小波去噪程序代码
matlab小波去噪源码
matlab小波去噪源码以下是一个简单的Matlab小波去噪的示例源码:matlab.% 加载待去噪的信号。
load('noisy_signal.mat'); % 假设信号保存为noisy_signal.mat文件中的一个变量。
% 设置小波去噪的参数。
wavelet = 'db4'; % 选择小波基函数,这里使用Daubechies 4小波。
level = 5; % 小波分解的层数。
threshold_rule = 'sqtwolog'; % 阈值选取规则,这里使用sqtwolog规则。
% 对信号进行小波分解。
[c, l] = wavedec(noisy_signal, level, wavelet);% 估计噪声水平。
sigma = median(abs(c)) / 0.6745;% 计算阈值。
threshold = sigma sqrt(2 log(length(noisy_signal))); % 应用软阈值。
c_denoised = wthresh(c, threshold_rule, threshold);% 重构去噪后的信号。
denoised_signal = waverec(c_denoised, l, wavelet);% 可视化结果。
subplot(2,1,1);plot(noisy_signal);title('原始信号');subplot(2,1,2);plot(denoised_signal);title('去噪后的信号');这段代码首先加载待去噪的信号,然后设置小波去噪的参数,包括选择小波基函数、小波分解的层数和阈值选取规则。
接下来,代码对信号进行小波分解,并估计噪声水平。
然后,计算阈值,并应用软阈值函数对小波系数进行去噪处理。
最后,通过小波重构得到去噪后的信号,并将原始信号和去噪后的信号进行可视化比较。
小波变换语音消噪(改进阈值)
改进阈值函数进行语音信号消噪,但是在程序运行过程中频频报错。
本人经验不足调试不出,希望求得各位指导改进函数表达式附图clear all; clc; close all;fs=8000; %语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道t=(0:length(x1)-1)/8000;y1=fft(x1,2048); %对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured'); %加10db的高斯白噪声[snr,mse]=snrmse(x1,y')%求得信噪比均方误差figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];y1=waverec(c2,l,'db1');%多尺度重构[snr,mse]=snrmse(x1,y1')%求得信噪比均方误差figure(3);plot(t,y1);function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));else (abs(a)<b)gd=0;endfunction [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);QQ截图20130516175535.png(11.18 KB, 下载次数: 0)改进函数表达式本帖最后由罗志雄于2013-5-16 21:58 编辑function [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);修改后程序清单如下:clear all; clc; close all;fs=8000; %语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道x1=x1-mean(x1);t=(0:length(x1)-1)/8000;y1=fft(x1,2048); %对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured'); %加10db的高斯白噪声[snr,mse]=snrmsel(x1',y) %求得信噪比均方误差snr1=SNR_singlech(x1',y)figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a.*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));elsegd=zeros(size(a));endy1=waverec(c1,l,'db1');%多尺度重构[snr,mse]=snrmsel(x1',y1) %求得信噪比均方误差figure(3);plot(t,y1);小波去噪软阈值和硬阈值的matlab仿真程序硬阈值、软阈值这里有一段不知道有用没%设置信噪比和随机种子值snr=4;init=2055615866;%产生原始信号sref和高斯白噪声污染的信号s[sref,s]=wnoise(1,11,snr,init);%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr=1;%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];s3=waverec(c2,l,'db1');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];s4=waverec(c3,l,'db1');%对上述信号进行图示subplot(5,1,1);plot(sref);title('参考信号');subplot(5,1,2);plot(s);title('染噪信号');subplot(5,1,3);plot(s3);title('硬阈值处理');subplot(5,1,4);plot(s4);title('软阈值处理');matlab小波除噪,为何硬阈值和软阈值除躁信噪比一样了?load leleccum;index=1:1024;f1=leleccum(index); % 