ADS仿真平行耦合微带线带通滤波器

合集下载

微带线带通滤波器的ADS设计

微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器1、微带带通微带线的基本知识微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。

微带线带通滤波器的电路结构的主要形式有5种:1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。

2、平行耦合微带线带通滤波器窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。

但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。

3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。

这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。

这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器5、半波长开路短截线滤波器下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。

2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。

整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。

关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。

但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计摘要:本文介绍了平行耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的方法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该方法的可行性和便捷性。

关键词: ADS; 微带线;带通滤波器;优化0 引言微带滤波器具有小型化、高性能、低成本等优点,在射频电路系统设计中得到广泛的应用。

其主要技术指标包括传输特性的插入损耗及回波损耗,通带内的相移与群时延,寄生通带等参数。

传统的设计方法是通过经验公式和查表来求得相关参数,方法繁琐且精度不高。

近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进入了一个全新的阶段。

借助CAD软件可以避开复杂的理论计算,进一步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。

本文通过ADS软件对平行耦合微带线带通滤波器进行优化仿真设计,证明了该方法的可行性和便捷性。

1微带带通滤波器的理论设计方法1.1 微带带通滤波器主要指标和基本设计思想微带滤波器的主要技术指标包括以下几个:(1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减;(2) 通带的输入电压驻波比;(3) 通带内的相移与群时延;(4) 寄生通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带一定处又产生了通带。

微波带通滤波器应用广泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本文以平行耦合微带线为例来设计微带带通滤波器。

由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, 而通过级连基本的带通滤波器单元则可以得到高性能的滤波效果。

图1所示是一种多节耦合微带线带通滤波器的结构示意图, 这种结构不要求对地连接, 因而结构简单, 易于实现, 这是一种应用广泛的滤波器。

整个电路可以印制在很薄(小于1mm) 的介质基片上; 其纵向尺寸虽和工作波长可以比拟, 但采用高介电常数的介质基片则可使线上的波长比自由空间缩小几倍; 此外, 整个微带电路元件共用一个接地板, 且只需由导体带条构成电路图形, 因而结构大为紧凑, 大大减小了其体积和重量。

基于ADS的微带线带通滤波器设计

基于ADS的微带线带通滤波器设计

基于ADS的微带线带通滤波器设计摘要:该文章讨论的是基于ADS软件的平行耦合微带线带通滤波器的设计过程。

利用集总参数低通原型滤波器经过一系列转化可以得到微带线带通滤波器的特性,运用传输线原理和导纳变换公式获得带通滤波器的相关参数,并借助功能强大的ADS软件对微带线带通滤波器的原理图和版图进行设计制作。

该软件只需要输入相应的原始数据,便可方便得到频率响应等相关特性。

我们也可以借助ADS软件对其进行优化仿真,以得到更加优质的带通滤波器。

关键词:带通滤波器;微带线;传输线;ADS1.引言随着近年来无线通信技术的迅猛发展,微波滤波器已经成为作为辨别分离有用和无用资源的重要部件,并大量使用于通信系统领域,其性能的优越直接影响整个通信系统的质量。

现代通信对微波滤波器的整体要求越来越高,以求得到更加微小化、轻量化、集成化的高性能低成本的滤波器。

本文设计运用微带滤波器印刷电路的方法,可以满足尺寸小、成本低且性能稳定的要求,被广泛运用于无线通信系统中。

目前在无线通信系统领域中,微波滤波器的种类日益增多,性能和设计方法各有差异。

但总体来看,微波滤波器的设计大都采用从集总参数的低通原型滤波器出发经过一系列变换得到的。

本章讨论的是平行耦合微带线带通滤波器的设计,它同样是基于集总参数低通原型滤波器出发,经过等效变换可以得到与带通滤波器相应的低通原型模型,再经过阻抗倒置变换或导纳变换便可以得到相应的带通滤波器的设计模型及相关参数。

本文首先介绍微带线带通滤波器的设计原理,然后根据基本原理推导出滤波器的相关参数,再运用ADS软件进行制作、优化和仿真,最后将完整的设计图纸和相关参数拿到工厂加工制成成品。

