=-∴x=或18.计算机执行下面的程序段后,输出的结果是()A.4,-2B.4,1C.1,4D.-2,4【答案】B.【解析】根据程序框图知,首先执行赋值语句:,即;然后执行赋值语句:,即;最后输出,即可.故应选B.【考点】算法语句;赋值语句.19.执行如图所示的程序框图输出的结果是A.55B.65C.78D.89【答案】A【解析】第一次执行循环体时,,满足判断框的条件,第二次执行循环体时,,满足判断框的条件,第三次执行循环体时,,满足判断框的条件,第四次执行循环体时,,满足判断框的条件,第五次执行循环体时,,满足判断框的条件,第六次执行循环体时,,满足判断框的条件,第七次执行循环体时,,,满足判断框的条件,第八次执行循环体时,,不满足判断框的条件,退出循环体,输出,故答案为A.【考点】程序框图的应用.20.如图所示的程序框图中,输出S的值为()A.10B.15C.18D.21【答案】B【解析】程序执行过程中数据的变化如下:成立,输出15【考点】程序框图。
高一数学算法与框图试题
高一数学算法与框图试题1.数4557,1953,5115的最大公约数为().A.93B.31C.651D.217【答案】A【解析】4557=1953×2+651,1953=651×3,∴4557,1953的最大公约数是651;5115=4557×1+558,4557=558×8+93,558=93×6,故4557,5115的最大公约数为93,由于651=93×7,三个数4557,1953,5115的最大公约数93【考点】辗转相除法求最大公因数2.某程序框图如图所示,该程序运行后输出的的值是()A.B.C.D.【答案】D【解析】程序执行过程中的数据变化如下:到此出现了周期性,因此循环执行后不成立,输出【考点】程序框图3.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【答案】A【解析】时,,否,进入循环,当时,,否,进入循环,当时,,否,进入循环,当时,,是,输出57,根据选项判定,成立,所以选.【考点】程序框图的应用4.下列程序框图中,输出的是()A.B.C.D.【答案】D【解析】按照程序框图可得,;;;;;;由此可得,该框图是一个循环数列,以6为周期,而,所以当时,,则当时,,所以选D.【考点】程序框图5.当输入,时,图中程序运行后输出的结果为()A.3; 43B.43;3C.-18;16D.16;-18【答案】A【解析】输入,根据IF语句则结束IF语句,输出选A【考点】IF语句6.如果执行如图的程序框图,那么输出的值是()A.2010B.-1C.D.2【答案】D【解析】当时,,时,,当时,,所以是一个周期问题,,当时,被3整除余2,所以的值是当时的值,所以,当时,输出【考点】循环结构7.已知n次多项式f(x)=an x n+an-1x n-1+…+a1x+a0,用秦九韶算法求f(x0)的值,需要进行的乘法运算、加法运算的次数依次是()A.n,n B.2n,n C.,n D.n+1,n+1【答案】A【解析】n次多项式f(x)=an x n+an-1x n-1+…+a1x+a0改写成如下形式:这样把一个一元n次多项式的求值问题转化为n个一次式的算法,大大简化了计算过程。
高一数学算法与框图试题答案及解析
高一数学算法与框图试题答案及解析1.下列对算法的理解不正确的是()A.一个算法包含的步骤是有限的B.一个算法中每一步都是明确可操作的,而不是模棱两可的C.算法在执行后,结果应是明确的D.一个问题只可以有一个算法【答案】D【解析】算法的特征:确定性、有限性、可行性;算法是解决一类问题的,所以D错误.考点:算法的概念及特征.的值为______.2.用秦九韶算法计算多项式f(x)=2x6-2x5-x3+x2-2x+4,当x=2时,v4【答案】【解析】,,,,,.【考点】秦九韶算法3.阅读下面程序框图运行相应的程序,若输入的值为-8,则输出的值为()A.0B.1C.D.【答案】D【解析】将-8带入程序框图中进行计算,x=-8绝对值大于4,进行下一步,x=12,绝对值依然大于4,再进行下一步,x=8,x=4满足条件,输出,故选择D项。
【考点】程序框图的计算4.下面是计算应纳税所得额的算法过程,其算法如下:第一步输入工资x(注x<=5000);第二步如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300)第三步输出税款y, 结束。
请写出该算法的程序框图和程序。
(注意:程序框图与程序必须对应)【答案】详见解析【解析】根据第一步,开始后,应设计一个数据输入框,由第二步,可知需要设计一个分支嵌套结构,最后还要在结束前有一个数据输出框,根据已知中数据,易得到程序的框图;由框图,将框图中的输入、分支、输出转化为对应语句后,即可得到程序的语句试题解析:【考点】程序语句与程序框图5.下图是一个算法的流程图,当是时运算结束.【答案】5【解析】依据流程图可得,,故此时结束且.【考点】算法初步知识,了解流程图.6.运行下图所示的程序,如果输出结果为sum=1320,那么判断框中应填()A.i≥9B.i≥10C.i≤9D.i≤10【答案】B【解析】此程序框图是求从12开始的,递减的正整数的成绩,因为输出的是,而,所以只有3次进入循环结构,那么判定框应填入【考点】1.程序框图的应用;2.条件结构;3.循环结构.7.下面关于算法的说法正确的是()A.秦九韶算法是求两个数的最大公约数的方法B.更相减损术是求多项式的值的方法C.割圆术是采用正多边形面积逐渐逼近圆面积的算法计算圆周率D.以上结论皆错【答案】C【解析】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,故A不正确;更相减损术是求两个数的最大公约数的方法,故B不正确;割圆术是采用正多边形面积逐渐逼近圆面积的算法计算圆周率,正确,故选C。
高一数学算法与程序框图试题
高一数学算法与程序框图试题1. (2010年高考天津卷)阅读右边的程序框图,运行相应的程序,则输出s的值为()A.-1B.0C.1D.3【答案】B【解析】当i=1时,s=1×(3-1)+1=3;当i=2时,s=3×(3-2)+1=4;当i=3时,s=4×(3-3)+1=1;当i=4时,s=1×(3-4)+1=0;紧接着i=5,满足条件i>4,跳出循环,输出s的值为0.2. (2011年潍坊模拟)给出如图的程序框图,那么输出的S等于()A.2450B.2550C.5050D.4900【答案】A【解析】按照程序框图计数,变量i≥100时终止循环,累加变量S=0+2+4+…+98=2450,故选A.3.如图是一个算法的程序框图,该算法所输出的结果是()A.1+++…+B.1+++…+C.+++…+D.+++…+【答案】C【解析】第一次循环:s=,n=4,i=2;第二次循环:s=+,n=6,i=3;第三次循环:s=++,n=8,i=4;由于i=10时,不满足i>10,所以继续执行循环;此时s=++…+,n=22,i=11;当i=11时,满足i>10,输出s.4.