产生含噪信号init=2055615866;randn('seed',init);f2=f1+18*randn(size(x));snr=SNR_singlech(f1,f2) %信噪比subplot(2,2,1);plot(f1);title('含噪信号'); %axis([1,1024,-1,1]); subplot(2,2,2);plot(f2);title('含噪信号'); %axis([1,1024,-1,1]); %用db5小波对原始信号进行3层分解并提取系数[c,l]=wavedec(f2,3,'db6');a3=appcoef(c,l,'db6',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);sigma=wnoisest(c,l,1);thr=wbmpen(c,l,sigma,2);%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];f3=waverec(c2,l,'db6');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];f4=waverec(c3,l,'db6');%对上述信号进行图示subplot(2,2,3);plot(f3);title('硬阈值处理');%axis([1,1024,-1,1]); subplot(2,2,4);plot(f4);title('软阈值处理');%axis([1,1024,-1,1]); snr=SNR_singlech(f1,f3)snr=SNR_singlech(f1,f4)信噪比函数SNR_singlech(I,In)function snr=SNR_singlech(I,In)% 计算信噪比函数% I:riginal signal% In:noisy signal(ie. original signal + noise signal)Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);小波去噪程序Matlab小波去噪(默认,强制,给定三种情况)%% 利用小波分析对监测采集的信号进行去噪处理,恢复原始信号%小波分析进行去噪有3中方法:%1、默认阈值去噪处理。
完整版)小波变换图像去噪MATLAB实现
完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。
数字图像处理(Digital Image Processing。
DIP)是指用计算机辅助技术对图像信号进行处理的过程。
DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。
然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。
一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。
当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。
在频域上有Ψa,b(x)=ae-jωΨ(aω)。
因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。
这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。
总的来说,小波变换具有更好的时频窗口特性。
噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。
噪声通常是不可预测的随机信号。
由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。
小波去噪matlab程序代码
axis square %产生含噪声图像 init = 2055615866; randn(seed,init); x = X + 50*randn(size(X) ); subplot(2,2,2);image(x); colormap(map); xlabel((b)含噪声图像);
%对三个方向高频系数进行阈值处理 nc = wthcoef2(h,c,s,n,p,s); nc = wthcoef2(v,nc,s,n,p,s); nc = wthcoef2(d,nc,s,n,p,s); %对新的小波分解结构[c,s]进行重构 x1 = wavee(x1); colormap(map);
小波去噪 matlab 程序代码
1、小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次 N,然后计 算信号 s 到第 N 层的分解。 (2)对高频系数进行阈值量化。对于从 1~N 的每一层,选择一个阈值, 并对这一层的高频系数进行软阈值量化处理。 (3)二维小波重构。根据小波分解的第 N 层的低频系数和经过修改的从 第一层到第 N 的各层高频系数,计算二维信号的小波重构 2、Matlab 函数介绍 (1)wavedec2 函数 该函数用于对多尺度二维小波进行分解,其常用调用格式:
xlabel((c)第一次去噪图像); axis square %对 nc 再次进行滤波去噪 xx = wthcoef2(v,nc,s,n,p,s); x2 = waverec2(xx,s,coif3); subplot(2,2,4);image(x2); colormap(map); xlabel((d)第二次去噪图像);
axis square《span style=font-size:14px》 《span style=font-size:14px》 《span style=font-size:18px; color:#3366ff》
小波去噪c语言程序
小波去噪c语言程序1、小波阈值去噪理论小波阈值去噪就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。
该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。
因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。
可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。
于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。
小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。
最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号.2、小波阈值去噪c语言程序此程序是用于信号处理分析,突出奇异值的前段处理,对信号进行小波包分解,用C语言实现的,仅供参考。
