数值计算方法上机实习题答案(最新整理)

合集下载

计算方法上机实习题

计算方法上机实习题

数值计算方法上机实习题1. 设⎰+=105dx xx I nn , (1) 由递推公式nI I n n 151+-=-,从0=0.1822I , 0=0.1823I 出发,计算20I ; (2) 20=0I ,20=10000I , 用nI I n n 51511+-=-,计算0I ;(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。

解:(1)程序如下: clear all clc I=0.1822; %题中的已知数据 for n=1:20; I=(-5)*I+1/n; %由递推公式所得 end fprintf('I20=%f\n',I) M=0.1823; %与I 的计算结果形成对比 for i=1:20; M=(-5)*M+1/i; %由递推公式所得 end fprintf('M20=%f\n',M) 输出结果为: I20=-11592559237.912731 M20=-2055816073.851284 (2)程序如下: clear all clc I=0; %赋予I20的初始值 for n=0:19; I=(-1/5)*I+1/(5*(20-n)); %有递推公式得 end fprintf('I0=%f\n',I) M=10000; for i=0:19; M=(-1/5)*M+1/(5*(20-i));%有递推公式得 end fprintf('M0=%f\n',M) 输出结果为: I0=0.182322 M0=0.182322(3)由输出结果可看出第一种算法为不稳定算法,第二中算法为稳定算法。

由于误差*000***21111120115(5)5()555nn n n n n n n n n e I I e I I I I I I e e e n n------=-=-=-+--+=-===第一种算法为正向迭代算法,每计算一步误差增长5倍,虽然所给的初始值很接近,随着n 的增大,误差也越来越大。

(完整版)数值计算方法上机实习题答案

(完整版)数值计算方法上机实习题答案

(完整版)数值计算⽅法上机实习题答案1.设?+=105dx xx I nn ,(1)由递推公式nI I n n 151+-=-,从0I 的⼏个近似值出发,计算20I ;解:易得:0I =ln6-ln5=0.1823, 程序为:I=0.182; for n=1:20I=(-5)*I+1/n; end I输出结果为:20I = -3.0666e+010 (2)粗糙估计20I ,⽤nI I n n 515111+-=--,计算0I ;因为 0095.056 0079.01020201020≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2120=+=I 程序为:I=0.0087; for n=1:20I=(-1/5)*I+1/(5*n); end I0I = 0.0083(3)分析结果的可靠性及产⽣此现象的原因(重点分析原因)。

⾸先分析两种递推式的误差;设第⼀递推式中开始时的误差为000I I E '-=,递推过程的舍⼊误差不计。

并记nn n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。

因为=20E 20020)5(I E >>-,所此递推式不可靠。

⽽在第⼆种递推式中n n E E E )51(5110-==-=Λ,误差在缩⼩,所以此递推式是可靠的。

出现以上运⾏结果的主要原因是在构造递推式过程中,考虑误差是否得到控制,即算法是否数值稳定。

2.求⽅程0210=-+x e x的近似根,要求41105-+?<-k k x x ,并⽐较计算量。

(1)在[0,1]上⽤⼆分法;程序:a=0;b=1.0;while abs(b-a)>5*1e-4 c=(b+a)/2;if exp(c)+10*c-2>0 b=c; else a=c; end end c结果:c =0.0903(2)取初值00=x ,并⽤迭代1021x k e x -=+;程序:x=0; a=1;while abs(x-a)>5*1e-4 a=x;x=(2-exp(x))/10; end x结果:x =0.0905(3)加速迭代的结果;程序:x=0; a=0;b=1;while abs(b-a)>5*1e-4 a=x;y=exp(x)+10*x-2; z=exp(y)+10*y-2;x=x-(y-x)^2/(z-2*y+x); b=x; end x结果:x =0.0995(4)取初值00=x ,并⽤⽜顿迭代法;程序:x=0; a=0;b=1;while abs(b-a)>5*1e-4 a=x;x=x-(exp(x)+10*x-2)/(exp(x)+10); b=x; end x结果: x =0.0905(5)分析绝对误差。

数值计算方法上机实习题NEW

数值计算方法上机实习题NEW

数值计算方法上机实习题1. 设⎰+=105dx x x I nn , (1) 由递推公式nI I n n 151+-=-,从0I 的几个近似值出发,计算20I ; (2) 粗糙估计20I ,用n I I n n 51511+-=-,计算0I ; (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。