如图所示的程序框图输出的结果是S=720,则判断框内应填的条件是()A.i≤7B.i>7C.i≤9D.i>9【答案】B【解析】程序框图所示的运算是10×9×8×7×…,若输出结果是S=720,则应是10×9×8=720,所以i=10,9,8时累乘,即当i>7时执行循环体.5.画出计算函数y=|x-1|的函数值的程序框图(x由键盘输入).【答案】见解析【解析】解:算法如下:第一步,输入x.第二步,判断x,若x≥1,则y=x-1,否则执行第三步.第三步,y=1-x.第四步,输出y.程序框图如图所示.6.有十件商品,设计一个算法,计算其平均价,并画出程序框图.【答案】见解析【解析】解:我们用一个循环依次输入10个数,再用一个变量存放数的累加和,在求出10个数的和后,除以10,就得到10件商品的平均价算法:第一步,S=0,i=1.第二步,输入P.第三步,S=S+P.第四步,i=i+1.第五步,判断i是否大于10,若不大于10,转入第二步,若i>10,退出循环,执行第六步第六步,A=.第七步,输出A.程序框图如图所示.7.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89,B=96,C=99;第二步:__________________________;第三步:__________________________;第四步:输出计算的结果.【答案】计算总分D=A+B+C计算平均分E=【解析】此题考查算法的知识;根据题目的要求,第二步是:计算总分,设总分为D,则D="A+B+C;" 第三步是算平均成绩,设平均分为E,则E=8.解决某个问题的算法如下:第一步,给定一个实数n(n≥2).第二步,判断n是否是2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到n-1检验能不能整除n,若都不能整除n,则n满足条件.则满足上述条件的实数n是()A.质数B.奇数C.偶数D.约数【答案】A【解析】首先要理解质数,除1和它本身外没有其他约数的正整数叫做质数,2是最小的质数,这个算法通过对2到n-1验证,看是否有其他约数,来判断其是否为质数.9.求1×3×5×7×9×11的值的一个算法是:第一步:求1×3得到结果3.第二步:将第一步所得结果3乘5,得到结果15.第三步:________________________________________________________________.第四步:再将105乘9得到945.第五步:再将945×11,得到10395,即为最后结果.【答案】将第二步所得的结果15乘7,得结果105【解析】本算法的步骤就是将算式从左向右依次乘下去10.写出解方程2x+7=0的一个算法.【答案】见解析【解析】解:法一:算法步骤如下:第一步:移项,得2x=-7.第二步:等式两边同时除以2,得x=-.法二:算法步骤如下:第一步:ax+b=0(a≠0)的解是x=-.第二步:将a=2,b=7代入上式,得x=-.。
高一数学算法与框图试题答案及解析
高一数学算法与框图试题答案及解析1.把89化成五进制数的末位数字为()A.1B.2C.3D.4【答案】D【解析】,故,所以89化成五进制数的末位数字为4.【考点】带余除法.2.下列对算法的理解不正确的是()A.一个算法包含的步骤是有限的B.一个算法中每一步都是明确可操作的,而不是模棱两可的C.算法在执行后,结果应是明确的D.一个问题只可以有一个算法【答案】D【解析】算法的特征:确定性、有限性、可行性;算法是解决一类问题的,所以D错误.考点:算法的概念及特征.3.任何一个算法都必须有的基本结构是().A.顺序结构B.条件结构C.循环结构D.三个都有【答案】A【解析】在执行过程中,如果不需要分类讨论就没有条件结构,如果不需要重复执行某些操作,就不需要循环结构,但顺序结构一定有【考点】算法的三种结构4.在右图的算法中,如果输入A=138,B=22,则输出的结果是()A.138B.2C.4D.0【答案】B【解析】程序执行过程中数据变化如下,输出2【考点】程序框图5.如图所示程序框图中,输出()A.B.C.D.【答案】D【解析】由程序框图值,第一次运行;第二次运行;第三次运行;…指导满足条件,运行终止,此时,,故选D.【考点】程序框图6.当时,执行如右图所示的程序框图,输出的值为()A.30B.14C.8D.6【答案】B【解析】当时,,是,进入循环,时,,是,进入循环,时,,是,进入循环,时,,否,所以退出循环,所以.【考点】1.程序框图的应用;2循环结构.7.阅读下图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7B.9C.11D.13【答案】B【解析】首先进入程序,时,,否,所以进入,时,,否,此时,,否,,,否,,,是,所以对称循环,此时输出.【考点】1.循环结构;2.程序框图的应用.8.运行下图所示的程序,如果输出结果为sum=1320,那么判断框中应填()A.i≥9B.i≥10C.i≤9D.i≤10【答案】B【解析】此程序框图是求从12开始的,递减的正整数的成绩,因为输出的是,而,所以只有3次进入循环结构,那么判定框应填入【考点】1.程序框图的应用;2.条件结构;3.循环结构.9.某班有24名男生和26名女生,数据,…是该班50名学生在一次数学学业水平模拟考试中的成绩(成绩不为0),如图所示的程序用来同时统计全班成绩的平均数:,男生平均分:,女生平均分:.为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其相反数,那么在图中空白的判断框和处理框中,应分别填入()A.B.C.D.【答案】D【解析】根据题意男生平均分用变量表示,女生平均分用变量表示,可得满足条件1时,表示该分数为男生分数,又由男生的成绩用正数,故条件1为,统计结束后,为正数,为负数(女生成绩和的相反数),故此时,故选D。
高中数学《算法与框图》练习题(含答案解析)
高中数学《算法与框图》练习题(含答案解析)一、单选题1.执行如图所示的程序框图,若输入的10N=,则输出的X=()A.132B.121C.119D.1172.按如图所示的算法框图运算,若输入x=3,则输出k的值是()A.3B.4C.5D.63.运行如图所示的程序框图,若输入的A,B的值分别为5,7,则输出的结果为()A.5,7B.7,5C.7,7D.5,54.用辗转相除法求得288与123的最大公约数是()A.42B.39C.13D.35.流程图中表示判断框的是().A.矩形框B.菱形框C.圆形框D.椭圆形框6.给出如图所示的程序框图,若输入x的值为52-,则输出的y的值是()A.-3B.-1C.-2D.07.执行如图所示的程序框图,如果输入的x,Ry∈,那么输出的S的最大值为()A .0B .1C .2D .48.“大衍数列”来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中华传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.如图是求“大衍数列”前n 项和的程序框图.执行该程序框图,输入6m =,则输出的S =( )A .18B .26C .44D .689.