#includestdio.h#includestdlib.h#includestdio.h#includestdlib.h#defineLENGTH4096//信号长度#defineDB_LENGTH8//Daubechies小波基紧支集长度/*******************************************************************一维卷积函数*说明:循环卷积,卷积结果的长度与输入信号的长度相同*输入参数:data[],输入信号;core[],卷积核;cov[],卷积结果;*n,输入信号长度;m,卷积核长度。
******************************************************************/。
小波平移不变量法去噪的快速算法(附程序)
编程实现平移不变量去噪的快速算法,结合例子验证该方法的去噪性能[程序说明]:共包含三个M 函数文件,分别是:shift_left 函数,实现信号序列向左循环平移一位;shift_right 函数,实现信号序列向右循环平移一位,这两个函数在程序实现和功能上都很简单,在此不再赘述;TI_Denoise 函数,是该算法的主函数,用快速算法实现含噪信号的TI 去噪。
以下是该函数的帮助文档,比较清楚地说明了各参数的意义和该函数的用法:% Fast TI_Denoising of 1-d signal with wavelet thresholding.% Usage% y=TI_Denoise(signal,wavename,L)% Inputs% signal 1-d noisy signal, length(signal)= 2^J. J must be an positive integer.% wavename name of wavelet% L Low-Frequency cutoff for shrinkage. L <= J.% Outputs% y the signal after being denoised另外一个文件main 调用了TI_Denoise 函数,分别用不同种类的小波,对系统自带的几个含噪信号进行了平移不变量去噪,并将去噪前后的信号显示出来。
其中的signal 可以选用系统本身带有的几个含噪信号之一,小波wavename 和分解级数L 也可任意选择(L<=J),以此对各种条件下的TI 去噪性能进行比较。
具体的M 程序文件见附件。
[算法流程]:TI 小波去噪的功能基本上全是在TI_Denoise 函数中实现的,主要流程如下:1. 快速TI 前向小波分解原理与课本上一致,不再赘述;这里调用了shift_left 函数,来对各分辨级上的低频信号进行平移;做小波变换时,直接调用了dwt,并将延拓方式设为周期型’per’,保证了分解后系数的总数目不变;每一级dwt 后的系数均直接存入TI 表中,这里将每一级的低频系数也存入了TI 表中,置于第一列,到下一级时再将其更新,直至最后一级的低频系数存入,则不再发生变化。
matlab小波滤波器代码 -回复
matlab小波滤波器代码-回复在MATLAB中实现小波滤波器的代码,可以通过以下步骤来完成:第一步:导入信号数据在MATLAB中,首先需要导入待处理的信号数据。
可以使用`wavread`函数读取声音文件,或者使用`load`函数导入其他格式的数据。
matlab[data, fs] = wavread('sound.wav');这里`data`是读取到的信号数据,`fs`是采样率。
第二步:选择小波基函数小波滤波器通过对信号进行小波变换来实现滤波效果。
在MATLAB 中,可以选择不同的小波基函数进行变换。
常用的小波基函数包括`haar`、`dbN`(N是小波基的阶数)、`coifN`、`symN`等。
这里以`haar`小波基为例。
matlabwaveletName = 'haar';第三步:进行小波变换使用`wavedec`函数进行小波变换,将信号分解为多个尺度的小波系数。
matlab[level1, level2, level3, level4] = wavedec(data, 4, waveletName);这里将信号分解为4个尺度的小波系数,分别存储在`level1`、`level2`、`level3`和`level4`变量中。
第四步:滤波在小波变换后,可以对小波系数进行滤波操作。
可以通过设定一个阈值,将小波系数中小于该阈值的部分设为0,从而达到去噪的效果。
matlabthreshold = 0.5;level1(filteredLevel1 < threshold) = 0;level2(filteredLevel2 < threshold) = 0;level3(filteredLevel3 < threshold) = 0;level4(filteredLevel4 < threshold) = 0;这里使用了一个阈值为0.5的例子,小于该阈值的小波系数将被设为0。
小波去噪matlab学习指令
MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。
ddencmp的调用格式有以下三种:(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X)函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。
输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。
返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。
函数thselect的调用格式如下:THR=thselect(X,TPTR);THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。
自适应阈值的选择规则包括以下四种:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。
*TPTR='heursure',使用启发式阈值选择。
*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。
阈值选择规则基于模型y = f(t) + e,e是高斯白噪声N(0,1)。
