海德汉编码器 用户手册

合集下载

海德汉编程操作培训手册(1)

海德汉编程操作培训手册(1)

1基本技能(文件管理器/刀具表)2直角坐标路径功能3极坐标4钻孔循环循环5铣型腔、凸台和槽的循环6加工阵列孔的循环7SL 循环8坐标变换循环9重复运行的程序块编程技巧10子程序11嵌套12相关信息+Z+Z+Z基本轴旋转轴平行轴X A U Y B V ZCWX键盘TE 420TE 5301字母键盘用于输入文本和文件名,以及ISO 编程。

双处理器版本: 提供其他的按键用于Windows 操作。

2文件管理器、计算器、MOD 功能和HELP (帮助)功能3编程模式4机床操作模式5编程对话的初始化6方向键和GOTO 跳转命令7数字输入和轴选择8鼠标触摸板: 仅适用于双处理器版本124376518432765显示单元1软键区2软键选择键3软件行切换键4设置屏幕布局5加工和编程模式切换键6预留给机床制造商的软键选择键7预留给机床制造商的软键行切换键13423675123345屏幕布局编程模式显示机床操作模式显示机床操作模式(后台)编程操作模式、对话、出错信息(显示在前台)程序机床功能的软键软键区机床操作模式、对话、出错信息(显示在前台)编程模式(后台)程序或位置显示机床功能的软键机床状态软键区操作模式键操作模式功能程序编辑 编写及修改程序(RS-232-C/ V.24数据接口)试运行 静态测试 / 有图形模拟或无图形模拟几何尺寸是否相符数据是否缺失手动 移动机床轴显示坐标轴值设置原点手轮 用电子手轮移动设置原点手动数据输入定位(MDI) 输入定位步骤或输入可以立即执行的循环 将输入的程序段保存为程序程序运行-单程序段 分段运行程序,用Start(开始)按钮分别启动各段...开始程序运行-全自动 按START EXT(机床启动按钮)后连续运行程序文件管理驱动器1以太网RS-232接口 RS-422接口 TNC的硬盘当前路径或文件名3文件信息文件名:保存在当前目录下的文件及文件类型字节:以字节为单位的文件大小状态:M:“程序运行”模式下所选择的文件。

海德汉参数设置

海德汉参数设置

海德汉系统参数设置注:海德汉系统中各轴参数号码一致,搜索时只需在参数号码前加上前缀PX、PY、PZ、PS_1就可,所以本资料基本以X轴为例进行介绍,其他各轴以此类推。

本资料重点介绍参数设置,具体的操作步骤略。

1、进入不同页面密码:参数设置:95148网络设置:NET123PLC设置:807667系统识别:SIK2、显示设置A:主轴显示(静止时也显示角度)System>DisplaySettings>CfgDisplayData>spindleDislay(100007)>during closed loop and m5B:语言显示System>DisplaySettings>CfgDisplaylanguage>nclanguage(101301)>chinese>plcdialoglanguage(101302)>chinese>plcerrorlanguage(101303)>chinese>helplanguage(101304)>chinese3、机床模式System>CfgMachineSimul>simMode(100201)> FullOperation4、屏蔽轴在调试、维护机床时,如果某轴的电机未连接,这时需要将此轴屏蔽,以免误动作。

System>axes>physicalaxis>cfgaxis>axismode(x.300105)>notactive>Testmode(x.300106)>false(任意一个都可以)5、驱动及电机选型Axes>parametersets>px>cfgpowerstage(px.401201)>ampname>heidenhain-uec111(根据具体的驱动型号配置)>cfgservomotor(px.401301)>qsy130e-ecodyn(根据具体的电机型号配置)6、回参考点设置Axes>parametersets>px>cfgreferencing>refType(px.400401):是返回参考点的方式,直线进给轴选用Switch,changing Dir,即遇到回零挡块后反向寻找参考点;主轴选用without switch + on the fly>refPosition(零偏)(px.400403):参考点在机床坐标系中的位置;>refSwitchActive:参考点挡块生效时的电平值;>refFeedHigh:返回参考点挡块的速度;>refFeedLow:反向时寻找参考点时的速度;>refDirection:返回参考点挡块的方向。

4-3海德汉中文使用说明书

4-3海德汉中文使用说明书

4.5创建和编写程序HEIDENHAIN对话式格式的NC程序.结构一个零件程序由一连串的程序行组成。

右图表示程Array序行的组成。

TNC按上升的顺序对程序行编号。

程序的第一行用BEGIN PGM、程序名和当前的测量单位识别。

以后的行包含下列信息:⏹工件间隔⏹刀具定义,刀具调用⏹进给率和主轴转速,还有⏹仿型路径、循环和其他功能程序的最后一行用END PGM、程序名和当前的测量单位识别。

定义空格:BLK FORM紧接着新的程序建立以后,您定义一个长方体的工件空格。

如果您要定义下一级的空格,按下BLK FORM软键。

这个定义是TNC的图形模拟功能所必需的。

工件空格的两侧类似于X,Y和Z轴,最长可为100 000mm长。

空格由两个角位置来定义:⏹MIN(最小)点:,空格的X,Y和Z座标的最小值,按绝对座标值输入。

⏹MAX(最大)点:空格的X,Y和Z座标的最大值,按绝对座标值或者增量座标值输入。

☞只有您要进行程序的图形测试时,才需定义空格。

创建一个新的零件程序您总是要在运转的编程和编辑模式输入零件程序的。

以一个例子说明程序的开始:选择运转的编程和编辑模式。

调用文件管理器:按下PGM MGT 软键。

选择您要储存新的程序的目录:文件名= OLD.H输入新的文件名,用ENT键确认。

按下MM键或者INCH键,选择测量单位。

TNC变换屏幕布局并开始定义BLK FORM的对话。

工作主轴轴线X/Y/Z?输入主轴轴线。

定义BLK FORM:最小角?按顺序输入X,Y,Z的最小角座标。

-40定义BLK FORM:最大角?100按顺序输入X,Y,Z的最大角座标。

100实例:在NC程序中显示BLK 空格程序开始,名称,测量单位刀具轴线,最小点座标最大点座标程序结束,名称,测量单位TNC自动生成程序行行号,包括BEGIN和END行在内。

如果您不要定义空格,按下DEL键,在工作主轴轴线X/Y/Z?时取消对话!如果BLK FORM的短边和长边的比例超过1:64,则TNC只显示图形。

1海德汉中文使用说明书

1海德汉中文使用说明书

1前言1.1TNC 426,TNC 430HEIDENHAIN TNC是一种面向生产车间的仿型控制器,使您能以一种便于使用的对话式编程语言,编制使机床准确加工运转的对话式程序。

TNC控制器可用于铣削、钻孔和镗削加工,也可用于加工中心。

TNC 426最多可控制五根轴;TNC 430最多可控制九根轴。

您也可在程序控制下改变主轴的角度位置。

一体化的硬盘能存储许多您所喜欢的程序,不论这些程序是脱机创建的还是数字化的。

为了能快速计算,随时随地都能在屏幕上调出袖珍计算器。

键盘和屏幕布局清晰合理,功能调用快捷,使用方便。

编程:HEIDENHAIN对话式和ISO格式HEIDENHAIN对话式编程是一种特别容易的程序写入方法,交互式的图形表示仿型编程的各个加工步骤。

如果某一张生产图纸没有标注NC适用的尺寸,HEIDENHAIN FK任意形状轮廓编程就会自动执行必要的计算。

工件的加工状况,无论是现在正在加工中还是在加工之前,都能用图形模拟显示。

在ISO编程格式或DNC模式中都由此功能。

当TNC在运行另一段程序时,您也可输入或测试一段程序。

兼容性TNC能执行所有写在TNC 150B及以后的HEIDENHAIN控制器上的零件程序。

21.2可视显示器和键盘可视显示器TNC显示器可使用CRT彩色显示器(BC120)或TFT液晶显示器(BF120)。

右上图为BC120的键盘和控制器,右中图为BF120的键盘和控制器。

屏幕端部当TNC接通电源时,屏幕端部显示选定的操作方式:左侧为加工方式,右侧为编程模式。

当前激活的模式显示在一个较大的方框中,在此方框中,同时也显示对话提示和TNC信息(如果没有,则仅显示图形)。

软键TNC底部一排软键表示辅助功能。

直接按下这些键,即可选用这些辅助功能。

紧接着软键行上面的行表示软键的编号,可以左右移动黑色光标调用。

被激话的软键行高亮显示。

软键选择键切换软键行设置屏幕布局用于转换加工和编程模式的移位键仅在BC120上的键屏幕退磁:为屏幕设置退出主菜单为屏幕设置选择主菜单:⏹在主菜单中:高亮显示部向下移动⏹在子菜单中:减小数值;图形向左或向下移动⏹在主菜单中:选择子菜单⏹在子菜单中:退出子菜单主菜单对话功能BRIGHTNESS 调节亮度CONTRAST 调节对比度H-POSITION 调节水平位置3主菜单对话功能V-POSITION 调节图形高度V-SIZE 调节图形高度SIDE-PIN 纠正桶型失真TRAPEZOID 纠正梯形失真ROTATION 纠正倾斜COLOR TEMP 调节色温R-GAIN 调节红色浓度B-GAIN 调节兰色浓度RECALL 无功能BC120对磁场和电噪声敏感,可能会使图形的位置和几何形状产生失真。