某同学为了求2222123n ++++,设计了如图所示的程序框图,在该程序框图中,①和①两处应分别填入( )A .2,S S i i n =+≥B .2(1),1S S i i n =+-≥+C .2,S S i i n =+>D .2(1),1S S i i n =++≥-10.如图所示的形状出现在南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….如图所示的程序框图,输出的S 即为小球总数,则S =( )A .35B .56C .84D .120二、填空题11.运行如图所示的伪代码,输出的T 的值为________.12.用秦九韶算法求函数432()2321f x x x x x =-+++,当1x =时的值时,2=v ___________.13.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为______.14.设2134与1455的最大公约数为m ,则m 化为三进制为__________.三、解答题15.(1)求98的二进制数(2)用辗转相除法求840与1764的最大公约数(3)用秦九韶算法计算函数()432354f x x x x =++-当3x =时的函数值.16.某学校行政机构关系如下:①校长下设两名副校长和校长办公室;①两名副校长又各自管理教务处、教科室和保卫科、政教处、总务处;①各科室共同管理和服务各班级.试画出该校的行政组织结构图.17.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.18.用二分法设计一个求方程230x -=在[]1,2上的近似根的算法.(近似根与精确解的差的绝对值不超过0.0005)参考答案与解析:1.B【分析】根据程序循环体内的执行逻辑,依次列出每步的执行结果直到n N ≥,确定输出结果N 即可.【详解】由程序的执行逻辑知:输入10N =,1、1,1X n ==:得1,23X n ==,n N <,执行循环体; 2、13X =,2n =:得1,35X n ==,n N <,执行循环体; 3、15X =,3n =:得1,47X n ==,n N <,执行循环体; 4、17X =,4n =:得1,59X n ==,n N <,执行循环体; …10、119X =,10n =:得121X =,11n N =>,跳出循环体. 输出121X =. 故答案为:B.2.B【分析】根据程序框图依次进行计算即可【详解】当1k =时,1312x =-=;当2k =时,2213x =-=;当3k =时,33126x =-=;当4k =时,42612021x =->,故输出的4k =,故选:B3.B【分析】按照程序框图运行即可.【详解】模拟程序的运行,可得:5A =,7B =,满足A B <,5K =,则7A =,5B =.所以输出A ,B 的值分别为7,5.故选: B .4.D【分析】根据辗转相除法的步骤,将288和133带入进行运算,即可得到答案.【详解】288212342=⨯+12324239=⨯+42393=+39133=⨯故288与123的最大公约数是3故选:D.5.B【分析】根据算法框图中表示判断的是菱形框,即可得出答案.【详解】解:流程图中矩形框表示处理框,菱形框表示判断框,圆形框表示起止框,没有椭圆形框,所以B 选项正确.故选:B【点睛】本题考查流程图中图形符号含义,属于基础题.6.C【分析】模拟执行程序,即可求出输出值; 【详解】解:输入52x =-,则55221222-⎛⎫=> ⎪⎝⎭,满足12?2x ⎛⎫> ⎪⎝⎭, 第二次循环,51222x =-+=-,则11221222-⎛⎫=< ⎪⎝⎭,不满足12?2x ⎛⎫> ⎪⎝⎭,则22222211log log log 22log 2224y -⎛⎫=-===-=- ⎪⎝⎭,输出2-; 故选:C7.D【分析】画出判断条件对应的不等式组所表示的平面区域,结合图形,确定目标函数的最优解,利用程序框图的输出结果,即可求解.【详解】由题意,不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩所表示的平面区域,如图所示,目标函数2S x y =+,可化为直线2y x S =-+,当直线2y x S =-+经过点A 时,直线在y 轴上的截距最大,此时目标函数取得最大值,又由02y x y =⎧⎨+=⎩,解得(2,0)A ,所以目标函数的最大值为max 4S ,又由不等式002x y x y <⎧⎪<⎨⎪+<⎩时,根据程序框图,可得1S =,所以输出的S 的最大值为4.故选:D.8.C【分析】根据程序流程图,代入6m =,计算出结果即可.【详解】①6m =,1n =,2102n a -==,0S S a =+=,此时n m <; ①2n =,222n a ==,2S S a =+=,此时n m <; ①3n =,2142n a -==,6S S a =+=,此时n m <; ①4n =,282n a ==,14S S a =+=,此时n m <; ①5n =,21122n a -==,26S S a =+=,此时n m <; ①6n =,2182n a ==,44S S a =+=,此时n m ≥, 结束程序,输出结果为44,故选:C9.C【分析】根据流程图及最后输出的结果逐项判断后可得正确的选项.【详解】对于A ,第1次判断前21,2S i ==,第2次判断前2212,3S i =+=,依次,最后一次判断前,()222121S n =+++-,此时i n =,终止循环, 故此时输出()222121S n =+++-,不合题意.对于C ,第1次判断前21,2S i ==,第2次判断前2212,3S i =+=,依次,最后一次判断前,22212S n =+++,此时1i n =+,终止循环, 故符合题意.对于B ,第1次判断前20,2S i ==,第2次判断前21,3S i ==,依次,最后一次判断前,()222121S n =+++-,此时1i n =+,终止循环, 故此时输出()222121S n =+++-,不合题意.对于D ,第1次判断前22,2S i ==,第2次判断前2223,3S i =+=,依次,最后一次判断前,()222231S n =+++-,此时1i n =-,终止循环, 故此时输出()222231S n =+++-,不合题意.故选:C10.B【分析】设第n 层小球个数为n a ,根据程序框图可知,输出的123456S a a a a a a =+++++,求出各个数即可得到.【详解】设第n 层小球个数为n a ,由题意可知,1n n a a n --=()2n ≥.根据程序框图可知,输出的123456S a a a a a a =+++++,又11a =,23a =,36a =,43410a a =+=,54515a a =+=,65621a a =+=,所以136********S =+++++=.故选:B.11.16【分析】模拟程序的运行过程,即可得出程序运行后的输出结果.【详解】当1T =时,3i =;当134T =+=时,5i =;当459T =+=时,7i =;当9716T =+=时,98i =>.所以输出16T =.故答案为:16.