函数wbmpen的调用格式如下:THR=wbmpen(C,L,SIGMA,ALPHA);THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。
matlab中1维数据小波去噪
小波去噪是信号处理中常用的一种方法,在MATLAB中也有相应的函数可以实现小波去噪。
下面我们将介绍MATLAB中对1维数据进行小波去噪的具体过程。
1. 准备原始数据我们需要准备一维的原始数据,可以是来自传感器采集的数据,也可以是从文件中读取的数据。
在MATLAB中,可以使用load函数或者从其它数据源导入数据。
2. 选择小波基和分解层数在进行小波去噪之前,需要选择适合的小波基和分解层数。
MATLAB 中提供了丰富的小波基选择,包括Daubechies小波、Symlet小波、Coiflet小波等。
根据信号的特点和需要去除的噪声类型,选择合适的小波基和分解层数。
3. 进行小波分解使用MATLAB中的wavedec函数对原始数据进行小波分解。
该函数的调用形式为[C, L] = wavedec(X, N, wname),其中X为原始数据,N为分解层数,wname为小波基名称。
函数返回小波系数C和长度向量L。
4. 去除小波系数中的噪声根据小波分解得到的小波系数,可以利用MATLAB中的过滤函数对小波系数进行去噪。
常用的去噪方法包括阈值去噪、软硬阈值去噪等。
这些方法可以有效地去除信号中的噪声成分,得到干净的信号。
5. 重构信号经过去噪处理后,可以使用MATLAB中的waverec函数对去噪后的小波系数进行重构,得到去噪后的信号。
该函数的调用形式为X = waverec(C, L, wname),其中C为去噪后的小波系数,L为长度向量,wname为小波基名称。
6. 可视化和分析可以利用MATLAB中丰富的绘图函数对去噪前后的信号进行可视化比较,以及对去噪效果进行分析。
通过比较原始信号和去噪后的信号,可以直观地了解去噪效果,并进行进一步的分析和处理。
通过以上步骤,我们可以在MATLAB中对一维数据进行小波去噪处理,去除信号中的噪声成分,得到干净的信号。
小波去噪是一种简单而有效的信号处理方法,在实际应用中具有广泛的应用前景。
小波去噪matlab代码
小波去噪matlab代码以下是一段使用小波去噪的 Matlab 示例代码:% 载入待处理的信号,这里将代表信号命名为 Sload signal.mat% 将信号做小波变换,将小波变换结果保存在 A 中[C,L] = wavedec(S,4,'db4');A = wrcoef('a',C,L,'db4',4);% 计算小波图形的阈值,使用一个固定值或自适应阈值thr = 0.15; % 使用一个固定的阈值,可以根据实际情况调整% 定义阈值类型,默认使用定值阈值thresholdType = 's';% 根据阈值将 A 中的小波系数进行阈值处理switch thresholdTypecase 's' % 定值阈值A(abs(A) < thr) = 0;case 'h' % 硬阈值A = wthcoef('h',A,thr);case 's' % 软阈值A = wthcoef('s',A,thr);end% 将处理后的小波系数进行重构,得到去噪效果更好的信号S_denoise = waverec(A,L,'db4');% 显示原始信号和处理后的信号subplot(2,1,1)plot(S)title('Original Signal')subplot(2,1,2)plot(S_denoise)title('Denoised Signal')该代码载入一个信号,执行小波变换,然后使用固定阈值处理小波系数,最后通过逆小波变换方式重构信号。
在具体应用中,可以根据需要调整使用方法和阈值数值,以达到更好的去噪效果。
小波去噪MATLAB实现
第4章医学图像小波去噪的MATLAB实现4.1 小波基的确定不同的小波基具有不同的时频特征,用不同的小波基分析同一个问题会产生不同的结果,故小波分析在应用中便存在一个小波基或小波函数的选取和优化问题。
我们在应用中要把握小波函数的特征,根据应用需要,选择合适的小波基。
在小波分析应用中要考查小波函数或小波基的连续性、正交性、对称性、消失矩、线性相位、时频窗口的中心和半径以及时频窗的面积等,这些特征关系到如何选择合适的小波基。
本节选取了一些常见的小波基,首先固定小波分解层数和阈值,然后改变小波基,运行结果。
通过计算峰值信噪比(PSNR)来判定哪个小波基对医学图像去噪效果好。
下表为不同小波基去噪前带噪图像的峰值信噪比(PSNR)和去噪后图像的峰值信噪比(PSNR),通过峰值信噪比对不同小波基的去噪效果进行评价,从而选出对图像去噪效果较好的小波基。
表4-1 不同小波基去噪后图像的峰值信噪比通过去噪效果图4-1和表4-1以及图像评价原则我们可以很容易选出对图像去噪效果好,而又很好的保持图像细节的小波基。
从图4-1中我们可以看出选用sym3小波基去噪后噪声得到了明显的抑制,但是图像的细节被弱化了,读图有所影响。
选用sym5小波基去噪后,噪声没有得到很好的抑制,而且图像细节已明显消损,对读图有所影响。
选用coif2小波基对图像进行去噪后,噪声得到一定的抑制,图像的细节保持的也很好。
选用coif5小波基对图像去噪后,图像细节明显消损,对读图有所影响。
选用db2小波基对图像去噪后图像的噪声虽然得到抑制但细节变得模糊,很难辨别。
选用db6小波基对图像进行去噪后,图像失真比较明显。
从表4-1中可以看出去噪后图像的PSNR ,其中使用coif2小波基去噪后图像的PSNR最大,通常峰值信噪比PSNR愈大愈好。
实验结果如图4-1所示:原始图像 加噪图像图4-1 不同小波基去噪效果图综上所述,coif2小波基去噪效果很好,所以本次课程设计中我选择coif2小波基进行医学图像小波去噪方法研究。
小波变换去噪matlab源码
小波变换去噪matlab源码小波变换是一种广泛应用于信号处理和图像处理的技术。
它通过将信号分解成不同频率的子信号,从而提供了一种有效的降噪方法。
要在MATLAB中进行小波变换去噪,您可以使用MATLAB的信号处理工具箱中提供的函数。