4-1海德汉中文使用说明书

4-1海德汉中文使用说明书

4编程:NC的基本原理文件管理编程帮助,随行夹具管理4.1基本原理位置编码器和基准标记机床轴配备有用于记录机床工作台或者刀具位置的位置编码器。

当机床轴移动时,对应的位置编码器就产生一个电信号,TNC判断该信号并计算出机床轴的精确位置。

如果电源中断过一次,则计算出的位置不再对应机床导轨的实际位置,利用基准标记,当电源恢复时,TNC 能重新建立这一对应关系。

位置编码器的分度包含一个或几个基准标记,当被越过时,就向TNC发送一个信号。

根据此信号,TNC按照机床轴的基准点判别位置,并对机床轴的位置重新建立显示位置的分配。

基准系在一个平面或者一个空间中定义一个位置需要有一个基准系,位置数据始终是参照一个预先确定的点并通过座标来描述的。

笛卡儿座标(直角座标系)是以三个座标轴X,Y,Z为基准的,座标轴相互垂直并在一个称为座标原点的点上相交。

一根座标轴标志出沿座标轴方向离座标原点的距离,于是,在一个平面上的点要通过两个座标来描述,而在一个空间中的点要通过三个座标来描述。

以座标原点为基准的座标称作绝对座标,相对座标是以某一已知点(基准点)为基准的,此点是由您在座标系范围内规定的。

相对座标值也称作增量座标值。

34在铣床上的基准系在使用铣床时,您要使刀具的移动适应直角座标系,Array右图表示在直角座标系中是怎样描述机床轴的。

右图表示为记住机床三根轴方向的右手法则:中指表示从工件向刀具看的刀具轴线的正方向(Z轴),大拇指指向X轴的正方向,食指指向Y轴的正方向。

TNC 426最多能控制5根轴,TNC 430最多可控制9根轴。

U,V,W是辅助线性轴,和机床基本轴X,Y和Z一一对应,相互并行;旋转轴称为A,B和C,右下图表示分配给各个基本轴的辅助轴和旋转轴。

35极座标如果产品图是以直角座标标注尺寸,则您可用直角座标编写零件程序。

至于零件图中的圆弧和角度,以极座标标注尺寸更为简单明了。

然而,直角座标X,Y和Z是三维的,能描述空间的点;极座标是二维的,即能描述一个平面中的点。

海德汉说明书(模板)

海德汉说明书(模板)

海德汉‎说明书‎海德‎汉说明‎书‎‎‎‎篇一‎:‎‎‎海德汉‎说明书‎HE‎I DE‎N HA‎I N ‎T NC‎426‎TN‎C43‎0软‎件编号‎28‎0-4‎76X‎X 2‎80-‎477‎X X ‎使用说‎明书‎对话式‎编程‎可视显‎示器上‎的控制‎器分‎割屏幕‎切换‎加工和‎编程模‎式屏‎幕上选‎择功能‎的软键‎变换‎软键行‎改变‎屏幕设‎置(仅‎B C1‎20)‎输入‎字符的‎键盘‎文件名‎称注‎解 I‎S编‎程机‎床运转‎模式‎手动操‎作方式‎电控‎手轮‎M DI‎定位‎单行程‎序运行‎全序‎列程序‎运行‎编程模‎式编‎程和编‎辑试‎运行‎程序/‎文件管‎理,T‎N C功‎能选‎择或删‎除程序‎和文件‎,外部‎数据传‎送在‎程序中‎输入程‎序调用‎命令‎M D功‎能显‎示NC‎出错信‎息帮助‎文本‎袖珍计‎算器‎移动光‎标,直‎接指向‎程序行‎、循环‎和参数‎功能‎移动高‎亮显示‎部直‎接转到‎程序行‎、循环‎和参数‎功能‎进给率‎和主轴‎转速修‎调旋钮‎编程‎路径移‎动仿‎型进刀‎和退刀‎FK‎自由仿‎型编程‎直线‎圆心‎和极座‎标极心‎定圆‎心圆‎定半径‎圆切‎线连接‎圆弧‎倒角‎修圆尖‎角刀‎具功能‎输入‎和调用‎刀具长‎度和半‎径循‎环、子‎程序和‎程序段‎重复‎定义和‎调用循‎环输‎入和调‎用子程‎序及程‎序段重‎复的标‎签程‎序中程‎序停止‎运行‎在程序‎中输入‎触头功‎能座‎标轴和‎数字,‎编辑‎选择座‎标轴或‎在程序‎中输入‎? ‎座标轴‎? ‎数字键‎小数‎点改‎变代数‎符号‎极座标‎增量‎座标‎Q参数‎实际‎位置归‎零跳‎过对话‎提问,‎删除字‎确认‎输入和‎恢复对‎话结‎束程序‎行清‎除数字‎输入或‎者TN‎C出错‎信息‎中断对‎话,删‎除程序‎段 T‎N C ‎型号,‎软件和‎性能‎本说明‎书按照‎下述N‎C软件‎编号,‎叙述了‎T NC‎提供‎的功能‎和特性‎。