【点睛】本题主要考查了程序语言的应用问题,模拟程序的运行过程是常用的方法,属于基础题. 12.0【分析】利用秦九韶算法的定义计算即可.【详解】012221311110v v v ==⨯-=-=-⨯+=,,故答案为: 013.8(答案不唯一)【分析】根据程序框图依次计算,直至推出48s =截止,判断条件.【详解】执行程序框图,可知:第一次循环:n =1+3=4,S =2×1+4=6;第二次循环:n =4+3=7,S =2×6+7=19;第三次循环:n =7+3=10,S =2×19+10=48,要使得输出的结果为48,可知k 可以为8.故答案为:8(答案不唯一)14.()310121【分析】先求出2134与1455的最大公约数97m =,再利用“辗转相除法”进位方法,即可得出结果.【详解】解:21341455679,1455679297,679977=+=⨯+=⨯,2134∴与1455的最大公约数为97,97m ∴=,用97连续除3得余数,可得:97化为三进制数=()310121.故答案为:()310121.15.(1)()21100010(2)84(3)254【解析】(1)将98写成的幂的和的形式,即可找到98的二进制数;(2)根据辗转相除法的规则,即可求出最大公约数;(3)先将()f x 写成(){}23054x x x x +++-⎡⎤⎣⎦的形式,再计算3x =时01234,,,,v v v v v 的值即可.【详解】(1)6598222=++,所以98的二进制数是()21100010.(2)1764284084=⨯+,8401084=⨯,所以840与1764的最大公约数为84.(3)()(){}23054f x x x x x =+++-⎡⎤⎣⎦.0 3.v =12339.v =⨯+=293027.v =⨯+=3273586.v =⨯+=48634254.v =⨯-=【点睛】本题考查二进制,辗转相除法,秦九昭算法等知识,属于基础题.16.见解析【分析】根据题目中的条件,找出各要素之间的关系,校长只负责两名副校长和校长办公室,所以校长下只有两名副校长和校长办公室,依次类推,两名副校长又各自管理教务处、教科室和保卫科、政教处、总务处;班级由所有的科室负责.【详解】该校的行政组织结构图如图所示:【点睛】本题考查组织结构图的画法,关键是找出各要素之间的关系, 属于基础题.17.见解析【分析】由算法的概念可知:算法是先后顺序的,结果明确性,每一步操作明确的,根据已知半径求圆的面积的算法的先后顺序,即可得出结果.【详解】第一步:输入任意正实数r ;第二步:计算2S r π=;第三步:输出圆的面积S【点睛】本题考查算法的概念,解题关键是算法步骤的排序和格式,属于基础题.18.见解析【分析】计算(1)0,(2)0f f <>,设121,2x x ==,122x x m +=,判断()f m 的符号,根据零点存在定理得到算法.【详解】第一步:令2()3f x x =-,(1)20,(2)10f f =-<=>,∴设121,2x x ==;第二步:令122x x m +=,判断()f m 是否为0,若是,则m 为所求;若不是,则继续判断()1()f x f m ⋅大于0还是小于0; 第三步:若()1()0f x f m ⋅>,则令1x m =;否则,令2x m =;第四步:判断120.0005x x-≤是否成立?若是,则12,x x之间的任意值均为满足条件的近似根;若不是,则返回第二步.【点睛】本题考查了求方程近似根的算法,意在考查学生对于算法的理解和应用。
高一数学算法与程序框图试题
高一数学算法与程序框图试题1.算法流程有、、三种控制结构.【答案】顺序结构条件结构循环结构【解析】算法的三种基本结构是顺序结构、条件结构、循环结构。
故选C。
【考点】本题主要考查算法的概念及算法设计中的结构。
点评:关键是对算法的三种基本结构理解并熟练掌握。
2.如图所示的程序框图,输出的结果是S=7,则输入的A值为________.【答案】3【解析】该程序框图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.3.如图是一个算法的程序框图,该算法所输出的结果是()A.1+++…+B.1+++…+C.+++…+D.+++…+【答案】C【解析】第一次循环:s=,n=4,i=2;第二次循环:s=+,n=6,i=3;第三次循环:s=++,n=8,i=4;由于i=10时,不满足i>10,所以继续执行循环;此时s=++…+,n=22,i=11;当i=11时,满足i>10,输出s.4.下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行D.有的算法执行完以后,可能没有结果【答案】C【解析】算法与求解一个问题的方法既有区别又有联系,故A不对.算法能够重复使用,故B不对.每一个算法执行完以后,必须有结果,故D不对.5.计算下列各式中的S值,能设计算法求解的是()①S=1+2+3+…+100;②S=1+2+3+…+100+…;③S=1+2+3+…+n(n≥1,n∈N).A.①②B.①③C.②③D.①②③【答案】B【解析】由算法的有限性知②不正确,而①③都可通过有限的步骤操作,输出确定结果.6.下列各式中T的值不能用算法求解的是()A.T=12+22+32+42+…+1002B.T=++++…+C.T=1+2+3+4+5+…D.T=1-2+3-4+5-6+…+99-100【答案】C【解析】根据算法的有限性知C不能用算法求解.7.关于一元二次方程x2-5x+6=0的求根问题,下列说法正确的是()A.只能设计一种算法B.可以设计两种算法C.不能设计算法D.不能根据解题过程设计算法【答案】B【解析】一元二次方程的求解过程可以用公式法和分解因式法进行,可根据不同的解题过程来设计算法,故可以设计两种算法,但两种算法输出的结果是一样的.8.对于解方程x2-2x-3=0的下列步骤:①设f(x)=x2-2x-3②计算方程的判别式Δ=22+4×3=16>0③作f(x)的图象④将a=1,b=-2,c=-3代入求根公式x=,得x1=3,x2=-1.其中可作为解方程的算法的有效步骤为()A.①②B.②③C.②④D.③④【答案】C【解析】解一元二次方程可分为两步确定判别式和代入求根公式,故②④是有效的,①③不起作用.9.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法________.(只写编号)【答案】③②①⑤④⑥【解析】此题考查算法的思想;此算法应该是:根据常识知道:首先提起话筒(或按免提功能),然后等拨号音后在拨号,然后等复话方信号,然后开始通话或者线路不通挂机,最后结束通话,所以算法是③②①⑤④⑥10.函数y=,试写出给定自变量x,求函数值y的算法【答案】见解析【解析】解:算法如下:第一步,输入x.第二步,若x>0,则令y=-x+1后执行第五步;否则执行第三步.第三步,若x=0,则令y=0后执行第五步;否则执行第四步.第四步,令y=x+1.第五步,输出y的值.。
(完整版)高考算法程序框图真题练习及答案详解