为了验证该微带线带通滤波器的设计和仿真的正确性,本文采用网络分析仪对该滤波器进行了相关测试,测试结果和仿真效果相吻合。

2.微带线带通滤波器的设计原理及设计过程根据滤波器综合理论,低通原型滤波器是设计其他滤波器的基础。

本文设计的带通滤波器同样是在低通原型滤波器的基础上经过变换得到的。

基于ADS的平行耦合微带带通滤波器的优化设计

基于ADS的平行耦合微带带通滤波器的优化设计

how o us D S o t ar t eA s f w e qui kl a c y nd f e i l m i r t i flerde i oc s e f ctvey c os rp it s gn pr es ;D esgn ptm i aton i o i z i ofpar am e er t s
i pr ve t c a y d t bi iy he de c m o he ac ur c an s a lt of t vi e.The m e hod of t a t c ngi t he pr c i ale nee i r ng s gn o i r t i f le s ha de i f m c os r p t r ve i
m e h ih he tadii nalde i eho notonl c i t odw t t r to s gn m t d, y an sgni c nty ed i f a l r ucet o kl he w r oad,s hor e he de i t n t sgn yce,a an c l nd c
的设计 流程 。
微 波 滤 波 器 是 微 波 系 统 中用 于 控 制 频 率 响 应 特 性 的 二
端 口 网 络 , 其 通 带 内 对 信 号 表 现 为 传 输 特 性 ,而 在 其 阻 带 在
内 表 现 为衰 减 特 性 。在 微 波 电路 系 统 中.滤 波 器 的 性 能 对 电
A D S- s d O ptm i e e i ba e i z d D s gn r le upl d i r t i ofPa a l lCo e M c os r p
Li a . ne B nd . pas le s Fit r

ADS仿真平行耦合微带线带通滤波器

ADS仿真平行耦合微带线带通滤波器

ADS仿真平行耦合微带线带通滤波器滤波器是用来分离不同频率信号的一种器件。

它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。

在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。

微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

1 基本原理当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。

如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

图1 5级耦合微带线带通滤波器2 设计步骤2. 1 设计低通原型根据带通滤波器的一系列参数通过频率变换和查表选择低通原型滤波器的归一化原型参量。

用ω1 和ω2 表示带通滤波器的下边界和上边界,ω0表示中心频率。

将带通滤波器变换为低通原型。

归一化带宽:查表得到归一化设计参数g1, g2. . . gN gN + 1。

2. 2 计算各节偶模和奇模的特性阻抗设计用g1, g2. . . gN gN + 1和BW 确定带通滤波器电路中的设计参数耦合传输线的奇模和偶模的特性阻抗:2. 3 计算微带线的几何尺寸根据微带线的偶模和奇模阻抗,按照给定的微带线路板的参数,使用ADS 中的微带线计算器L ineC alc计算得到微带线的几何尺寸W, S, L。

实验四微带线带通滤波器设计

实验四微带线带通滤波器设计

实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

1、滤波器的介绍滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。

射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。

滤波的性能指标:频率围:滤波器通过或截断信号的频率界限通带衰减:滤波器残存的反射以及滤波器元件的损耗引起阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带2、平行耦合微带线滤波器的理论当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。

平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。

当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。

如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

二、耦合微带线滤波器的设计的流程1、确定滤波器指标2、计算查表确定滤波器级数N3、确定标准滤波器参数4、计算传输线奇偶模特性阻抗5、计算微带线尺寸6、仿真7、优化再仿真得到波形图设计参数要求:(1)中心频率:2.4GHz;(2)相对带宽:9%;(3)带波纹:<0.5dB;(4)在频率1.9GHz和2.9GHz处,衰减>20dB;(5)输入输出阻抗:50Ω。

平行耦合微带线带通滤波器的设计仿真与测试

平行耦合微带线带通滤波器的设计仿真与测试

平行耦合微带线带通滤波器的设计仿真与测试作者:徐聪唐兴来源:《现代电子技术》2013年第23期摘要:在ADS软件的辅助下,设计出了一种应用于11 GHz频段数字微波传输系统室外单元,中心频率为11 GHz,带宽为1.5 GHz的平行耦合微带线带通滤波器,并进行了实物测试,测试的[S]参数与仿真优化结果及指标要求吻合较好。