5海德汉中文使用说明书

5海德汉中文使用说明书

5编程:刀具5.1输入刀具相关数据进给率F进给率F是刀具中心移动的速度,单位为mm/分钟或英寸/分钟。

每一个轴的最大进给率可以是不同的,在机床参数中设置。

输入您可以在刀具调用程序行和每个定位程序行中输入进给率(参阅117页“用路径功能键建立程序行”)。

快速行程如果您要编制快速行程程序,输入F MAX。

要输入F MAX,在对话提示Feed rate(进给率)F=?出现在屏幕上以后即按下ENT键或者F MAX软键。

有效持续性按数字值输入的进给率在程序行执行到不同的进给率之前一直保持有效。

F MAX只有被编入程序行才起作用。

当有F MAX的程序行被执行以后,进给率即返回到之前最后一次设定的进给率数值。

在程序运行期间改变进给率在程序运行期间您可用进给率修调旋钮改变进给率。

主轴转速S在TOOL CALL程序行中主轴转速是按每分钟转数(rpm)输入的。

编程修改在零件程序中,您可以只输入主轴转速来修改TOOL CALL程序行中的主轴转速参数:编制刀具调用命令:按TOOLCALL键。

用NO ENT键忽略Toolnumber?(刀号)对话提问。

用NO ENT键忽略Workingspindle axis X/Y/Z ?(工作主轴轴线)对话提问。

在对话提问Spindle speed S=?(主轴转速)时输入新的主轴转速,用END键确认。

在程序运行时修改在程序运行期间您可用进给率修调旋钮改变主轴转速。

845.2刀具数据刀具补偿要求您通常是按工件图上的尺寸编制仿型路径程序的。

要使TNC能计算刀具中心路径,例如刀具补偿,您必须同时输入使用的每一把刀具的长度和半径。

刀具数据输入可以直接在零件程序中用TOOL DEF键输入或者在刀具表中单独输入。

在刀具表中,也可以输入指定刀具的附加数据。

在执行零件程序时,TNC会考虑输入的全部刀具数据。

刀号和刀具名称每一把刀具是根据编号来识别的,编号范围为0-254。

如果您正在用刀具表加工,您可以使用较大的编号,也可以输入每一把刀具的名称。

海德汉公司MRP系列角度编码器模块说明书

海德汉公司MRP系列角度编码器模块说明书

角度编码器模块05/20212海德汉公司的MRP系列角度编码器模块由角度编码器和高精度轴承组成,并已调整至理想状态。

该模块启动扭矩极小,拥有高测量精度、高导向精度、极高分辨率、优异的重复精度和运动平滑性。

模块式的结构设计和整体进行测试,因此,这款角度编码器模块易于运输和安装。

以下信息••内置轴承角度编码器和••海德汉接口电子电路欢迎索取,或访问海德汉官网• 。

结构和应用SRP角度编码器模块还内置了力矩电机。

也就是在小巧紧凑的一个模块中集成了•电机、高精度轴承和超高精度编码器。

本样本是以前样本的替代版,所有以前版本均不再有效。

订购海德汉公司的产品仅以订购时有效的样本为准。

有关产品所遵循的标准(ISO,EN等)仅以样本中的标注为准。

目录45可重复的导向精度:轴承的决定性特性气浮轴承在空载时的绝对导向精度通常优于滚动轴承的导向精度。

然而,在许多应用中,重要的是轴承最高可重复的导向精度。

在此方面,海德汉角度编码器模块是替代气浮轴承转轴的理想选择。

这是因为海德汉滚动轴承拥有极高的重复精度,而且海德汉滚动轴承的刚性高于气浮轴承至少10倍。

因此,海德汉滚动轴承是受力轴应用的高精度解决方案。

此外,滚动轴承通常对冲击载荷不敏感,而且不需要可调节的压缩空气,因此工作更可靠和更易于使用。

应用领域适用于角度编码器模块的应用范围包括:中低转速运动和中等负载的高导向精度到超高导向精度和极高重复精度应用。

特别能满足计量应用的独特要求。

因此,典型应用包括:计量仪器、测量机的高精度回转工作台和电子工业的圆晶运送机。

角度编码器模块甚至也能用于小负载机床,例如电加工机床或激光加工机床。

晶片运送紧凑型摆动装置高精度回转工作台激光跟踪仪实用的解决方案海德汉角度编码器模块中的轴承可根据客户的特定要求适配。

按照要求相应和分别调整预紧量、润滑、接触角和材质。

更多信息,请与海德汉联系。

•测量精度和方位精度海德汉角度编码器模块整个组件的精度取决于内置角度编码器的测量精度和滚动轴承的导向精度。

6-1海德汉中文使用说明书

6-1海德汉中文使用说明书
圆弧的圆心角CCA。
NC程序行实例
最后的仿型点:有半径补偿的PE
24 DEP CT CCA 180 R+8 R0 F100
圆心角=1800
圆弧半径=10mm
25 L Z=100 FMAX M2
在Z轴上缩回。回到程序行1,结束程序
沿和轮廓相切的圆弧和直线退刀:DEP LCT
刀具在圆弧上从最后的仿型点PS移动到辅助点PH,然后沿着直线移动到结束点PN。该圆弧既和最后的仿型点相切又和PH-PN直线相切。一旦这些直线已知,半径R就足以完全定义刀具路径。
在仿型进刀时,在起始点PS和第一个仿型点PA之间要有足够的距离,以保证TNC能达到编入程序的加工进给率。
TNC按最后编程的进给率把刀具从实际位置移动到辅助点PH。
半径补偿
刀具半径补偿是和第一个仿型点一起在APPR程序行中编程的。DEP程序行自动取消刀具半径补偿。
无半径补偿的仿型进刀:如果您用R0编制APPR程序行,TNC将计算半径为0,半径补偿RR的刀具路径!在APPR/DEP LN和APPR/DEP CT功能中,设置仿型进刀和退刀的方向必须要有半径补偿。
用APPR/DEP键和DEP LN软键开始编程对话。
LEN:输入距最后一个仿型点PN的距离。
LEN始终按正值输入。
NC程序行实例
最后一个仿型元素:半径补偿的PE
24 DEP LN LEN+20 F100
垂直仿型退刀,距离LEN=20mm
25 L Z+100 FMAX M2
刀具在Z轴中缩回,回到程序行1,程序结束
刀具保持Z轴座标,在XY平面上移动到X=70,Y=50的位置。
三维移动
程序行包含三个座标,TNC使刀具在空间移动到编程位置。