(完整版)高考算法程序框图真题练习及答案详解1. 该算法程序框图的功能是什么?A. 求a,b,c三数的最大数B. 求a,b,c三数的最小数C. 将a,b,c按从小到大排列2. 该算法程序框图的功能是什么?A. 求输出a,b,c三数的最大数B. 求输出a,b,c三数的最小数C. 将a,b,c按从小到大排列3. 该算法程序框图的功能是什么?A. 找出a、b、c三个数中最大的数B. 找出a、b、c三个数中最小的数C. 找出a、b、c三个数中第二大的数4. 程序框图表示的算法的运行结果是什么?A. 5B. 6C. 75. 程序框图中所表示的算法是什么?A. 求x的绝对值B. 求x的相反数C. 求x的平方根6. 运行图中所示程序框图所表达的算法,输出的结果是什么?A. 3B. 7C. 157. 程序框图(算法流程图)的输出结果是什么?A. 6B. 5C. 48. 运行相应的程序,输出的结果为什么?A. 676B. 26C. 59. 运行相应的程序,输出的结果是什么?A. 1B. 2C. 310. 运行相应的程序,输出的S的值等于什么?A. 18B. 2C. 2111. 当m=7,n=3时,执行如图所示的程序框图,输出的S的值为什么?A. 7B. 42C. 21012. 执行如图所示的程序框图,若输入n=10,则输出的S=什么?A.B.C.13. 运行相应的程序,当输入x的值为-25时,输出x的值为什么?A. -1B. 1C. 314. 运行相应的程序,输出s值等于什么?A. -3B. -10C.15. 执行如图所示的程序框图,若输入n的值为6,则输出s的值为什么?A. 105B.C. 1516. 执行如图所示的程序框图,则输出的S的值是什么?A.B. 16C.D. 1A.9B.10C.11D.12考点:循环结构.专题:程序框图.分析:根据程序框图,计算每次循环后变量a的值,直到不满足循环条件,输出结果.解答:解:根据程序框图,计算每次循环后变量a的值,直到不满足循环条件,输出结果.第一次循环:a=3+2=5第二次循环:a=5+3=8第三次循环:a=8+4=12第四次循环:a=12+5=17第五次循环:a=17+6=23第六次循环:a=23+7=30第七次循环:a=30+8=38第八次循环:a=38+9=47第九次循环:a=47+10=57此时不满足循环条件,输出a的值,为57-9=48,故选A.点评:本题考查了应用程序框图进行简单的计算问题,是基础题.并在满足条件时跳出循环,输出S的值.当k=3时,不满足条件k≥n,跳出循环,输出S=7×6×5×4=840.故选D.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.同时,需要注意条件的判断和循环变量的变化过程.解:$k=1$,满足判断框,第1次循环,$s=1$,$k=2$;第2次判断后循环,$s=0$,$k=3$;第3次判断并循环$s=-3$,$k=4$,第3次判断退出循环,输出$s=-3$。
高一暑假作业3:算法与程序框图练习及答案
第8题算法与程序框图练习1.上图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是( ) A .i>10 B .i<10 C .i>20D .i<20 答案:A2.某程序框图如下图所示,该程序运行后输出的S 的值是A .-3B .-12C . 13D . 2答案:B3.运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]- 答案:C4.若右边的程序框图输出的S 是126,则条件①可为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤解:由程序框图可知这是计算212(12)=0+2+222212n nn S +-++==--的程序,当122126n S +=-=时,即12128n +=,解得6n =,此时17n n =+=,不满足条件,所以选B.5. 给出以下一个算法的程序框图(如图所示),该程序框图的功能是( )A .求输出a,b,c 三数的最大数B .求输出a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列答案:选B.6.有如下程序框图(如右图所示),则该程序框图表示的算法的功能是 .答:计算并输出使1×3×5×7…×n>10 000成立的最小整数n..7. 运行如右图的程序后,输出的结果为 ( )A .13,7B .7, 4C .9, 7D .9, 5解:第一次,1i =时,112,2213,224i S i =+==⨯-==+=.第二次,415,5219,527i S i =+==⨯-==+=,第三次条件不成立,打印9,7S i ==,选C.(第6题)。
高一数学算法和程序框图试题答案及解析
高一数学算法和程序框图试题答案及解析1.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】A【解析】条件成立,第一次执行循环体,条件成立,第二次执行循环体条件成立,第三次执行循环体;条件不成立,退出循环,输出.【考点】程序框图的识别和应用.2.计算的算法流程图中:下面算法中错误的是()【答案】C【解析】选项C是求的是的值,答案选C.【考点】算法与程序框图3.如图.程序输出的结果 , 则判断框中应填()A.B.C.D.【答案】B【解析】按照程序框图执行如下:,因为输出的结果为,故此时判断条件应为:或.【考点】1、程序框图的运算;2、循环语句.4.如下图所示程序框图,已知集合是程序框图中输出的值},集合是程序框图中输出的值},全集U=Z,Z为整数集,当时,等于( )A.B.{-3. -1,5,7}C.{-3, -1,7}D.{-3, -1,7,9}【答案】D.【解析】依次执行程序框图中的语句:,;,;,;,;,;,;,;∴,,∴.【考点】读程序框图.5.如果执行右面的程序框图,那么输出的()A.22B.46C.190D.94【答案】D【解析】执行第1次,=1,=1,=4,=2>5,否,循环,执行第2次,=10,=3>5,否,循环,执行第3次,=22,=4>5,否,循环,执行第4次,=46,=5>5,否,循环,执行第5次,=94,=6>5,是,输出,S=94,故选D.考点:程序框图6.如果执行右边的程序框图,那么输出的()A.22B.46C.94D.190【答案】C【解析】.运行第1次,=1,=1,=2,=4,=2>5,否,循环;运行第2次,=3,=10,=3>5,否,循环;运行第3次,=4,=22,=4>5,否,循环;运行第4次,=5,=46,=5>5,否,循环;运行第5次,=6,=94,=6>5,是,输出S=94,故选C【考点】程序框图7.右图是一个算法的流程图,则输出S的值是 .【答案】7500【解析】根据算法的流程图S=0+3=3,K=1+2=3,S=3+9=12,K=3+2=5,S=12+15=27,以此规律则输出S的值是7500【考点】程序框图8.对任意函数,可按流程图构造一个数列发生器,其工作原理如下:①输入数据,数列发生器输出;②若,则数列发生器结束工作;若,则将反馈回输入端再输出,并且依此规律继续下去.现定义.(1)若输入,则由数列发生器产生数列,请写出数列的所有项;(2)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据的值;(3)若输入时,产生的无穷数列满足:对任意正整数,均有,求的取值范围.【答案】(1)数列只有三项;(2);(3)【解析】(1)由题意知的定义域为,因此数列只有三项(2)要使该数列发生器产生一个无穷的常数数列,则有,通过构造函数,求得时,,因此当时,;时,()(3)解不等式得,,要使,则,由于,若,则不合题意;当时,且,同理的所有项均满足,综上所述,。