关键字: ADS;平行耦合微带线;带通滤波器; [S]参数中图分类号: TN713⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)23⁃0078⁃03 Design simulation and measurement of the parallel coupled microstrip bandpass filterXU Cong, TANG Xing(Wuhan Research Institute of Posts and Telecommunications, Wuhan 430070, China)Abstract: With the aid of ADS (Advanced Design System), a parallel coupled microstrip bandpass filter is designed, which can be applied in ODU of digital microwave transmission system with 11 GHz frequency band. The centre frequency of the filter is 11 GHz, the bandwidth is 1.5 GHz. The object was tested and the performance of [S] parameter agree well with the results of the simulation optimization and the design indexes.Keywords: ADS; parallel coupled microstrip; bandpass filter; [S] parameter0 引言近年来,随着无线通信技术的高速发展,微波射频器件得到了越来越多的应用。

平行耦合微带线带通滤波器分析与设计

平行耦合微带线带通滤波器分析与设计

平行耦合微带线带通滤波器分析与设计刘新红【摘要】为了克服平行耦合微带线带通滤波器设计中存在的尺寸大、需要查表、优化困难等问题,提出了一种平行耦合微带线带通滤波器基于ADS软件的设计方法。

经过深入的理论分析发现,平行耦合线带通滤波器系统阻抗微带线非谐振单元,长度可尽量取短以减小电路尺寸;利用ADS软件自带滤波器设计工具可得到低通滤波器原型,省去了查表的麻烦;在版图优化上采用调谐方法比优化方法更有效。

仿真结果表明,所设计带通滤波器系统阻抗微带线为2.5 mm,中心频率5 GHz,相对带宽10%。

该方法在减小滤波器尺寸的同时没有降低滤波器性能,设计实现快速高效。

%In view of large size,table checking required and difficult optimization in the design of parallel coupled microstrip line bandpass filter,a design method of parallel coupled microstrip line bandpass filter based on ADS is proposed.Based on thorough theoret⁃ical analysis,it is found that the parallel coupled microstrip line bandpass filter system impedance microstrip line is not resonant,so the length can be as short as possible to reduce the circuit size.A prototype of a lowpass filter is obtained by using ADS software,eliminating the trouble of the look⁃up table;In the layout optimization,the tuning method is more effective than the optimization method.The simula⁃tion results show that the system impedance microstrip line is 2.5 mm long,the center frequency is 5GHz,and the relative bandwidth is 10%.This method can reduce the size of filter and not reduce the performance of the filter.The design and implementation of this method is fast and efficient.【期刊名称】《无线电工程》【年(卷),期】2016(046)002【总页数】6页(P52-57)【关键词】平行耦合微带线;带通滤波器;谐振器;插入损耗;回波损耗;ADS仿真【作者】刘新红【作者单位】北京信息职业技术学院,北京100015【正文语种】中文【中图分类】TN713.5AbstractIn view of large size,table checking required and difficult optimization in th e design of parallel coupled microstrip line bandpass filter,a design metho d of parallel coupled microstrip line bandpass filter based on ADS is propo sed.Based on thorough theoretical analysis,it is found that the parallel cou pled microstrip line bandpass filter system impedance microstrip line is not resonant,so the length can be as short as possible to reduce the circuit siz e.A prototype of a lowpass filter is obtained by using ADS software,elimina ting the trouble of the look-up table;In the layout optimization,the tuning method is more effective tha n the optimization method.The simulation results show that the system im pedance microstrip line is 2.5 mm long,the center frequency is 5 GHz,and t he relative bandwidth is 10%.This method can reduce the size of filter andnot reduce the performance of the filter.The design and implementation of this method is fast and efficient.Key wordsparallel coupled microstrip line;bandpass filter;resonator;insertion loss;retu rn loss;ADS simulation0 引言平行耦合微带线滤波器广泛应用于微波、无线通信射频前端和终端已有数十年。