海德汉编码器调零方法

海德汉编码器调零方法

海德汉编码器调零方法
一、海德汉编码器简介
海德汉编码器是一种高精度的位移测量设备,广泛应用于各种工业自动化领域。

它通过光电原理,将旋转或线性位移转换为数字信号,便于计算机或其他控制系统读取和处理。

为了确保编码器的测量精度,定期进行调零操作是非常必要的。

二、海德汉编码器调零方法
1.准备工作
在进行调零前,请确保以下准备工作已做好:
(1)切断电源,确保编码器停止工作。

(2)准备好调零工具,如一字螺丝刀、扳手等。

(3)了解编码器的结构,以便正确操作。

2.调零步骤
(1)松开编码器上的固定螺丝,拆下外壳。

(2)找到编码器的零点标记,通常为一个凹槽或标记线。

(3)将编码器转动至零点标记处,使其与旋转轴对齐。

(4)重新固定编码器外壳,紧固螺丝。

3.注意事项
(1)在调零过程中,切勿让编码器受到外力冲击,以免影响测量精度。

(2)调零后,请重新检查编码器的运行情况,确保恢复正常工作。

三、调零后的维护与检查
(1)定期检查编码器的零点,如发现异常,及时重新调零。

(2)保持编码器周围环境的清洁,避免灰尘和油污影响光电传感器的工作。

(3)定期加注润滑油,确保旋转轴顺畅运行。

四、总结与建议
通过对海德汉编码器的调零方法的学习,我们可以确保编码器在长时间运行过程中保持较高的测量精度。

同时,掌握正确的调零方法和注意事项,有助于延长编码器的使用寿命,提高生产效率。

2海德汉中文使用说明书

2海德汉中文使用说明书

2手动操作和调整2.1电源接通,电源切断电源接通电源接通和移动到基准点在每台机床上可能有所不同,参考您的机床说明书。

接通控制器和机床的电源,TNC自动开始下列对话:存储器测试自动检查TNC存储器。

除此信息。

编译PLC程序自动编译TNC的PLC程序。

紧急停止电路的功能。

点:在每一轴时按下机床的START按钮,或者按任意顺序越过基准点:在行到基准点之前一直按住机床轴方向按钮。

现在TNC已为手动操作方式准备就绪。

☞如果移动机床轴才需要行到基准点。

如果您只是编写、编辑和试验程序,您可以在控制器电源接通以后立即选择编程和编辑模式或者试运行模式。

在手动操作方式中按PASS OVER REFERENCE(越过基准点)软键后即可行到基准点。

在倾斜的加工面中行程行到基准点在倾斜座标系中按下机床轴方向按钮可以移动到基准点。

在手动操作方式中必须激活“倾斜加工面功能”,参阅27页“激活手动倾斜”,TNC就增添相应的轴。

NC START按钮不起作用,按下此按钮可能会引起出错。

☝要确保倾斜加工面菜单中输入的角度和倾斜轴的实际角度相匹配。

电源切断为防止电源切断时数据丢失,您必须按下述使操作系统一步步停止工作:选择手动方式。

选择渐停功能,用YES软键再次确认。

当TNC在一叠加的窗口中显示“Now you can switch off theTNC”信息时,您才可以切断TNC的电源。

☞电源切断动作不准确,会使TNC 数据丢失。

2.2移动机床轴说明用机床轴方向按钮移动机床轴是机床固有的功能,在机床说明书中有详细的资料。

用机床轴方向按钮移动:选择手动操作方式。

按下并保持住机床轴方向按钮,直至您所要的机床轴开始移动。

连续移动机床轴:按下并保持住机床轴方向按钮,然后按下机床START按钮。

和要停止机床轴移动,按下STOP按钮。

利用这两个方法,您可以一次同时移动几根轴。

利用F软键,可以修改被移动轴的进给率,参见21页“主轴转速S,进给率F和辅助功能M”。

海德漢TNC 640使用手冊说明书

海德漢TNC 640使用手冊说明书

TNC的控制器TNC的控制器視覺顯示單元上的按鍵按鍵功能選擇分割畫面配置在加工模式與程式編輯模式之間切換顯示用於選擇螢幕上功能的軟鍵在軟鍵列之間切換文字數字鍵盤按鍵功能檔案名稱,註解DIN/ISO 程式編輯機械操作模式按鍵功能手動操作電子手輪使用手動資料輸入定位程式執行,單一單節程式執行,完整序列程式編輯模式按鍵功能程式編輯程式模擬程式/檔案管理,TNC功能按鍵功能選擇或刪除程式與檔案,外部資料傳輸定義程式呼叫,選擇工件原點及加工點表格選擇MOD功能顯示NC錯誤訊息的說明文字,呼叫TNCguide顯示所有目前錯誤訊息顯示計算器導覽鍵按鍵功能移動反白直接進入單節、循環程式及參數功能進給率與主軸轉速的電位計進給速率主軸轉速循環程式、子程式及程式段落重複按鍵功能定義接觸式探針循環程式定義與呼叫循環程式對於子程式編輯及程式段落重複進行輸入及呼叫標籤在程式內輸入程式停止符號刀具功能按鍵功能在程式內定義刀具資料呼叫刀具資料程式編輯路徑移動按鍵功能接近/離開輪廓FK 自由輪廓程式編輯直線極座標的圓心/極點利用圓心做圓弧加工具有半徑的圓含切線連接的圓弧切角/角落圓角特殊功能按鍵功能顯示特殊功能選擇格式內下一個標籤上/下一個對話方塊或按鈕輸入並編輯座標軸與數字按鍵功能. . .選擇座標軸或在程式當中輸入. . .數字小數點/倒反代數符號使用極座標輸入/增量值Q參數程式編輯/Q參數狀態儲存來自計算機的實際位置或數值NO ENT忽略對話問題,刪除字元確認輸入與重新對話總結單節,並離開輸入清除數字輸入或TNC錯誤訊息停止對話、刪除程式段落TNC的控制器基本原則有關本手冊有關本手冊本手冊內使用的符號說明如下。

要進行任何變更,或發現任何錯誤?我們持續努力改善我們的文件, 請將您的問題傳送至下列電子郵件位址: *************************。

TNC機型、軟體與特性TNC機型、軟體與特性此手冊說明由TNC搭配以下NC之軟體編號所包含的功能及特性。

海德汉_旋转编码器说明书

海德汉_旋转编码器说明书

旋转编码器2012年11月带安装式定子联轴器的旋转编码器分离式联轴器的旋转编码器本样本是以前样本的替代版,所有以前版本均不再有效。

订购海德汉公司的产品仅以订购时有效的样本为准。

产品遵循的标准(ISO,EN等),请见样本中的标注。

海德汉公司的旋转编码器是测量旋转运动、角速度的传感器,也可与机械测量设备一起使用,例如丝杠,测量直线运动。

应用领域包括电机、机床、印刷机、木工机器、纺织机器、机器人和运送设备以及各种测量,测试和检验设备。

高质量正弦增量信号可进行高倍率细分,用于数字速度控制。

电子手轮2目录选型指南标准用途的旋转编码器供电电源3.6至5.25 V DC2) 内部2倍频细分后最大至10 000个信号周期数3) 内部5/10倍频细分后最大至36 000个信号周期(如果需要更高细分倍数,可提供)42634 ERN 480000至5 000线405选型指南标准用途的旋转编码器内部2倍频细分后最大周期数为10 0002) 内部5/10倍频细分后最大至36 000个信号周期(如果需要更高细分倍数,可提供)642 50 54 7选型指南电机旋转编码器内部2倍频细分后8 192个信号周期2) 内部5/10/20/25倍频细分后37 500个信号周期8参见产品信息910供电电源3.6至5.25 V DC2)内部2倍频细分后最大至10 000个信号周期数3)内部2倍频细分后8 192个信号周期4)根据用户要求,可提供盲孔轴版选型指南特殊用途的旋转编码器40请见产品概要:应用于电梯行业的旋转编码器请见产品概要:11测量原理测量基准测量方法海德汉公司的光学扫描型光栅尺或编码器的测量基准都是周期刻线-光栅。

这些光栅刻在玻璃或钢材基体上。

这些精密光栅通过多种光刻工艺制造。

光栅的制造方式有:•在玻璃上镀硬铬线•在镀金钢带上蚀刻线条,或者•在玻璃或钢材基体上蚀刻三维结构图案。

海德汉公司开发的光刻工艺生产的栅距典型值为50 µm至4 µm。

4-2海德汉中文使用说明书

4-2海德汉中文使用说明书

4.2文件管理基本原理利用MOD功能PGM MGT(参阅414页“配置PGM MGT”),在标准文件管理和高级文件管理之间选择。

如果TNC连接成一个网络(选用项),则要使用有附加功能的文件管理。

文件TNC中的文件类型程序HEIDENHAIN格式.HISO格式.I各类表格刀具.T换刀装置.TCH随行夹具.P座标原点.D明细表(测量触头数字化范围).PNT切削数据.CDT切削材料,工件材料.TAB文本格式ASCII文件.A当您在TNC上编写一个零件程序时,首先必须输入文件名,TNC将程序以相同文件名的文件形式储存在硬盘中,TNC也能以文件形式储存文本文件和表格。

TNC提供一个专用的文件管理窗口,在此窗口中,您能方便地查找文件和管理文件,也能调用、复制、重名命和删除文件。

在TNC的硬盘中,您可以管理许多文件,但是,总的文件大小不得超过1500MB。

文件名称当您以文件形式储存程序、表格和文本时,TNC给文件名称加上一个扩展名,此扩展名表示文件类型。

最长长度参见表格“TNC中的文件”数据安全我们建议定期在PC上保存最新编写的程序和文件。

您可以从HEIDENHAIN获得免费的后备程序TNCBACK。

EXE用于在PC上保存程序和文件。

您的机床制造商能提供TNCBACK。

EXE的复制件。

此外,您还需要一个软盘,用于储存机床专用数据,例如PLC程序、机床参数等等。

有关后备程序和软盘的详细资料,请和机床制造商联系。

☞保存硬盘上的全部内容可能要几个小时,因此,一个好的办法是在工作时间以外来保存(例如隔夜),或者利用平行执行功能,工作时在后台保存。

☝根据运转条件不同(例如震动负荷),当运转了三—五年之后,硬盘一般会有较高的故障率,因此,HEIDENHAIN建议三至五年之后,要对硬盘进行检查。

4.3标准文件管理说明如果您打算在一个目录下面保存全部文件,或者您已经在老的TNC控制器上已操作的很熟练,标准文件管理则是最好的方法。

6-2海德汉中文使用说明书

6-2海德汉中文使用说明书

6-2海德汉中文使用说明书1256.4 仿型路径—直角座标路径功能的概述直线L 直线直线终点座标倒角:CHF 两条直线交点处倒角倒角边长圆心CC 刀具不移动圆心或极心座标圆C 围绕圆心CC 圆弧移动到圆弧终点圆弧终点座标,转动方向圆弧CR 确定半径的圆弧圆弧终点座标,圆弧半径,转动方向圆弧CT 和前后型面切线连接的圆弧移动圆弧终点座标圆角RND 和前后型面切线连接的圆弧移动修圆的圆角半径FK 自由编程和前一个型面任意连接的直线或者圆弧移动参阅144页“仿型路径—FK 自由仿型编程”126 直线L刀具沿着直线从当前位置移动到直线结束点,该直线的起始点为前一行程序的结束点。

直线结束点的座标必要时进一步输入:半径补偿RL/RR/R0 进给率F 辅助功能M NC 程序实例实际位置归零您也可用ACTUAL-POSITION-CAPTURE (实际位置归零)键建立直线程序行:在手动操作模式中,把刀具移动到您要归零的位置上。