下面是一个示例的MATLAB源代码,用于实现小波变换去噪:```MATLAB% 加载待处理的信号signal = load('input_signal.mat');% 设置小波函数和分解层数wavelet = 'db4'; % 使用 Daubechies 4 小波函数level = 5; % 设置分解层数% 执行小波变换[coefficients, levels] = wavedec(signal, level, wavelet);% 通过阈值处理降噪threshold = wthrmngr('dw2ddenoLVL', coefficients, levels);cleaned_coefficients = wthresh(coefficients, 'h', threshold);denoised_signal = waverec(cleaned_coefficients, levels, wavelet);% 显示和保存降噪后的信号plot(denoised_signal);save('denoised_signal.mat', 'denoised_signal');```这段代码首先加载了待处理的信号,然后定义了所使用的小波函数和分解层数。
接下来,它执行了小波变换,并通过阈值处理来降噪信号。
最后,代码显示了降噪后的信号,并将其保存到文件中。
值得注意的是,该示例中使用了默认的阈值选取方式(dw2ddenoLVL),您可以根据具体的应用场景选择适合的阈值选取方法。
以上是关于在MATLAB中使用小波变换进行信号去噪的简单示例代码。
matlab小波去噪详解超全超全有程序
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname')式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准.1)无偏似然估计(rigrsure)原则。
它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。
对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。
2)固定阈值(sqtwolog)原则。
固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。
3)启发式阈值(heursure)原则。
它是rigrsure原则和sqtwolog 原则的折中。
如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。
4)极值阈值(minimaxi)原则。
它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。
2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h).3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整.4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。
输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd].常见的几种小波:haar,db,sym,coif,bior用MATLAB对一语音信号进行小波分解,分别用强阈值,软阈值,默认阈植进行消噪处理。
复制内容到剪贴板代码:%装载采集的信号leleccum.matload leleccum;%=============================%将信号中第2000到第3450个采样点赋给sindx=2000:3450;s=leleccum(indx);%=============================%画出原始信号subplot(2,2,1);plot(s);title('原始信号');%=============================%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);%=============================%对信号进行强制性消噪处理并图示结果dd3=zeros(1,length(d3));dd2=zeros(1,length(d2));dd1=zeros(1,length(d1));c1=[a3 dd3 dd2 dd1];s1=waverec(c1,l,'db1');subplot(2,2,2);plot(s1);grid;title('强制消噪后的信号');%=============================%用默认阈值对信号进行消噪处理并图示结果%用ddencmp函数获得信号的默认阈值[thr,sorh,keepapp]=ddencmp('den','wv',s);s2=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp); subplot(2,2,3);plot(s2);grid;title('默认阈值消噪后的信号');%=============================%用给定的软阈值进行消噪处理sosoftd2=wthresh(d2,'s',1.823);softd3=wthresh(d3,'s',2.768);c2=[a3 softd3 softd2 softd1];s3=waverec(c2,l,'db1');subplot(2,2,4);plot(s3);grid;title('给定软阈值消噪后的信号');ftd1=wthresh(d1,'s',1.465);。
小波去噪matlab程序
小波去噪matlab程序
本文介绍了一种使用小波去噪图像的matlab程序,主要步骤如下:
(1)首先从图像获取原始数据,并转换为灰度图像;
(2)接下来进行小波变换,将灰度图片转换为小波系数矩阵;
(3)引入一种基于稀疏性表示的噪声检测剔除技术,从小波系数矩阵中提取出噪声数据;
(4)最后,用剔除噪声后的小波系数矩阵进行逆小波变换,可以得到去噪后的图像数据,这就是小波去噪后的图像。
为了进一步检测去噪技术的有效性,我们对去噪前后两种图像进行了PSNR(峰值信噪比)和SSIM(结构相似度)检测,结果发现,去噪后的图像的PSNR和SSIM都比去噪前的图像有显著的提升,这证明了小波去噪技术的有效性。
总之,本文介绍了一种基于小波去噪的图像处理方法,其所提供的解决方案可以很好地提高图像质量。
因此,小波去噪技术可以在实际应用中发挥重要作用。
matlab毕业编程【谷速软件】基于贝叶斯(BAYES)阈值的小波(WAVELET)图像去噪算法源代码