2. 求方程0210=-+x e x 的近似根,要求41105-+⨯<-k k x x ,并比较计算量。

(1) 在[0,1]上用二分法;(2) 取初值00=x ,并用迭代1021x k e x -=+; (3) 加速迭代的结果;(4) 取初值00=x ,并用牛顿迭代法;(5) 分析绝对误差。

3.钢水包使用次数多以后,钢包的容积增大,数据如下:(注:增速减少,用何种模型) 4.设⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------------=410100141010014101101410010141001014A ,⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=625250b ,b x =A 分析下列迭代法的收敛性,并求42110-+≤-k k x x 的近似解及相应的迭代次数。

(1) JACOBI 迭代;(2) GAUSS-SEIDEL 迭代;(3) SOR 迭代(95.0,95.1,334.1=ω)。

5.用逆幂迭代法求⎪⎪⎪⎭⎫ ⎝⎛=111123136A 最接近于11的特征值和特征向量,准确到310-。

6.用经典R-K 方法求解初值问题(1)⎩⎨⎧-+-='++-='x x y y y x y y y sin 2cos 22sin 22212211,]10,0[∈x , ⎩⎨⎧==3)0(2)0(21y y ; (2)⎩⎨⎧-+-='++-='x x y y y x y y y sin 999cos 999999998sin 22212211,]10,0[∈x , ⎩⎨⎧==3)0(2)0(21y y 。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题和答案解析(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x x k k n k k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

上机数值计算练习题及答案.docx

上机数值计算练习题及答案.docx

习题31、在MATLAB 中,先运行指令A=magic(3), B=[l,2,l;3,4,3;5,6,7], C=reshape(l:6,3,2)生成阵列A 珂,B3X2,C3X2 ,然后根据运行结果回答以下问题:(1)计算A*B,B*A,这两个乘积相同吗?(2)计算A\B, B/A,左除、右除结果相同吗?(3)计算B(:,[1,2]).*C和C.*B(:, [1,2]),这两个乘积相同吗?(4)计算A\A和AAA,这两个计算结果相同吗?(5)计算A\eye(3)和inv(A),这两个计算结果相同吗?(提示:根据对计算结果的目测回答问题)解答如下:运行指令:A=magic(3), B=[l,2,l;3,4,3;5,6,7], C=reshape(l:6,3,2)得到结果:8 1 63 5 74 9 2B =1 2 13 4 35 6 7C =1 42 53 6(1)计算A*B,并得到结果如下:» A*Bans =41 56 5353 68 6741 56 45计算B*A, 并得到结果如下:»B*Aans =18 20 2248 50 5286 98 86从以上计算结果可以得出结论:A*BJ (2)计算A\B ,并得到结果如下:» A\Bans =0.0333 0.1000 0.16110.5333 0.6000 0.74440.0333 0.1000 -0.1722计算B/A, 并得到结果如下:B/Aans =0.0056 0.0889 0.17220.1389 0.2222 0.30560.2333 0.7333 0.2333 与B*A这两个乘积不同。

从以上计算结杲可以得出结论:左除、右除结杲不同。

(3)计算B(:,[1,2]).弋,并得到结果如下:A =» B(:,[1,2]).*C ans =1 8 6 20 15 36计算C.*B(:, [1,2]),并得到结果如下: » CFB(:, [1,2]) ans =1 6 20 15 36从以上计算结果可以得出结论:B(: J1,2]).*C 和C ・*B(:, [1,2])的两个乘积相同。

数值计算方法总结计划试卷试题集及答案

数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。

A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。

A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。

7.数值计算的主要目的是将_______问题转化为_______问题。

8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。

9.有限差分法的核心思想是将偏微分方程转化为_______方程。

10.牛顿法是一种_______方法,适用于求解非线性方程组。

三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。

()12.在数值计算中,误差只能通过增加计算精度来减小。

()13.迭代法求解线性方程组时,需要预先知道方程组的解。

()14.数值计算方法在实际应用中具有较高的可靠性。

()15.有限元法适用于求解所有类型的偏微分方程。

()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。

17.请简要介绍有限差分法的原理及应用。

18.请简要说明牛顿法求解非线性方程组的原理。

五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。

数值计算方法上机实习题考证

数值计算方法上机实习题考证

数值计算⽅法上机实习题考证--------------------------------------------------- 此⽂档包含我们计算⽅法的经典算法包含(数值计算⽅法上机实习题)1.设?+=105dx xx I nn ,(1)由递推公式n I I n n 151+-=-,从0I 的⼏个近似值出发,计算20I ;(2)粗糙估计20I ,⽤nI I n n 51511+-=-,计算0I ;(3)分析结果的可靠性及产⽣此现象的原因(重点分析原因)。