屏幕显示切换到编程和编辑。

选定您要插入L 程序行位置的前一程序行。

按下实际位置归零键:TNC 用当前的实际位置的座标建立一行程序。

,在MOD 功能中,规定保存在L 程序行中的轴的数量(参阅398页“MOD 功能)。

在两条直线之间插入倒角CHF倒角功能可以使您切去两条直线交点处的尖角。

CHF前后的程序行必须是在同一个平面中的。

CHF前后的半径补偿必须相同。

内倒角必须足够大,以能容纳在用的刀具。

倒角边长:倒角长度必要时进一步输入:进给率F(只在CHF程序行中有效)。

NC程序行实例您不能用CHF程序行开始仿型。

倒角只能在加工面中。

尖角被修平,不作为轮廓的一部分。

CHF程序行中编程的进给率只对该程序行有效,在CHF程序行以后,原先编程的进给率恢复有效。

127圆角RND刀具在和前后两个仿型点相切的圆弧上移动。

修圆圆弧必须足够大以容纳刀具。

必要时进一步输入:进给率F(只对RND程序行有效)NC程序行实例前后两个仿型点的座标必须位于修圆的圆弧的平面中,如果您进行无半径补偿仿型加工,您必须编制加工面中的两个座标的程序。

海德汉编码器调零方法

海德汉编码器调零方法

海德汉编码器调零方法摘要:一、海德汉编码器简介二、海德汉编码器调零方法1.准备工作2.调零步骤3.注意事项三、调零后的维护与检查四、总结与建议正文:海德汉编码器是一种高精度的数字编码器,广泛应用于各种测量和控制系统中。

它具有较高的可靠性和稳定性,但在使用过程中,可能会因为各种原因导致编码器的零点发生偏移,影响测量结果的准确性。

因此,定期对海德汉编码器进行调零是非常必要的。

本文将详细介绍海德汉编码器的调零方法及其注意事项。

一、海德汉编码器简介海德汉编码器是一种基于电磁感应原理的数字编码器,它能将旋转或直线运动的位移信号转换为数字信号。

海德汉编码器具有以下特点:1.高精度:海德汉编码器的分辨率高达几纳米,能满足高精度测量需求。

2.高可靠性:海德汉编码器采用优质材料和先进工艺制造,具有良好的抗干扰性和耐用性。

3.宽泛的应用领域:海德汉编码器广泛应用于工业自动化、测量仪器、机器人等领域。

二、海德汉编码器调零方法1.准备工作在进行调零之前,请确保以下准备工作已完成:(1)切断电源,确保编码器与主控系统断开连接。

(2)清理编码器表面,避免灰尘和油污影响调零精度。

(3)准备调零工具,如一字螺丝刀、扳手等。

2.调零步骤(1)将编码器与主控系统断开连接,拆卸编码器的外部防护罩。

(2)找到编码器的零点调整螺丝,通常位于编码器的背部或侧面。

(3)使用一字螺丝刀调整零点螺丝,顺时针旋转为零点上移,逆时针旋转为零点下移。

(4)调整过程中,观察编码器的输出信号变化,直至输出信号为零。

(5)拧紧调整螺丝,重新安装防护罩,连接编码器与主控系统。

3.注意事项(1)调零过程中,切勿让编码器受到冲击或振动,以免影响调零精度。

(2)调整螺丝时,用力要适中,避免用力过大导致螺丝滑丝或损坏。

(3)调零完成后,请进行实际测量,验证调零效果。

如发现测量结果仍有偏差,可适当微调零点。

三、调零后的维护与检查1.定期检查编码器的零点,如发现零点发生偏移,及时进行调整。

海德汉 Heidendain ND280 cn

海德汉 Heidendain ND280 cn

I S
R
Abb. I.4 名义位置 S,实际位置 I 和待移动距离 R
16
I 使用 ND 280 数显装置
工件绝对位置
工件上的每个位置都唯一地由其绝对坐标值确定 (参见 Abb. I.5) 。 举例:位置 1 的绝对坐标:Z = 20 mm 如果用绝对坐标值按照图纸要求在工件上钻孔或铣工件,需使刀具或 长度计移至坐标值处。
Z Y X
Abb. I.7 直线位置光栅尺,在此为 X 轴
操作手册
ND 280
Zhongwen (zh-CN) 9/2008
ND 280 显示屏
1
2
3 4 5
ND 280 前面板
7
6
控制和显示
1 状态栏 当前操作模式:实际值,待移动距离。 当前显示模式,输入接口 X1 SCL 显示为黑色:缩放系数被激活。
COMP 显示为黑色:误差补偿或轴误差补偿对当前显示轴有效。
ND 280
7
II 安装,技术参数 ..... 35
II.1 系统安装和电气连接 ..... 36 其中包括 ..... 36 选装附件 ..... 36 安装 ..... 37 环境条件 ..... 37 固定位置 ..... 37 ND 280 - 固定和安装 ..... 37 电磁兼容性 CE 相符性 ..... 38 电气连接 ..... 39 电气要求 ..... 39 电源接头连线 (参见 Abb. II.3)..... 39 防护性接地 (地线)..... 39 预防性维护或修理 ..... 40 连接编码器 ..... 40 D-sub 接头 X1 (15 针,孔式)用于连接以下输入信号 ..... 40 II.2 系统设置 ..... 42 系统设置菜单 ..... 42 设置编码器 ..... 43 增量式直线光栅尺 ..... 44 增量式角度编码器 ..... 45 绝对式编码器 ..... 46 配置显示 ..... 46 直线光栅尺 ..... 46 角度编码器 ..... 46 计数器设置 ..... 47 误差补偿 ..... 48 线性误差补偿 (不适用于旋转编码器)..... 49 非线性误差补偿 ..... 50 设置串口 ..... 54 设置数据接口 ..... 54 诊断 ..... 56 键盘测试 ..... 56 显示测试 ..... 56 编码器测试 ..... 57 电源 ..... 59 II.3 编码器参数 ..... 60 数值表 ..... 60 海德汉直线光栅尺 ..... 60 海德汉角度编码器 ..... 61

3海德汉中文使用说明书

3海德汉中文使用说明书

3 手动数据输入定位3.1简单加工操作的程序编写和执行手动数据输入操作方式特别适用于简单加工操作和刀具的预定位。

该方式能使您用HEIDENHAIN对话式编程方法或者用ISO格式编写一段短程序并立即执行它。

您也能够调用TNC循环。

程序储存在$MDI文件中。

再用MDI定位的操作方式中,辅助状态显示也能被激活。

手动数据输入定位(MDI)选择操作的MDI定位方式,按您的要求编写程序文件$MDI。

按下机床START按钮,开始程序运行。

限制不能使用FK任意轮廓编程、图形编程和程序运行图形。

$MDI文件不得包含程序调用命令(PGMCALL)。

例1:在一个工件上钻一个深度为20mm的孔。

当工件被夹紧并校准好、设置好座标原点以后,您即可开始编制几行程序并进行钻孔操作。

首先,在L程序块中把刀具预定位在孔中心座标上方,距工件表面5mm。

然后可以用循环1 PECKING(啄式钻孔)进行钻孔操作。

0 BEGIN PGM $MDI MM1 TOOL DEF 1 L+0 R+52 TOOL CALL 1 Z 520003 L Z+200 RO F MAX4 L X+50 Y+50 RO F MAX M35 L Z+5 F 20006 CYCL DEF 1.0 PECKING7 CYCL DEF 1.1 SET UP 58 CYCL DEF 1.2 DEPTH -20 定义刀具:零点刀具,半径5。

调用刀具:Z刀具轴线。

主轴转速,2000 rpm。

刀具缩回(F MAX=快速行程)。

刀具以快速行程移到孔上方。

主轴开。

刀具定位到孔上方5mm处。

定义PECKING循环。

设置刀具在孔上方的间隔。

309 CYCL DEF 1.2 PECKG 1010 CYCL DEF 1.4 DWELL 0.511 CYCL DEF 1.5 F 25012 CYCL CALL13 L Z+200 RO F MAX M214 END PGM $MDI MM直线功能程序块L(参阅126页“直线L”),啄式钻孔循环(参阅195页“啄式钻孔(循环1)”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