% Function to calculate Threshold for BayesShrinkfunction threshold=bayes(X,sigmahat)len=length(X);sigmay2=sum(X.^2)/len;sigmax=sqrt(max(sigmay2-sigmahat^2,0));if sigmax==0 threshold=max(abs(X));else threshold=sigmahat^2/sigmax;endfunction rmse=compare11(f1,f2,scale) %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error(nargchk(2,3,nargin));if nargin<3scale=1;end%%%%%%%%%%%%%%%%%compute the root mean square errore=double(f1)-double(f2);[m,n]=size(e);rmse=sqrt(sum(e(:).^2)/(m*n)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%if rmse%%%%%%%%%%%%%%%%%emax=max(abs(e(:)));[h,x]=hist(e(:),emax);if length(h)>=1%figure,bar(x,h,'k');%%%%%%%%%%%%%%%%%%%emax=emax/scale;e=mat2gray(e,[-emax, emax]);%figure;imshow(e);endend%% JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY%%%%clear;clc;clear all;close all;display(' ');display(' ');display(' ');display(' SOME EXPERIMENTS ON IMAGE DENOISING USING WAVELETS ');display(' ');display(' ');display(' RAJA RAO ');display(' ');display(' ');display('select the image');display(' 1:lena.png');display(' 2:barbara.png');display(' 3:boat.png');display(' 4:house.png');display(' 5:peppers256.png');display(' 6:cameraman.jpg');display(' ');display(' 7:hyderabad.png');display(' 8:friendgray.jpg');display(' ');ss1=input('enter your choice: ');switch ss1case 1f=imread('lena.png');%f=imread('babu.jpg');case 2f=imread('barbara.png');case 3f=imread('boat.png');case 4f=imread('house.png');case 5f=imread('peppers256.png');case 6f=imread('cameraman.jpg');case 7f=imread('hyderabad512.png');case 8f=imread('friendgray.jpg');endsubplot(2,2,1), imshow(f);title('original image');display('enter the type of noise:');display(' 1 for salt & pepper');display(' 2 for gaussian');display(' 3 for poisson');display(' 4 for speckle');ud=input('enter the value:');switch udcase 1display('enter the % of noise(Ex:0.2)');ud1=input('pls enter: ');g=imnoise(f,'salt & pepper',ud1);case 2%f=imread('peppers256.png');%subplot(2,2,1),imshow(f);display('enter the noise varience: ');va=input('enter between 0.01 to 0.09: ');g=imnoise(f,'gaussian',0,va);case 3% display('enter the % of noise(Ex:0.2)');%ud1=input('pls enter: ');g=imnoise(f,'poisson');case 4display('enter the varience of noise(Ex:0.02)');ud1=input('pls enter: ');g=imnoise(f,'speckle',ud1);end%g=imnoise(f,'salt & pepper',01);subplot(2,2,2),imshow(g);title('noisy image');%[ca,ch,cv,cd] = dwt2(g,'db2');%c=[ca ch;cv cd];%subplot(2,2,3),imshow(uint8(c));x=g;% Use wdencmp for image de-noising.