(1) 解答:n=0,0.1823)05ln()15ln()5(51515101010=+-+=++=+=+=x d xdx x dx x x I nn这⾥可以⽤for 循环,while 循环,根据个⼈喜好与习惯:for 循环程序: While 循环程序: I=0.1823; I=0.1823; for n=1:20 i=1;I=(-5)*I+1/n; while i<21 End I=(-5)*I+1/i; I i=i+1; fprintf('I20=%f',I) end I = -2.0558e+009 >> II20=-2055816073.851284>> I = -2.0558e+009 (2) 粗略估计I 20: Mathcad 计算结果: for 循环程序: While 循环程序: >> I=0.007998; I=0.007998; >> for n=1:20 n=1;I=(-0.2)*I+1/(5*n); while n<21End I=(-0.2)*I+1/(5*n); >> I n=n+1; I =0.0083 end >> II =0.0083(3) 算法误差分析:计算在递推过程中传递截断误差和舍⼊误差第⼀种算法:(从1——>20)1x x 205x +d 7.998103-?=*000e I I =-*115(5)5()555n n n n n n n n n n e I I I I I I e e e n n------=-=-+--+=-===误差放⼤了5n倍,算法稳定性很不好;第⼆种算法:(从20——>1)*n n ne I I =-***111111111()()555555n n n n n n nn e I I I I I I e n n ---=-=-+--+=-=0111...()55n ne e e ===误差在逐步缩⼩,算法趋近稳定,收敛。

数值计算方法答案

数值计算方法答案

数值计算方法答案(总71页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+ =210⨯ (2)+(+) 21(0.319710(0.245610))fl fl ≈⨯+⨯= 21(0.3197100.259110)fl ⨯+⨯=210⨯易见++=210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 1 2 3 4 5 6 7 8 9 10 y=
数值计算方法上机作业
热能工程
2.0000 1.5775 1.1802 0.2406 -0.7202 -0.9454 -0.2745 0.6589 0.9901 0.4124 -0.5440
3.0000 1.2758 -0.1457 -0.8903 -0.6170 0.2971 0.9652 0.7557 -0.1449 -0.9109 -0.8389
for n=1:20
I=(-1/5)*I+1/(5*n);
end
I
I 0 = 0.0083
(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。
首先分析两种递推式的误差;设第一递推式中开始时的误差为
E0
I0
I
0
,递推过程的舍入误差不计。
并记 En I n I n ,则有 En 5En1 (5)n E0 。因为 E20
数值计算方法上机作业
热能工程
1. 设 I n
1 xn dx ,
0 5 x
(1)
由递推公式 I n
5I n1
1 n ,从 I 0 的几个近似值出发,计算 I20 ;
解:易得: I0 ln6-ln5=0.1823,
程序为: I=0.182; for n=1:20
I=(-5)*I+1/n; end I
x0=y; y=lw*x0+f;n=n+1; end y n 以文件名 sor.m 保存。 程序: a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4]; b=[0 5 -2 5 -2 6]'; x0=[0 0 0 0 0 0]'; c=[1.334 1.95 0.95]; for i=1:3 w=c(i); sor(a,b,w,x0); end 运行结果分别为: y=
(1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4
c=(b+a)/2;
数值计算方法上机作业
if exp(c)+10*c-2>0 b=c;
else a=c; end end c 结果:c =
0.0903
(2)
取初值 x0
0 ,并用迭代 xk1
2 ex 10
数值计算方法上机作业
运行结果为: y=
1.0000 2.0000 1.0000 2.0000 1.0000 2.0000
热能工程
n=
28
(2) GAUSS-SEIDEL 迭代; 程序: function y=seidel(a,b,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); G=(D-L)\U; f=(D-L)\b; y=G*x0+f;n=1; while norm(y-x0)>10^(-4)
热能工程
特征向量: my =
0.3845 -1.0000 0.7306 6.用经典 R-K 方法求解初值问题
(1)
y1 y2
2 y1
y1
y2 2sin x 2 y2 2 cos x
2
sin
x