基于ADS设计平行耦合微带线带通滤波器

基于ADS设计平行耦合微带线带通滤波器

基于ADS设计平行耦合微带线带通滤波器
梁荣江;曹栋
【期刊名称】《河海大学常州分校学报》
【年(卷),期】2007(21)4
【摘要】探讨频率对微带线带通滤波器的影响.通过分析平行耦合微带线带通滤波器的电路结构.提出了一种消除滤波器带宽偏离指定设计带宽和在截止频率附近缓和通带内电压驻波比波动过大的方法.在此基础上阐述了设计平行耦合微带线带通滤波器的流程以及相关参数的计算方法,最后基于ADS给出一个中心频率为10 CHz的滤波器的设计实例及其仿真分析结果,验证了此方法的正确性和可行性.【总页数】4页(P79-82)
【作者】梁荣江;曹栋
【作者单位】桂林电子科技大学,通信与信息工程系,广西,桂林,541004;河海大学,计算机及信息工程学院,江苏,常州,213022
【正文语种】中文
【中图分类】TN713.5
【相关文献】
1.平行耦合微带线超宽带带通滤波器设计 [J], 杜海明;乔幸帅;赵红梅
2.平行耦合式微带线带通滤波器的ADS辅助设计研究 [J], 邓建平;胡泽宾;赵惠昌
3.基于ADS的平行耦合微带线带通滤波器的设计及优化 [J], 张福洪;张振强;马佳佳
4.基于ADS简易设计及优化的平行耦合微带线带通滤波器 [J], 尹彩霞;刘小亚
5.平行耦合微带线带通滤波器分析与设计 [J], 刘新红
因版权原因,仅展示原文概要,查看原文内容请购买。

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计摘要:本文介绍了平行耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的方法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该方法的可行性和便捷性。

关键词: ADS; 微带线;带通滤波器;优化0 引言微带滤波器具有小型化、高性能、低成本等优点,在射频电路系统设计中得到广泛的应用。

其主要技术指标包括传输特性的插入损耗及回波损耗,通带内的相移与群时延,寄生通带等参数。

传统的设计方法是通过经验公式和查表来求得相关参数,方法繁琐且精度不高。

近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进入了一个全新的阶段。

借助CAD软件可以避开复杂的理论计算,进一步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。

本文通过ADS软件对平行耦合微带线带通滤波器进行优化仿真设计,证明了该方法的可行性和便捷性。

1微带带通滤波器的理论设计方法1.1 微带带通滤波器主要指标和基本设计思想微带滤波器的主要技术指标包括以下几个:(1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减;(2) 通带的输入电压驻波比;(3) 通带内的相移与群时延;(4) 寄生通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带一定处又产生了通带。

微波带通滤波器应用广泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本文以平行耦合微带线为例来设计微带带通滤波器。

由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, 而通过级连基本的带通滤波器单元则可以得到高性能的滤波效果。

图1所示是一种多节耦合微带线带通滤波器的结构示意图, 这种结构不要求对地连接, 因而结构简单, 易于实现, 这是一种应用广泛的滤波器。

整个电路可以印制在很薄(小于1mm) 的介质基片上; 其纵向尺寸虽和工作波长可以比拟, 但采用高介电常数的介质基片则可使线上的波长比自由空间缩小几倍; 此外, 整个微带电路元件共用一个接地板, 且只需由导体带条构成电路图形, 因而结构大为紧凑, 大大减小了其体积和重量。

利用ADS设计的平行耦合带通滤波器

利用ADS设计的平行耦合带通滤波器

利用ADS设计的平行耦合带通滤波器
引言
滤波器的基础是谐振电路,它是一个二端口网络,对通带内的频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。

微波带通滤波器在无线通信系统中起着至关重要的作用,尤其是在接收机前端。

滤波器性能的优劣直接影响到整个接收机性能的好坏,它不仅起到频带和信道选择的作用,而且还能滤除谐波,抑制杂散。

平行耦合微带线滤波器是一种分布参数滤波器,它是由微带线或耦合微带线组成,其具有重量轻、结构紧凑、价格低、可靠性高、性能稳定等优点,因此在微波集成电路中,它是一种被广为应用的带通滤波器。

在以往设计各种滤波器时,往往需要根据大量复杂的经验公式计算及查表来确定滤波器的各级参数,这样的方法不但复杂繁琐,而且所设计滤波器往往性能指标难以达到要求。

本文将先进的微波电路仿真软件ADS2008 与传统的设计方法相结合设计一个平行耦合微带线滤波器,并进行建模、仿真、优化设计。

平行耦合微带线带通滤波器
边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成,单个带通滤波器单元如图1(a)所示。