高一数学算法和程序框图试题
高一数学算法和程序框图试题1.当x=2时,如图所示程序运行后输出的结果为_________ .【答案】15.【解析】当i=1 s=0*2+1=1当i="2" s=1*2+1=3当i=3 s=3*2+1=7当i="4" s=7*2+1=15故s=15,故应填入:15.【考点】算法程序.2.如图,该程序运行后的输出结果为()A.B.C.D.【答案】B【解析】第一次运行结果:;第二次运行结果:;第三次运行结果:;此时,条件不满足,跳出循环,输出的值为,故选择B,注意多次给一个量赋值以最后一次的赋值为准.【考点】程序框图中的循环结构.3.如图.程序输出的结果 , 则判断框中应填()A.B.C.D.【解析】按照程序框图执行如下:,因为输出的结果为,故此时判断条件应为:或.【考点】1、程序框图的运算;2、循环语句.4.执行如图所示的程序框图,若输入的值为,则输出的的值为()A.B.C.D.【答案】B【解析】由已知初始条件为:n=7,i=1,s=1;第1次运行:判断,是,;第2次运行:判断,是,;第3次运行:判断,是,;第4次运行:判断,是,;第5次运行:判断,是,;第6次运行:判断,是,;第7次运行:判断,否,输出;故选B.【考点】算法与程序框图.5.右图是一个算法的流程图,则输出S的值是 .【答案】7500【解析】根据算法的流程图S=0+3=3,K=1+2=3,S=3+9=12,K=3+2=5,S=12+15=27,以此规律则输出S的值是7500【考点】程序框图6.程序框图符号“”可用于( )A.输出B.赋值C.判断D.输入【解析】在程序框图符号中,矩形方框“”是处理框,平行四边形框才是输出与输入,而判断则是菱形框,故选B.【考点】程序框图.7.若某程序框图如图所示,则输出的p的值是 ()A.30B.28C.21D.55【答案】A【解析】根据框图的循环结构,依次;;。
高一数学算法与框图试题
高一数学算法与框图试题1. 将八进制数135(8)转化为二进制数是( ) A .1110101(2) B .1010101(2)C .111001(2)D .1011101(2)【答案】D【解析】因为135(8)=5×80+3×81+1×82=93,那么除二取余法由下图知,∴93=1011101(2),即135(8)=1011101(2),∴选D . 【考点】同余的性质.2. 101110(2)转化为等值的八进制数是 . 【答案】56【解析】101110(2)化为十进制数为,46÷8="5" 6 5÷8="0" 5,故46(10)=56(8)【考点】二进制八进制与十进制的转化3. (本题满分13分)已知一个5次多项式为f (x )=4x 5﹣3x 3+2x 2+5x+1,用秦九韶算法求这个多项式当x=2时的值 【答案】123【解析】将多项式f (x )=4x5﹣3x3+2x2+5x+1改写为f (x )=((((4x+0)x ﹣3)x+2)x+5)x+1,首先计算最内层括号内一次多项式的值然后由内向外逐层计算一次多项式的值 试题解析:由f (x )=((((4x+0)x ﹣3)x+2)x+5)x+1 2分 ∴v 0=4v 1=4×2+0=8 v 2=8×2﹣3=13 v 3=13×2+2=28 v 4=28×2+5=61v 5=61×2+1=123 12分故这个多项式当x=2时的值为123. 13分 【考点】秦九韶算法4. 下列给出的赋值语句中正确的是( ) A .4=M B .B =A =3 C .x +y =0 D .M =-M【答案】D【解析】赋值语句是变量=表达式的形式,所以A 错,变量不能出现运算,所以C 错,不能够连等,所以B 错. 【考点】赋值语句5. 如图程序图输出的结果是( )A .2,1B .2,2C .1,2D .1,1【答案】A【解析】根据赋值语句的意义,根据,所以输出,又根据,,,所以最后输出【考点】赋值语句6.某同学设计右面的程序框图用以计算和式的值,则在判断框中应填写()A.B.C.D.【答案】C【解析】代入四个选项一次验证可知是成立的,程序执行中的数据变化如下:不成立,输出【考点】程序框图7.将两个数交换使得,下面语句正确一组是【答案】B【解析】根据算法语言的特征要实现数据交换,首先要找一个空位c作为中转站,先把b放到c 里边,这样,b就空了,再把a放到b里边,此时,a就空了,再把c里边的b放进去,就实现了a与b 的交换,故选B.【考点】算法语言.8.定义运算为执行如图所示的程序框图输出的S值,则的值为.【答案】4【解析】【考点】新定义三角函数求值.9.根据下列算法语句,当输入x为60时,输出y的值为________.【答案】31【解析】由算法语句可知输入时输出,所以输出31【考点】算法语句10.以下说法错误的是A.最简单的算法结构是顺序结构B.输入框和输出框可用在算法中任何需要输入,输出的位置C.判断框是具有超过一个退出点的唯一符号D.可以利用赋值语句进行代数式的演算【答案】D【解析】因为计算机只能进行具体的数值运算,不会抽象运算(基于符号、变量的直接等价变换),所以不能用赋值语句进行代数式的演算,故选择D【考点】程序框图11.执行右边的程序框图,若,则输出的.【答案】【解析】程序执行中的数据变化为:不成立,输出【考点】程序框图12.(2015秋•邢台期末)执行如图所示的程序框图,输出的结果是()A.lg97B.lg98C.lg99D.2【答案】C【解析】模拟执行程序框图,依次利用对数的运算性质计算每次循环得到的b的值,计算a的值,当a=100时不满足条件a<100,退出循环,输出b的值为lg99.解:模拟执行程序框图,可得a=2,b=lg2,满足条件a<100,b=lg2+lg=lg3,a=3满足条件a<100,b=lg3+lg=lg4,a=4…满足条件a<100,b=lg98+lg=lg99,a=100不满足条件a<100,退出循环,输出b的值为lg99.故选:C.【考点】程序框图.13.(2015秋•运城期末)如图:程序输出的结果S=132,则判断框中应填()A.i≥10?B.i≤10?C.i≥11?D.i≥12?【答案】C【解析】模拟执行程序框图,依次写出每次循环得到的s,i的值,当s=132,i=10时,由题意,应该满足条件,退出循环,输出S的值为132,则判断框中应填i≤10.解:模拟执行程序框图,可得i=12,s=1满足条件,s=12,i=11满足条件,s=132,i=10此时,由题意,应该满足条件,退出循环,输出S的值为132,则判断框中应填i≤10,故选:C.【考点】程序框图.(k为正整数)化为十进制数为239,则k= .14.(2015秋•福建期末)若六进制数10k5(6)【答案】3【解析】化简六进制数为十进制数,从而求得.=1×63+k×6+5=239,解:10k5(6)故6k=18,故k=3.