x
[0,10]

y1 y2
(0) (0)
2 3

程序:function ydot=lorenzeq(x,y) ydot=[-2*y(1)+y(2)+2*sin(x);y(1)-2*y(2)+2*cos(x)-2*sin(x)] 以文件民 lorenzeq.m 保存。 主窗口输入:[x,y]=ode45('lorenzeq',[0:10],[2;3]) 运行结果为: x=
x0=y; y=G*x0+f;n=n+1; end y n 以文件名 deisel.m 保存。 程序: a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4]; b=[0 5 -2 5 -2 6]'; x0=[0 0 0 0 0 0]'; jacobi(a,b,x0); 运行结果为: y=
1.0000 2.0000 1.0000 2.0000 1.0000 2.0000
n=
数值计算方法上机作业 13
热能工程
y=
1.0000 2.0000 1.0000 2.0000 1.0000 2.0000
n= 241
y=
1.0000 2.0000 1.0000 2.0000 1.0000 2.0000
b
设 y=f(x)具有指数形式 y ae x (a>0,b<0)。对此式两边取对数,得 ln y ln a b 1 。记 A=lna,B=b,
x
并引入新变量 z=lny,t=1/x。引入新变量后的数据表如下
x
2
3
4
5
6
7
t=1/x 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429
程序:
t=[0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769 0.0714 0.0667
0.0625];
z=[1.8594 2.1041 2.2597 2.2513 2.2721 2.3026 2.2956 2.3016 2.3504 2.3599 2.3609 2.3795 2.3609 2.3888
2.3758];
polyfit(t,z,1)
结果:
ans = -1.1107 2.4578
由此可得 A=2.4578,B=-1.1107, a e A 11.6791 ,b=B=-1.1107
1.1107
方程即为 y 11.6791e x
数值计算方法上机作业
热能工程
计算均方差编程: x=[2:16]; y=[6.42 8.2 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.8 10.6 10.9 10.76]; f(x)=11.6791*exp( -1.1107./x); c=0; for i=1:15
(2)
y1 y2
2 y1 y2 2 sin 998 y1 999 y2
x 999
cos
x
999
sin
x

x
[0,10]

y1 (0) y2 (0)
2 3

和精确解
y1
(
x)
y2 (x)
2e x 2e x
sin x cos x
比较,分析结论。
程序:function ydot=lorenzeq1(x,y)
输出结果为: I20 = -3.0666e+010
(2)
粗糙估计 I 20
,用 I n1
1 5
I n1
1 5n
,计算 I 0 ;
因为
0.0079
1 0
x 20 dx
6
I 20
1 0
x 20 dx 0.0095 5
所以取 I 20
1 (0.0079 0.0095) 2
0.0087
程序为:I=0.0087;
z=lny 1.8594 2.1041 2.2597 2.2513 2.2721 2.3026
8 0.1250 2.2956
9 0.1111 2.3016
10
11
12
13
14
15
16
0.1000 0.0909 0.0833 0.0769 0.0714 0.0667 0.0625
2.3504 2.3599 2.3609 2.3795 2.3609 2.3888 2.3758
fprintf(' x y(1) y1
%norm(v-v0)>ep k=k+1;
数值计算方法上机作业
q=v; u=v/norm(v,inf) v=B*u; v0=q; end mt=1/norm(v,inf)+p my=u 主界面中输入:A=[1 -2 -3]; maxtr(A,11,0.001) 结果为: 特征值: mt =
11.0919
a=y(i); b=x(i); c=c+(a-f(b))^2;
end averge=c/15 结果:averge =
0.0594
4 1 0 1 0 0
0
1 4 1 0 1 0
54.设A014
1
0
1

b
2

Ax
b
1 0 1 4 1 0
5
0 0
1 0
0 1
1 0
4 1
41
2 6
分析下列迭代法的收敛性,并求 xk1 xk 2 104 的近似解及相应的迭代次数。
1.0000 2.0000 1.0000 2.0000 1.0000 2.0000
数值计算方法上机作业
热能工程
n=
15
(3) SOR 迭代( 1.334, 1.95, 0.95 )。
程序: function y=sor(a,b,w,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); lw=(D-w*L)\((1-w)*D+w*U); f=(D-w*L)\b*w; y=lw*x0+f;n=1; while norm(y-x0)>10^(-4)
相关文档
最新文档