根据传输线理论及带通滤波器理论,带通滤波元件是由串臂上的谐振器和并臂上的谐振器来完成,但是在微带上实现相间的串联和并联谐振元件尤为困难,为此可采用倒置转换器将串并联电路转化为谐振元件全部串联或全部并联在线上。

因此,单个耦合微带滤波器单元能够等效成如图1 (b)所示的一个导纳倒置转换器和接在两边传输线段的组合。

这种单独耦合线节单元虽然具有典型的带通滤波器的特性,但是单个带。

基于ADS简易设计及优化的平行耦合微带线带通滤波器

基于ADS简易设计及优化的平行耦合微带线带通滤波器

+1
Z 0 ,奇 模 的特性 阻抗 为 Z 0 ,平 行耦合 微 带线 可 以构成
带通滤波器 ,这种 / 4 长平行耦合微 带线单元 ,虽然具有
△为 带通滤 波器 的相对 带宽 。根据微 带线 的奇模 、
偶模特性 阻抗 ,使用A D S 中的微带线计算器L i n e C a l c 计 算
2 . 2计算耦合微带线各节耦模和奇模的特性 阻抗
平行耦 合微带线各 节奇模特 性阻抗Z 0 和 耦模特性 阻
抗z 0 一 为[ ] :
1 平行耦合微带线带通滤波器设计基本原理
平 行耦合 微 带传 输线 是 由两 个无 屏蔽 的平行微 带传
输 线紧 靠在 一起构 成 ,当两个传 输线 之间 的 电磁场 相互
表 1奇 偶 模 特 性 阻 抗

整个微 波 电路系 统的设计 都具有 很大 的意 义 。本文 借助 查切 比雪夫 滤波器 元件 参数可 得标准 低通 滤波器 参 数g 1 , g 2 … g , g + 1 。
A D S 软件 能方 便地对平行耦合 微带线带通滤波 器 电路进行 原理图设计、仿真及优化 ,最后生成版 图。
2 0 d B ,输入输 出特性 阻抗为5 0 Q。
( 2 )微 带线 电路板 参数 如 下 [ s ] :微 带线 的基 板 厚
低 通滤 波器 的归一化 原型参量 。假 设下边频 为 ∞ ,上
・ 1 3 0・ 电 子 矗 | | 一
E L E C T R ONI C S WOR L D ・技 术 交 流
2 . 1 低通滤波器设计设计原型
根 据带通 滤波 器频率 变换和 设计 条件及 查表 ,选择
中心频率为2 . 2 G H z ,通带频率范围为2 . 1 G H z  ̄2 . 3 G H z ,

基于ADS的平行耦合线带通滤波器的优化设计

基于ADS的平行耦合线带通滤波器的优化设计
倒置转换器分为阻抗倒置转换器和导纳倒置转换 器两种 。两种转换器在本质上没有区别 ,本文以阻抗 倒置转换器为例 ,如图 3所示 。
图 3 阻抗倒置转换器
对于倒置转换器 ,有如下关系 :
Z in
= J2 Z0
(4)
式中 : Zin为输入端阻抗 ; Z0 为输出端阻抗 ,即负载端阻
抗。
可以看出 , Zin和 Z0 之间有一倒置关系 , Z0 越大 , 则 Zin越小 ; Z0 是容性 , Zin就是感性 。所以在微带上相 间的串联和并联上谐振元件通过倒置转换器来实现 。
在微带电路中可以用不同的方法来实现 J 元件 , 如平行耦合线 、电容间隙传输线 、λ/4传输线等 。本文
采用平行耦合线来实现 J 元件 。所以 ,图 3 有如图 4 所
图 4 耦合谐振带通滤波器
1. 3 平行耦合线带通滤波器参数的求解 对于平行耦合微带线滤波器 ,可以通过求出 Z0e ,
摘 要 :从归一化低通滤波器出发 ,阐述了平行耦合线带通滤波器的工作原理和设计过程 。给出 了一个中心频率在 C波段的带通滤波器设计实例 。根据给定的滤波器技术指标 ,确定滤波器类型 、结 构和最佳级数 。按照设计要求利用射频和微波设计软件 ADS (先进设计系统 )对带外抑制和插入损耗 进行优化设计 ,从而达到要求的插损 、带内波纹和理想的带外抑制特性 。给出了优化的结果仿真图 , 结果表明优化结果与设计要求一致 。
以分为最大平滑巴特沃斯 (B utterworth)滤波器和等波
纹切比雪夫 (Chebyshev)滤波器 ,这两种最为典型的滤
波器都适合用归一化滤波器设计 [ 3 ] 。它们的插入损
耗公式分别为 [ 1 ] :
L IB = 10 log ( 1 + a2Ω2N )