故答案为:3.【考点】进位制.15.阅读上图所示的程序框图,运行相应的程序,输出的结果是()A.2B.4C.8D.16【答案】C【解析】当代入程序中运行第一次是,然后赋值此时;返回运行第二次可得,然后赋值;再返回运行第三次可得,然后赋值,判断可知此时,故输出.【考点】程序框图中的循环结构.16.某程序框图如图所示,则该程序运行后输出的的值为()A.1B.C.D.【答案】A【解析】按照程序框图运行一遍,细心计算就可以得出结果:,由此发现这是一个周期为的数列,故时,对应的是时的.【考点】算法与程序框图.17.根据下面的要求,求值.(1)请完成执行该问题的程序框图;(2)以下是解决该问题的程序,请完成执行该问题的程序.【答案】(1)程序框图见解析;(2)程序见解析.【解析】先填写程序框图,然后根据程序框图写出算法语句.试题解析:【考点】算法与程序框图.18.执行如图所示的程序框图,输出的的值为()A.B.C.D.【答案】A【解析】执行程序框图,第一次循环时,但;执行第二次循环:但;执行第三次循环:但;执行第四次循环:,此时,所以,故选A.【考点】程序框图.19.已知,应用秦九韶算法计算时的值时,的值为()A.27B.11C.109D.36【答案】D【解析】由秦九韶算法可得,.故选D.【考点】秦九韶算法.【方法点睛】一个次多项式的值,先将其变形为,把次多项式的求值问题转化为求个一次多项式的值的问题.首先计算最内层括号内的一次多项式的值,即:,,然后由内往外逐层计算一次多项式的值,即,,,,本题主要考查秦九韶算法,属于基础题.20.如图所示,执行程序框图输出的结果是()A.B.C.D.【答案】B【解析】由程序框图可得;第一次执行为;;第二次执行为;第二次执行为;…….观察可发现输出为;【考点】程序框图的读法.for ;endprint(%io(2),S)以上程序是用来计算()的值A.B.C.D.【答案】D【解析】从所提供的算法程序来看求的的运算,所以应选D.【考点】算法程序及识读.22.执行如图所示的程序框图,输出的s值为A.-3B.-C.D.2【答案】D【解析】按程序框图执行可以得到,输出 ,故本题选.【考点】程序框图23.运行如图所示的程序框图,则输出的结果是()A.B.C.D.【答案】B【解析】根据程序框图:;;;;,此时输出结果,选B.【考点】1.程序框图;2.裂项相消法.24.(1)用辗转相除法求与的最大公约数.(2)用更相减损术求与的最大公约数.【答案】(1)84(2)51【解析】(1)用辗转相除法求840与1764的最大公约数,写出1764=840×2+84840=84×10+0,得到两个数字的最大公约数.(2)用更相减损术求459与357的最大公约数,先用大数减去小数,再用减数和差中较大的数字减去较小的数字,这样减下去,知道减数和差相同,得到最大公约数试题解析:(1)1764=840,840=84所以840与1764的最大公约数为84(2)459-357=102,357-102=255,255-102=153,153-102=51,102-51=51所以459与357的最大公约数为51【考点】用辗转相除计算最大公约数25.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【答案】B【解析】由a=14,b=18,a<b,则b变为18-14=4,由a>b,则a变为14-4=10,由a>b,则a变为10-4=6,由a>b,则a变为6-4=2,由a<b,则b变为4-2=2,由a=b=2,则输出的a=2【考点】程序框图26.执行如图的程序框图,则输出的__________.【答案】4【解析】第一次循环,;第二次循环,;第三次循环,;结束循环,输出.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.27.用“秦九韶算法”计算多项式,当时的值的过程中,要经过____________次乘法运算和_________次加法运算.【答案】 5 5【解析】多项式f(x)=5x5+4x4+3x3+2x2+x+1=((((5x+4)x+3)x+2)x+1)x+1不难发现要经过5次乘法5次加法运算.故答案为:5、5【点睛】本题主要考查了分类加法计数原理和一元n次多项式问题,属于基础题,“秦九韶算法”的运算法则是解题关键.28.执行如图所示的程序框图,则输出的的值为__________.【答案】4【解析】由程序框图,得故填4.29.如果框图所给的程序运行结果为,那么判断框中整数的值为__________.【答案】6【解析】,判断是,,判断是,判断是,,判断是,,判断否,输出,故填.30.用秦九韶算法求多项式f(x)=6+5+4+3+2+x当x=2时的值时,=________.【答案】【解析】.当x=2时的值时,点评:利用秦九韶算法求多项式的值首先要将多项式改写为每个括号内为关于x的一次式的形式,由内层括号到外层括号依次为.31.用秦九韶算法求多项式当时的值为____________.【答案】【解析】依据用秦九韶算法的算理可先算,再算,进而算出,最后算出,然后将其代入可得其代数和为,应填答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章算法初步1.1算法与程序框图1.1.1算法的概念1.已知直角三角形两直角边长为a, b,求斜边长c的一个算法分下列三步:①计算c a2b2:②输入直角三角形两直角边长a , b的值;③输出斜边长c的值,其中正确的顺序是【】A.①②③B. ②③①C.①③②D. ②①③2.若f x在区间a,b内单调,且f a gf b 0 ,贝U f x在区间a,b内【】A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定3. 已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99 ;第二步:____ ①_____ ;第三步:____ ②_____ ;第四步:输出计算的结果.4. 写出按从小到大的顺序重新排列x, y,z三个数值的算法.1.1. 2程序框图1 .在程序框图中,算法中间要处理数据或计算,可分别写在不同的【】A .处理框内B .判断框内C .终端框内D .输入输出框内2 .将两个数a=10, b=18交换,使a=18, b=10,下面语句正确一组是【】3指出下列语句的错误,并改正:(1)A=B=50(2)x=1,y=2,z=3(3)INPUT “How old are y ou”x(4)INPUT ,x(5)PRINT A+B=; C(6)PRINT Good-bye!4. 2000年我国人口为13亿,如果人口每年的自然增长率为7%。
,那么多少年后我国人口将达到 1 5亿?设计一个算法的程序.5. 儿童乘坐火车时,若身高不超过1.1 m ,则不需买票;若身高超过1.1 m 但不超过 1.4 m ,则需买半票;若身高超过 1.4 m ,则需买全票.试设计一个买票的算法,并画出相应的程序框图及程序。