November 2010Angle Encoders with Integral BearingInformation onAbsolute Angle Encoders with Optimized •ScanningAngle Encoders without Integral Bearing •Rotary Encoders•Encoders for Servo Drives•Exposed Linear Encoders•Linear Encoders for Numerically •Controlled Machine T ools Interface Electronics•HEIDENHAIN controls•is available on request as well as on the Internet at www.heidenhain.de.This catalog supersedes all previouseditions, which thereby become invalid.The basis for ordering from HEIDENHAINis always the catalog edition valid whenthe contract is made.Standards (ISO, EN, etc.) apply onlywhere explicitly stated in the catalog. Angle encoders with integral bearingand integrated stator couplingAngle encoders with integral bearing for separate shaft coupling2Contents4HEIDENHAIN Angle EncodersThe term angle encoder is typically used to describe encoders that have an accuracy of better than ± 5" and a line count above 10 000.In contrast, rotary encoders are encoders that typically have an accuracy better than ± 10“.Angle encoders are found in applications requiring precision angular measurement to accuracies within several arc seconds.Examples:Rotary tables on machine tools • Swivel heads on machine tools • C-axes of lathes• Measuring machines for gears • Printing units of printing machines • Spectrometers • T elescopes • etc.The tables on the following pages list different types of angle encoders to suit various applications and meet different requirements.The RCN 729 angle encoder mounted on the rotary table of a machine toolRCN 729 incremental angle encoderAngle encoders can have one of the following mechanical designs:Angle encoders with integral bearing, hollow shaft and integrated stator couplingBecause of the design and mounting of the stator coupling, it must absorb only that torque caused by friction in the bearing during angular acceleration of the shaft. RCN, RON and RPN angle encoders therefore provide excellent dynamic performance. With an integrated stator coupling, the stated system accuracy also includes deviations from the shaft coupling.Other advantages:Compact size for limited installation • spaceHollow shaft diameters up to 100 mm • to provide space for power lines, etc.Simple installation• Selection GuideFor Absolute Angle Encoders see pages 6/7For Incremental Angle Encoders see pages 8/95Angle encoders with integral bearing, for separate shaft couplingROD angle encoders with solid shaft are particularly suited to applications where higher shaft speeds and larger mounting tolerances are required. The shaft couplings allow axial tolerances of ± 1 mm.Selection Guide on pages 8/9Angle encoders without integral bearingThe ERP and ERA angle encoders without integral bearing (modular angle encoders) are intended for integration in machine elements or apparatuses. They are designed to meet the following requirements:Large hollow shaft diameters (up to 10 m • with a scale tape)High shaft speeds up to 20 000 min • –1No additional starting torque from • shaft sealsSegment angles• Selection Guide on pages 10/11ROD 880 incremental angle encoder with K 16 fl at couplingERA 4000 incremental angle encoderO v e r v i e wY ou can fi nd more detailed information on HEIDENHAIN modular angle encoders on the Internet at www.heidenhain.de or in our brochure Angle Encoders without Integral Bearing.Selection GuideAbsolute Angle Encoders with Integral BearingFor position measurementFor information about the new absoluteangle encoders with optimized scanning,visit www.heidenhain.de or ask for ourcatalog: Absolute Angle Encoders withOptimized Scanning.6RCN 700¬ 60 mmRCN 800¬ 100 mm7Selection GuideIncremental Angle Encoders with Integral BearingFor position measurement2) After integrated interpolation8ROD 780RON 285RON 786RON 905ROD 280910Before installation. Additional error caused by mounting inaccuracy and inaccuracy from the bearing of the measured shaft are not included.2)For position measurement 3)For further versions, see appropriate catalog 4)After integrated interpolationSelection GuideAngle Encoders and Modular Encoders without Integral BearingERP 880ERA 880ERA 780ERA 4000ERP 4080ERM 28011Incremental signals/Grating period Reference marksModelFor moreinformation» 1 V PP /–One ERP 880Catalog: Angle Encoders without Integral BearingNone ERP 8080ERP 4080» 1 V PP /20 µm Distance-coded ERA 4280 C » 1 V PP /40 µm ERA 4480 C » 1 V PP /80 µmERA 4880 C» 1 V PP /40 µmDistance-coded (nominal increment of 1 000 grating periods)ERA 780 C full circle Catalog: Angle Encoders without Integral Bearing» 1 V PP /40 µmDistance-coded (nominal increment of 1 000 grating periods)ERA 880 C full circle » 1 V PP Selectable every 100 mmERA 6080ERA 6000 Product Information« TTL4)ERA 6070» 1 V PP /Approx. 400 µm ERM 280Catalog:Magnetic Modular Encoders« TTL/Approx. 400 µmERM 22012Measuring Principles Measuring StandardAbsolute Measuring MethodAbsolute encoders feature multiple coded graduation tracks. The code arrangement provides the absolute position information, which is available immediately afterrestarting the machine. The track with the fi nest grating structure is interpolated for the position value and at the same time is used to generate an incremental signal (see EnDat Interface ).Circular graduations of absolute angle encodersHEIDENHAIN encoders incorporatemeasuring standards of periodic structures known as graduations.These graduations are applied to aglass or steel substrate. Glass scales are used primarily in encoders for speeds up to 10 000 min –1. For higher speeds—up to 20 000 min –1—steel drums are used. The scale substrate for large diameters is a steel tape.HEIDENHAIN manufactures the precision graduations in specially developed, photolithographic processes.AURODUR: Matte-etched lines on • gold-plated steel tape with grating periods of typically 40 µmMETALLUR: Contamination-tolerant • graduation of metal lines on gold, with typical graduation period of 20 µm DIADUR: Extremely robust chromium • lines on glass (typical graduation period 20 µm) or three-dimensional chrome structures (typical graduation period of 8 µm) on glassSUPRADUR phase grating: optically • three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and lessOPTODUR phase grating: optically three • dimensional, planar structure with particularly high refl ectance, typical graduation period of 2 µm and less.These processes permit very fi ne grating periods and are characterized by a high defi nition and homogeneity of the line edges. T ogether with the photoelectric scanning method, this high edge defi nition is a precondition for the high quality of the output signals.The master graduations are manufactured by HEIDENHAIN on custom-built high-precision ruling machines.Þ1 = (abs A–sgn A–1) x I + (sgn A–sgn D) x abs M RRwhere:A = 2 x abs M RR –IIncremental Measuring MethodWith the incremental measuring method , the graduation consists of a periodicgrating structure. The position information is obtained by counting the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, thescales or scale tapes are provided with an additional track that bears a reference mark. The absolute position on the scale, established by the reference mark, is gated with exactly one measuring step.The reference mark must therefore be scanned to establish an absolute reference or to fi nd the last selected datum.In some cases, this may require a rotation up to nearly 360°. T o speed and simplify such “reference runs,” many encoders feature distance-coded referencemarks —multiple reference marks that are individually spaced according to amathematical algorithm. The subsequent electronics fi nd the absolute reference after traversing two successive reference marks—meaning only a few degrees of traverse (see nominal increment I in the table).Encoders with distance-coded reference marks are identifi ed with a “C” behind the model designation (e.g. RON 786 C).With distance-coded reference marks, the absolute reference is calculated bycounting the signal periods between two reference marks and using the following formula:22Where:Þ1 = A bsolute angular position of thefi rst traversed reference mark to the zero position in degrees abs = Absolute valuesgn = S ign function (“+1” or “–1”)M RR = M easured distance between thetraversed reference marks in degrees I =N ominal increment between two fi xed reference marks (see table)GP = Grating period ( 360° )D = D irection of rotation (+1 or –1)Rotation to the right (as seen from the shaft side of the angleencoder—see Mating Dimensions) gives “+1”Line count Line count z Number ofreference marks Nominal increment I 36 00018 00072 3610°20°GPP r o p e r t i e s a n d M o u n t i n g14Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of ameasuring standard is contact-free, and as such, free of wear. This method detects even very fi ne lines, no more than a few microns wide, and generates output signals with very small signal periods.The fi ner the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning.HEIDENHAIN uses two scanning principles with angle encoders:The • imaging scanning principle for grating periods from 10 µm to approx. 