% find default values (see ddencmp). [thr,sorh,keepapp] = ddencmp('den','wv',x); display('');display('select wavelet');display('enter 1 for haar wavelet');display('enter 2 for db2 wavelet');display('enter 3 for db4 wavelet');display('enter 4 for sym wavelet');display('enter 5 for sym wavelet');display('enter 6 for bior wavelet');display('enter 7 for bior wavelet');display('enter 8 for mexh wavelet'); display('enter 9 for coif wavelet'); display('enter 10 for meyr wavelet'); display('enter 11 for morl wavelet'); display('enter 12 for rbio wavelet'); display('press any key to quit');display('');ww=input('enter your choice: '); switch wwcase 1wv='haar';case 2wv='db2';case 3wv='db4' ;case 4wv='sym2'case 5wv='sym4';case 6wv='bior1.1';case 7wv='bior6.8';case 8wv='mexh';case 9wv='coif5';case 10wv='dmey';case 11wv='mor1';case 12wv='jpeg9.7';otherwisequit;enddisplay('');display('enter 1 for soft thresholding');display('enter 2 for hard thresholding');display('enter 3 for bayes soft thresholding');sorh=input('sorh: ');display('enter the level of decomposition');level=input(' enter 1 or 2 : ');switch sorhcase 1sorh='s';xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp);case 2sorh='h';xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp);case 3%%%%%%%%%%%%%%%%%%%%%% clear all;%close all;%clc;%Denoising using Bayes soft thresholding%Note: Figure window 1 displays the original image, fig 2 the noisy img%fig 3 denoised img by bayes soft thresholding%Reading the image%pic=imread('elaine','png');pic=f;%figure, imagesc(pic);colormap(gray);%Define the Noise Variance and adding Gaussian noise%While using 'imnoise' the pixel values(0 to 255) are converted to double in the range 0 to 1 %So variance also has to be suitably convertedsig=15;V=(sig/256)^2;npic=g;%npic=imnoise(pic,'gaussian',0,V);%figure, imagesc(npic);colormap(gray);%Define the type of wavelet(filterbank) used and the number of scales in the wavelet decomp filtertype=wv;levels=level;%Doing the wavelet decomposition[C,S]=wavedec2(npic,levels,filtertype);st=(S(1,1)^2)+1;bayesC=[C(1:st-1),zeros(1,length(st:1:length(C)))];var=length(C)-S(size(S,1)-1,1)^2+1;%Calculating sigmahatsigmahat=median(abs(C(var:length(C))))/0.6745;for jj=2:size(S,1)-1%for the H detail coefficientscoefh=C(st:st+S(jj,1)^2-1);thr=bayes(coefh,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefh,thr);st=st+S(jj,1)^2;% for the V detail coefficientscoefv=C(st:st+S(jj,1)^2-1);thr=bayes(coefv,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefv,thr);st=st+S(jj,1)^2;%for Diag detail coefficientscoefd=C(st:st+S(jj,1)^2-1);thr=bayes(coefd,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefd,thr);st=st+S(jj,1)^2;end%Reconstructing the image from the Bayes-thresholded wavelet coefficientsbayespic=waverec2(bayesC,S,filtertype);xd=bayespic;%Displaying the Bayes-denoised image%figure, imagesc(uint8(bayespic));colormap(gray);display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000');display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000'); display('Adaptive Wavelet Thresholding for Image Denoising and Compression');display('S. Grace Chang, Student Member, IEEE, Bin Yu, Senior Member, IEEE, and Martin Vetterli, Fellow, IEEE');%%%%%%%%%%%%%%%%%%%%%%%%%%end%sorh=sorh;% de-noise image using global thresholding option.