1.2 基本算法语句1.2.1 输入语句、输出语句和赋值语句1 . 在输入语句中,若同时输入多个变量,则变量之间的分隔符号是】A.逗号B. 空格C.分号D. 顿号2 .a3b4a bb a输出a,b以上程序输出的结果是】A.3,4B. 4,4C.3,3D.4,33 请从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内./输出n/画成带箭 ____________ f >头的廨线、----- 1 丿[结如|4. 设计一个算法,要求输入一个圆的半径,便能输出该圆的周长和面积(取3.14 )。
122-123 条件语句和循环语句1。
给出程序:INPUT xIF x>9 AND x<100 THENa = x\10b=x MOD10 (注:“\”是x除以10的商,“MOD是x除以10的余数)x =10*b+ aPRINT xEND IFEND上述程序输出x的含义是 ___________________2某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:0.53 (),f=50 0.53 (50) 0.85(50).其中f (单位:元)为托运费,①为托运物品的重量(单位:千克),试写出一个计算费用f算法,并画出相应的程序框图3如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”. 用程序框图表示这一算法过程.4. 火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x元的车票退掉后,返还的金额y元的算法的程序框图.5. 写出计算12 32 52 L 9992的程序,并画出程序框图.1.3算法案例1.用秦九韶算法求多项式f(x) 7x3 3x2 5x 1 1在x 23时的值,在运算过程中下列数值不会出现的是【】A . 164B.3767C86652 D . 851692.三位七进制的数表示的最大的十进制的数是【】A.322B.402C.342D.3653.将十进制下的数72 转化为八进制下的数为【】A.011(8)B.101(8) C.110(8) D . 111(8)4. ______________________________________ 将十进制数3344化为七进制等于______________________________________________ .5. 我国古代数学家张邱建编《张邱建算经》中记有有趣的数学问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一凡百钱,买鸡百只,问鸡翁、母、雏各几何?”你能用程序解决这个问题吗?6. 写出用二分法求方程x3-x —仁0在区间[1, 1.5]上的一个解的算法(误差不超过0.001 ),并画出相应的程序框图及程序.第一章算法初步参考答案1.1算法与程序框图1.1.1算法的概念ABC34. 算法:(1)输入x, y, z三个数值;(2) 从三个数值中挑出最小者并换到x中;1.D2.C3.(3) 从y,z中挑出最小者并换到y中;(4)输出排序的结果.1.1. 2程序框图1. A 2 . B3 (1)变量不能够连续赋值.可以改为A=50B=A(2)—个赋值语句只能给一个变量赋值.可以改为x=1y=2z=3(3)INPUT语句“提示内容”后面有个分号(;)改为INPUT “ How old are you? ” ;x(4)INPUT语句可以省略“提示内容”部分,此时分号(;)也省略,也不能有其他符号.改为INPUT x(5)PRINT语句“提示内容”部分要加引号(“”)改为PRINT “A+B= ;C (6)PRINT语句可以没有表达式部分,但提示内容必须加引号(“”)改为PRINT “ Good-bye!”4. A=13R=0.007i=1DOA=A* (1+R)i=i+1LOOP UNTIL A > =15i=i —1PRINT “达到或超过15亿人口需要的年数为:”;iEND5. 是否买票,买何种票,都是以身高作为条件进行判断的,此处形成条件结程序是:INPUT “请输入身高h (米):” h IF h<=1.1 THENPRINT “免票” ELSEIF h<=1.4 THENPRINT “买半票” ELSE PRINT “买全票” END IF END IF END1.2基本算法语句1.2.1输入、输出语句和赋值语句 1. A 2. B 3..结束'4 •输入R C=2*3.14*R S=3.14*R 2输出该圆的周长为C 输出该圆的面积为S1.2.2-1.2.3 条件语句和循环语句 1. 交换十位数与个位数的位置 2. 算法:第一步:输入物品重量3;第二步:如果 3W 50,那么 f =0.53 3,否则,f = 50X 0.53+(3 — 50) X 0.85 ;一般画成 圆角矩形 一般画成 平行四边形通常画 成矩形-{开-始)- r 7输入n 卜!r • n (n+1)白终端框(起止框):表示一个 算法的起始和结束 输入、输出框:表示一个算 法输入和输出的信息使n 的值增一处理框(执行框): 加1 赋值、计算 赋值、计算画成带箭 头的流线判断框:判断某一条件是否成立,成 立时在岀口处标明“是”或“ Y'; 不成立时标明"否"或"N'流程线(指向线):表示操作的先后次序2通常画成菱形否大于2004是输岀n3.第二步:输出物品重量3和托运费 f.相应的程序框图•4.5.程序:i==l s=0 DOs=s+i A2 i=i+2LOOP UNTIL i>999 PRINT SEND 1.3算法案例25. 设鸡翁、母、雏各x 、y 、z 只,则由②,得 z=100-x — y ,③代入①,得5x+3y+^ 1=100, 7x+4y=100. 求方程④的解,可由程序解之• 程序:x=1 y=1WHILE x v =14 WHILE y v =25 IF 7 *x+4*y=100 THEN z=100— x — yPRINT “鸡翁、母、雏的个数别为:” x , y , z END IF y=y+1 WEND x=x+1 y=1 WEND END6. 用二分法求方程的近似值一般取区间]a , b ]具有以下特征: f (a )v 0, f (b )>0.由于 f (1) =13— 1 —仁一1v 0, f (1.5 ) =1.53— 1.5 —仁0.875>0,所以取[1, 1.5 ]中点」^=1.25研究,以下同求x 2 — 2=0的根的方法. 相应的程序框图是:1.D2.C3.C4. 1251575x 3y - 100,3x y z 100,程序:a=1b=1.5c=0.001DOx= (a+b ) 12f (a ) =a A 3— a — 1 f (x ) =x 3 — x — 1IF f (x ) =0 THENPRINT “x=”; x ELSEIF f (a ) *f (x )v 0 THEN b=x ELSE a=x END IF END IFLOOP UNTIL ABS( a — b )v =cPRINT “方程的一个近似解 x=”;xEND作 者 于华东 c=0.001 x=a j ba=1b=1.5f( a)= a 3-a-1f( x)= x 3 -x-1a=x b=x输出X。