70 µm.The • interferential scanning principle for very fi ne graduations with grating periods of 4 µm.Scanning the Measuring Standard Photoelectric ScanningImaging scanning principlePut simply, the imaging scanning principle functions by means of projected-light signal generation: two graduations with equal grating periods are moved relative to each other—the scale and the scanning reticle. The carrier material of the scanning reticle is transparent, whereas thegraduation on the measuring standard may be applied to a transparent or refl ective surface.When parallel light passes through a grating, light and dark surfaces areprojected at a certain distance. An index grating with the same grating period is located here. When the two gratings move relative to each other, the incident light is modulated. If the gaps in the gratings are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through.Photovoltaic cells convert these variations in light intensity into electrical signals. The specially structured grating of the scanning reticle fi lters the light current to generate nearly sinusoidal output signals. Thesmaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and circular scale. Practicalmounting tolerances for encoders with the imaging scanning principle are achieved with grating periods of 10 µm and larger.The RCN, RON and ROD angle encoders with integral bearing operate according to the imaging scanning principle.Imaging scanning principleInterferential scanning principleThe interferential scanning principle exploits the diffraction and interference of light on a fi ne graduation to produce signals used to measure displacement.A step grating is used as the measuring standard: refl ective lines 0.2 µm high are applied to a fl at, refl ective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders –1, 0, and +1, with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the refl ected diffraction orders +1 and –1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals.A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: when the grating moves by one period, the wave front of the fi rst order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order –1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.Interferential encoders function with average grating periods of 4 µm and fi ner. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for high resolution and high accuracy. Even so, their generous mounting tolerances permit installation in a wide range of applications.The RPN 886 angle encoder with integral bearing operates according to the interferential scanning principle.Interferential scanning principle (optics schematics)C Grating periodψP hase shift of the light wave when passing through the scanning reticle−P hase shift of the light wave due to motion X of the scale15Measuring AccuracyThe accuracy of angular measurement is mainly determined by:1. the quality of the graduation,2. the quality of the scanning process,3. the quality of the signal processingelectronics,4. the eccentricity of the graduation to thebearing,5. the radial runout of the bearing,6. the elasticity of the encoder shaft andits coupling with the drive shaft,7. the elasticity of the stator coupling(RCN, RON, RPN) or shaft coupling(ROD)In positioning tasks, the accuracy of the angular measurement determines the accuracy of the positioning of a rotary axis. The system accuracy given in theSpecifi cations is defi ned as follows:The extreme values of the total error of a position—with respect to the mean value—are within the system accuracy ± a. The total error is ascertained at constant temperatures (22 °C) during the fi nal inspection and are indicated on the calibration chart.For angle encoders with integral bearing •and integrated stator coupling, this value also includes the deviation due to the shaft coupling.For angle encoders with integral bearing•and separate shaft coupling, the angleerror of the coupling must be added(see Mechanical Design T ypes andMounting – ROD).For angle encoders without integral•bearing, additional deviations resultingfrom mounting, errors in the bearing ofthe drive shaft, and adjustment of thescanning head must be expected (seecatalog: Angle Encoders without IntegralBearing). These deviations are notrefl ected in the system accuracy.The system accuracy refl ects positionerrors within one revolution as well asthose within one signal period.Position error within one revolutionbecomes apparent in larger angularmotions.Position deviations within one signalperiod already become apparent in verysmall angular motions and in repeatedmeasurements. They especially lead tospeed ripples in the speed control loop.These deviations within one signal periodare caused by the quality of the sinusoidalscanning signals and their subdivision. Thefollowing factors infl uence the result:The size of the signal period•The homogeneity and edge defi nition of•the graduationThe quality of the optical fi lter structures•on the scanning reticleThe characteristics of the photoelectric•detectorsThe stability and dynamics during the•further processing of the analog signalsHEIDENHAIN angle encoders take thesefactors of infl uence into account, andpermit interpolation of the sinusoidaloutput signal with subdivision accuracies ofbetter than ± 1 % of the signal period(RPN: ± 1.5 %). The reproducibility is evenbetter, meaning that useful electricsubdivision factors and small signal periodspermit small enough measuring steps (seeSpecifi cations).Example:Angle encoder with 36 000 sinusoidalsignal periods per revolutionOne signal period corresponds to 0.01°or 36“.With a signal quality of ± 1 %, this resultsin maximum position error within onesignal period of approx. ± 0.000 1° or ± 0.36“.161217For its angle encoders with integralbearings, HEIDENHAIN prepares individual calibration charts and ships them with the encoder. The calibration chart documents the encoder’s accuracy and serves as a traceability record to a calibration standard. For the RCN, RON and RPN, which feature an integrated coupling, the accuracy specifi cations already include the error of the coupling. For angle encoders withseparate shaft coupling, however, the error caused by the coupling is not included in the encoder specifi cation and must be added to calculate the total error (see Mechanical Design T ypes and Mounting – ROD – Kinematic error of transfer ).The system accuracy of angle encoders is ascertained through fi ve forward and fi ve backward measurements. The measuring positions per revolution are chosen to determine very exactly not only the long-range error, but also the position error within one signal period.All measured values determined in this manner lie within or on the graphicallydepicted envelope curve. The mean value curve shows the arithmetic mean of the measured values, in which the reversal error is not included.The reversal error depends on the shaft coupling. On angle encoders with integral stator coupling it is determined at ten measuring positions in forward andbackward steps. The maximum value and arithmetic mean are documented on the calibration chart.The following limits apply to the reversal error:RCN/RON 2xx: Max. 0.6“RCN/RON 7xx: Max. 0.4“RCN/RON/RPN 8xx: Max. 0.4“The manufacturer’s inspection certifi cate certifi es the accuracy of the encoder. The calibration standard is indicated in order to certify the traceability to the national standard.Calibration chart example: RON 2851 Graphic representation of error • Envelope curve • Mean value curve 2 Results of calibrationDetermination of the reversal error with forward and backward measurementsGuaranteed accuracy grade of the measured object18Mechanical Design T ypes and Mounting RCN, RON, RPNRCN, RON and RPN angle encoders have an integral bearing, hollow shaft andintegrated stator coupling. The measured shaft is directly connected with the shaft of the angle encoder. The reference mark can be assigned to a desired angular position of the measured shaft from the rear of the encoder during mounting.Design: The graduated disk is rigidly affi xed to the hollow shaft. The scanning unit rides on the shaft on ball bearings and isconnected to the housing with a coupling on the stator side. During angularacceleration of the shaft, the coupling must absorb only that torque caused by friction in the bearing. Angle encoders withintegrated stator coupling therefore provide excellent dynamic performance.MountingThe housing of the RCN, RON and RPN is fi rmly connected to the stationary machine part with an integral mounting fl ange and a centering collar. Liquids can easily fl ow away through drainage channels on the fl ange.Shaft coupling with ring nutThe RCN, RON and RPN series have a hollow through shaft. For installation, the hollow through shaft of the angle encoder is placed over the machine shaft, and is fi xed with a ring nut from the front of the encoder. The ring nut can easily be tightened with the mounting tool.Front end shaft couplingIt is often helpful, especially with rotary tables, to integrate the angle encoder in the table so that it is freely accessible when the rotor is lifted. This installation from above reduces mounting times, increases the ease for servicing, and improves the accuracy, since the encoder is