基于ADS的微带线带通滤波器设计

基于ADS的微带线带通滤波器设计

项目名称:基于ADS优化的微带带通滤波器设计一、实验目的(1) 了解低通滤波器、带通滤波器、高通滤波器等滤波器原理(2) 利用ADS2008 软件设计,以切比雪夫滤波器为原型,设计一种微带线带通滤波器。

二、实验设备(1) PC 机一台;(2) ADS2008 软件;三、实验内容和要求(1) 设计一个微带线带通滤波器,以切比雪夫低通滤波器为原型;(2) 中心频率:2G+学号*50MHz ;(2G+10*50MHz=2.5GHz )(3) 相对带宽:8%;(2.5GHz*8 %=200MHz )四、实验原理1. 滤波器原理滤波器的基础是谐振电路,它是一个二端口网络,对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。

典型的频率响应包括低通、高通、带通和带阻特性。

镜像参量法和插入损耗法是设计集总元件滤波器常用的方法。

对于微波应用,这种设计通常必须变更到由传输线段组成的分布元件。

Richard 变换和Kuroda 恒等关系提供了这个手段。

2. 微带线微带线(microstrip1ine) 是现在混合微波集成电路和单片微波集成电路使用最频繁的一种平面传输线。

它可用光科程序制作,且容易与其他无源微波电路和有源微波器件集成,从而实现微波部件和系统的集成化。

微带线是在金属化厚度为h 的介质基片的一面制作宽度为W ,厚度为t 的导体带,另一面作接地金属平板而构成的。

3. 耦合微带线当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称为耦合传输线。

耦合微带传输线由靠得很近的 3 个导体构成。

这种结构介质厚度为d,介质相对介电常数为η,,在介质的下面为公共导体接地板,在介质的上面为 2 个宽度为W、相距为S 的中心导体带。

五、实验步骤与结果1. 设定滤波器指标中心频率: 2.5GHz通带带宽:200MHz (2.4~2.6GHz )输入输出的阻抗:50Ω插入损耗:小于2dB阻带衰减:在距离中心频率300MHz 处的衰减大于50dB相对带宽:8%(表示信号带宽为0.2GHz)带内输入输出端口反射系数:小于-15dB4. 滤波器选用与微带线的计算2.dB 切比雪夫滤波器, 5 阶。

ADS平行耦合微带线带通滤波器仿真REV1.0

ADS平行耦合微带线带通滤波器仿真REV1.0

ADS平行耦合微带线带通滤波器的设计1.设计指标通带3.0~3.1GHz带内衰减小于2dB,起伏小于1dB截止频率2.8GHz和3.3GHz,衰减大于40dB端口反射系数小于-20dB2.设计原理图新建工程couplefilter_weidai,菜单File->New Project(命名Project)->New Schematic window新建一个名为“couplefilter_weidai”原理图并保存,如下图所示。

(注意:工程保存的目录不能含有中文)在“Tline-Microstrip”元器件面板列表中,选择控件并编辑其属性选择微带传输线控件选择耦合线控件路图。

这样完成了滤波器原理图基本结构,为了达到设计性能,还必须对滤波器中微带电路的电气参数和尺寸进行设置。

3.电路参数设置3.1 设置微带线参数MSUB3.2 滤波器两边的引出线是特性阻抗为50Ω的微带线,其物理尺寸可由ADS自带小软件LINECALC计算得到。

执行菜单命令【Tools】/【LineCalc】/【Start Linecalc】Substrate Parameters按照MSUB参数设置;中心频率Freq设置为:3.05GHz;Electrical设置Z0=50Ohm,E_Eff=90deg;Physical单位设置为:mm;点击Synthesize,综合出微带线宽度W=1.52mm L=13.63mm。