%f=imread('peppers256.png');[c,s]=wavefast(g,level,wv);subplot(2,2,3),wave2gray(c,s,8);title('decomposed structure');subplot(2,2,4),xd=uint8(xd);imshow(xd);title('denoised image');%subplot(2,2,4),sub=f-xd;%sub=abs(1.2*sub);%imshow(im2uint8(sub));title('difference image');ff=im2double(f);xdd=im2double(xd);display(' ');display(' ');display('reference: To calcullate signal to noise ratio');display('Makoto Miyahara');display('"Objective Picture Quality Scale (PQS) for Image Coding"'); display('IEEE Trans. on Comm., Vol 46, No.9, 1998.');display(' ');display(' ');snr=wpsnr(ff,xdd)display(' ');display(' ');mse=compare11(ff,xdd)function op=sthresh(X,T);%A function to perform soft thresholding on a%given an input vector X with a given threshold T% S=sthresh(X,T);ind=find(abs(X)<=T);ind1=find(abs(X)>T);X(ind)=0;X(ind1)=sign(X(ind1)).*(abs(X(ind1))-T);op=X;。
小波去噪python实现
小波去噪python实现1. 小波变换简介小波变换是一种数学工具,它可以将信号分解成一系列小波函数的线性组合。
小波函数是一组具有局部时频特性的函数,它们可以很好地捕捉信号的局部变化。
小波变换可以用于信号去噪、信号分析、信号压缩等领域。
2. 小波去噪原理小波去噪的基本原理是将信号分解成小波函数的线性组合,然后去除噪声分量,最后重构信号。
小波去噪的步骤如下:1. 将信号分解成小波函数的线性组合。
2. 计算每个小波系数的阈值。
3. 将每个小波系数与阈值比较,如果小波系数的绝对值小于阈值,则将该小波系数置为0。
4. 将所有的小波系数重构为信号。
3. 小波去噪python实现pythonimport numpy as npimport pywtdef wavelet_denoising(signal, wavelet_name='db4', level=3, threshold='soft'):"""小波去噪参数:signal: 需要去噪的信号wavelet_name: 小波函数的名字,默认为'db4'level: 小波分解的层数,默认为3threshold: 阈值函数的名字,默认为'soft'返回:去噪后的信号"""小波分解coeffs = pywt.wavedec(signal, wavelet_name, level=level)计算阈值threshold_values = pywt.threshold(coeffs[0], np.std(coeffs[0]) / np.sqrt(len(coeffs[0])), threshold=threshold)将阈值应用于小波系数coeffs[0] = pywt.threshold(coeffs[0], threshold_values)重构信号reconstructed_signal = pywt.waverec(coeffs, wavelet_name)return reconstructed_signal4. 小波去噪python实现示例pythonimport numpy as npimport matplotlib.pyplot as plt生成信号signal = np.sin(2 np.pi 100 np.linspace(0, 1, 1000)) + 0.1np.random.randn(1000)小波去噪denoised_signal = wavelet_denoising(signal)绘制信号和去噪后的信号plt.plot(signal, label='Original signal')plt.plot(denoised_signal, label='Denoised signal') plt.legend()plt.show()。
小波去噪python代码
小波去噪python代码
小波去噪是一种常用的信号处理方法,在信号处理领域有着广泛的应用。
它可以有效地去除信号中的噪声,提高信号的质量和准确性。
在Python中,可以使用PyWavelets库来实现小波去噪。
以下是一个简单的小波去噪的Python代码示例:
```python
import pywt
import numpy as np
# 原始信号
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# 加入噪声
noise = np.random.normal(0, 0.4, len(x))
y = x + noise
# 小波去噪
threshold = pywt.threshold(y, np.std(y) / 2, 'soft') z = pywt.idwt(threshold[0], threshold[1], 'db4')
# 输出去噪后的信号
print(z)
```
在上面的示例中,我们首先生成了一个包含噪声的原始信号x,然后使用PyWavelets库中的pywt.threshold函数对信号进行小波去噪。
其中,第一个参数为噪声信号,第二个参数为阈值,第三
个参数为阈值类型。
在本例中,我们选择了软阈值去噪方式。
最后,我们使用PyWavelets库中的pywt.idwt函数对去噪后的信号进行重构,得到了一个去噪后的信号z。
需要注意的是,在实际应用中,需要根据具体情况选择适合的小波基函数和阈值。