located nearer to the rotary table bearing and the measuring or machining plane. The hollow shaft is connected by threaded holes on the face with the aid of special mounting (not included in delivery).T o comply with radial and axial runout specifi cations, the internal bore 1shoulder surface 2 are to be used asface of the encoder.RON 905 shaft couplingThe RON 905 has a blind hollow shaft. shaft is connected by an axial central screw.Mounting an angle encoder with hollow through shaftCross section of the RON 886 angle encoderFront-end shaft coupling with RCN 72919Ring nuts for RCN, RON and RPNHEIDENHAIN offers special ring nuts for the RCN, RON and RPN angle encoders with integral bearing and hollow through shaft with integrated coupling. Choose the tolerance of the shaft thread such that the ring nut can be tightened easily, with a minor axial play. This guarantees that the load is evenly distributed on the shaft connection, and prevents distortion of the encoder’s hollow shaft.Ring nut for RON/RCN 200Hollow shaft ¬ 20 mm: ID 336 669-03Ring nut for RON 785Hollow shaft ¬ 50 mm: ID 336 669-05Ring nut for RON 786; RON/RPN 886 RCN 72x/RCN 82x Hollow shaft ¬ 60 mm: ID 336 669-11Ring nut for RCN 72x/RCN 82xHollow shaft ¬ 100 mm: ID 336 669-16Ring nut forSeries RxN 200Mounting tool for HEIDENHAIN ring nuts The mounting tool is used to tighten the ring nut. Its pins lock into the holes in the ring nuts. A torque wrench provides the necessary tightening torque.Mounting tool for ring nuts with Hollow shaft ¬ 20 mm ID 530 334-03Hollow shaft ¬ 50 mm ID 530 334-05Hollow shaft ¬ 60 mm ID 530 334-11Hollow shaft ¬ 100 mm ID 530 334-16PWW inspection tool for angle encoders The PWW makes a simple and quick inspection of the most signifi cant mating dimensions possible. The integratedmeasuring equipment measures position and radial runout regardless of the type of shaft coupling, for example. PWW forHollow shaft ¬ 20 mm: ID 516 211-01Hollow shaft ¬ 50 mm: ID 516 211-02Hollow shaft ¬ 60 mm: ID 516 211-03Hollow shaft ¬ 100 mm:ID 516 211-05Ring nut forRxN 700/800 seriesInspection toolPWWRing nut for L1L2D1D2D3B Hollow shaft ¬ 50¬ 62±0.2 ¬ 55(¬ 49.052±0.075)¬ 49.469±0.059(¬ 50.06)1Hollow shaft ¬ 60¬ 70±0.2¬ 65(¬ 59.052±0.075)¬ 59.469±0.059(¬ 60.06)1Hollow shaft ¬ 100¬ 114±0.2 ¬ 107(¬ 98.538±0.095)(¬ 99.163±0.07)(¬ 100.067)1.5Angle encoders of the ROD product family require a separate coupling for connection to the drive shaft. The shaft coupling compensates axial movement and misalignment between the shafts,preventing excessive load on the bearing of the angle encoder. It is important that the encoder shaft and the drive shaft be optimally aligned for high measurement accuracies to be realized. The HEIDENHAIN product program includes diaphragm couplings and fl at couplings designed for connecting the shaft of the ROD angle encoder to the drive shaft.MountingROD angle encoders are provided with an integral mounting fl ange with centering collar. The encoder shaft is connected to the drive shaft by way of a diaphragm coupling or fl at coupling.Shaft couplingsThe shaft coupling compensates axialmovement and misalignment between the encoder shaft and the drive shaft,preventing excessive load on the encoder bearing of the angle encoder. Radial offset λAngular error αAxial motion δMechanical Design T ypes and Mounting RODMounting exampleROD 880Mounting anRODK 03 diaphragm coupling ID 200 313-04K 18 fl at coupling ID 202 227-01K 01 diaphragm coupling ID 200 301-02K 15 fl at coupling ID 255 797-01K 16 fl at coupling ID 258 878-01Dimensions in mmDA 300Degree of protectionUnless otherwise indicated, all RCN,RON, RPN and ROD angle encoders meet protection standard IP 67 according to IEC 60 529 or EN 60 529). This includes housings and cable outlets. The shaft inlet provides protection to IP 64.Splash water should not contain any substances that would have harmful effects on the encoder parts. If theprotection to IP 64 of the shaft inlet is not suffi cient (such as when the angle encoder is mounted vertically), additional labyrinth seals should be provided.RCN, RON, RPN and ROD angle encoders are equipped with a compressed air inlet. Connection to a source of compressed air slightly above atmospheric pressure provides additional protection against contamination.The compressed air introduced directly onto the encoders must be cleaned by a micro fi lter, and must comply with thefollowing quality classes as per ISO 8573-1 (2001 edition):Solid contaminant: Class 1• (max. particle size 0.1 µm and max. particle density 0.1 mg/m 3 at 1 · 105 Pa)T otal oil content: Class 1• (max. oil concentration 0.01 mg/m 3 at 1 · 105 Pa)Maximum pressure dew point: Class 4, • but with reference conditions of +3 °C at 2 · 105 PaGeneral Mechanical InformationFor this purpose, HEIDENHAIN offers the DA 300 compressed air unit (fi ltercombination with pressure regulator and fi ttings). The compressed air introduced into the DA 300 must fulfi ll therequirements of the following quality classes as per ISO 8573-1 (2001 edition):Max. particle size and density of solid • contaminants:Class 4 (max. particle size: 15 µm, max. particle density: 8 mg/m 3)T otal oil content:• Class 4 (oil content 5 mg/m 3)Maximum pressure dew point:• No class (+29 °C at 10 · 105 Pa)The following components are necessary for connection to the RCN, RON, RPN and ROD angle encoders:M5 connecting piece for RCN/RON/RPN/RODWith gasket and throttle ¬ 0.3 mm For air -fl ow rate from 1 to 4 l/min ID 207 835-04M5 coupling joint, swiveling with sealID 207 834-02For more information, ask for our DA 300 Product Information sheet.T emperature rangeThe angle encoders are inspected at a reference temperature of 22 °C. The system accuracy given in the calibration chart applies at this temperature.The operating temperature range indicates the ambient temperature limits between which the angle encoders will function properly.The storage temperature range of –30 °C to +80 °C is valid when the unit remains in its packaging. The storage temperature for the RPN 886 may not exceed –10 °C to+50 °C.Protection against contactAfter encoder installation, all rotating parts (coupling on ROD, locking ring on RCN, RON and RPN) must be protected against accidental contact during operation. AccelerationAngle encoders are subject to various types of acceleration during operation and mounting.The• permissible angle acceleration for the and encoders– RCN/RON 200 series:1 500 rad/s2– RCN/RON 700 series:3 000 rad/s2– RCN/RON/RPN 800 series:3 000 rad/s2For the ROD angle encoders, the permissible angular acceleration varies depending on the shaft coupling andthe mating shaft (details upon request). The indicated maximum values for•vibration are valid according toEN 60 068-2-6.The maximum permissible acceleration •values (semi-sinusoidal shock) forshock and impact are valid for 6 ms (EN 60 068-2-27). Under no circumstances should a hammer or similar implement be used to adjust or position the encoder.Natural frequency f N of couplingThe rotor and shaft coupling of the RODangle encoders, as well as the stator andstator coupling of the RCN, RON and RPNangle encoders, form a single vibratingspring-mass system.The natural frequency f N should be ashigh as possible. For RCN, RON and RPNangle encoders, the frequency rangesgiven in the respective specifi cations arethose where the natural frequencies of theencoders do not cause any signifi cantposition deviations in the measuringdirection. A prerequisite for the highestpossible natural frequency on ROD angleencoders is the use of a shaft couplingwith a high torsional rigidity C.f N =2 · þ· ¹Cf N: Natural frequency in HzC: T orsional rigidity of the coupling inNm/radI: Moment of inertia of the rotor in kgm2If radial and/or axial acceleration occursduring operation, the effect of the rigidity ofthe encoder bearing, the encoder statorand the coupling are also signifi cant. If suchloads occur in your application, HEIDENHAINrecommends consulting with the mainfacility in T raunreut.Expendable partsHEIDENHAIN encoders contain componentsthat are subject to wear, depending on theapplication and handling. These include inparticular the following parts:LED light source•Cables with frequent fl exing•Additionally for encoders with integralbearing:Bearing•Shaft sealing rings for rotary and angular•encodersSealing lips for sealed linear encoders•System testsEncoders from HEIDENHAIN are usuallyintegrated as components in largersystems. Such applications requirecomprehensive tests of the entiresystem regardless of the specifi cationsof the encoder.The specifi cations given in the brochureapply to the specifi c encoder, not to thecomplete system. Any operation of theencoder outside of the specifi ed rangeor for any other than the intendedapplications is at the user’s own risk.In safety-related systems, the higher-level system must verify the positionvalue of the encoder after switch-on.MountingWork steps to be performed anddimensions to be maintained duringmounting are specifi ed solely in themounting instructions supplied with theunit. All data in this catalog regardingmounting are therefore provisional andnot binding; they do not become termsof a contract.1I。

相关文档
最新文档