3.3 为了便于修改和优化,将微带线的长度和宽度用变量代替,考虑到平行耦合线滤波器的对称性,所以5个耦合线节中,第1节与第5节、第2节与第4节尺寸完全相同,按照下图参数进行设置(注意单位要选择mm)。

件。

把变量控件放置到原理图中。

双击变量控件,弹出变量设置对话框,在“Name”文本框中输入变量名称,“Variable Value”文本框中输入变量的初值,单击【Add】按钮添加变量,然后单击【Tune/Opt/Sat/DOE Setup…】按钮打开参数优化对话框设置变量的取值范围,选择“Optimation”标签页。

基于ADS的平行耦合滤波器的设计

基于ADS的平行耦合滤波器的设计

基于ADS的平行耦合滤波器的设计文中根据平行耦合微带线的原理,详细阐述了滤波器的设计步骤,利用此方法设计了通带为3.0-3.1GHz,带内波纹为3dB的平行耦合型滤波器,结合ADS 射频软件对所设计的滤波器进行了仿真及优化。

结果证明设计的滤波器满足设计指标的要求,效果良好。

标签:平行耦合;滤波器;ADS引言滤波器是一个二端口网络,其功能是用来消除干扰杂讯,得到一个特定频率或消除一个特定频率,滤波器是电路系统中一个必不可少的部分,当频率不高时,滤波器可以由集总元器件的电感和电容构成,但当频率高于500MHZ时,电路寄生参数的影响不可忽略,滤波器通常由分布参数元器件构成。

在射频系统中,由于频率过高,所以滤波器通常由分布参数元器件构成,所以人们对微波滤波器的研究越来越多,文章中所介绍的平行耦合型滤波器就是微波滤波器的一种,它具有体积小,质量轻,易于实现等优点。

1 平行耦合型滤波器原理平行耦合微带线就是有两根宽度为W,间距为S,长度为L的两根相互平行的微带线共同印制在一块介质层厚度为h,相对介电常数为?着r的接地板上。

图1为平行耦合微带线的横截面结构图。

平行耦合型微带线由于放置在公共接地板上,必然会产生耦合效应,致使它的传输模式不是TEM模,分析起来比较复杂,但是平行耦合微带线中传输模特性又与TEM模相差较小,所以我们可以看成TEM模式来处理,这样就可以使用奇偶模激励的分析方法对耦合微带线进行分析。

如此我们就可以通过下面的步骤设计平行耦合微带线滤波器。

2 平行耦合型滤波器设计步骤(1)根据工程需要的衰减和波纹参数,选定设计方法之后,确定低通原型的阶数,接着通过查对应的参数表得到低通滤波器原型的归一化参数,g0,g1,g2,gn,gn+1。

(2)确定上、下边频,然后根据上边频?棕1和下边频?棕2和及中心频率?棕0确定归一化带宽。

中心频率?棕0=(?棕1+?棕2)/2,归一化带宽BW=?棕1-?棕2/?棕0。

基于ads的平行耦合微带线带通滤波器的设计及优化

基于ads的平行耦合微带线带通滤波器的设计及优化

基于ads的平行耦合微带线带通滤波器的设计及优化平行耦合微带线带通滤波器是一种常用的微波滤波器。

它由多个耦合微带线和微带线构成,具有较好的带通特性和较小的插入损耗。

设计和优化这种滤波器通常采用ADS软件,下面分为两个部分进行详细解释。

1.设计部分(1)确定滤波器参数首先需要确定滤波器的工作频率范围、中心频率、通带和阻带带宽等参数。

这些参数可以根据具体应用需求进行确定。

(2)选择线路结构根据确定的滤波器参数,选择合适的线路结构。

常用的线路结构有串联、平行、串平联和并联等,平行耦合结构是实现带通滤波器较为常用的一种。

(3)确定线路尺寸确定线路结构后,需要根据工作频率、介质常数和板厚等参数,计算出每条线路的宽度和长度。

这里需要考虑线路的带宽和损耗等因素,通常采用求解电磁场分布的方法进行计算。

(4)设计耦合结构在平行耦合结构中,需要设计合适的耦合结构来实现合适的耦合强度。

常用的耦合结构有传输线耦合、缝隙耦合、开放环耦合等。

(5)确定滤波器连接方式根据线路结构和耦合结构的设计,确定滤波器的连接方式和序列。

这里需要考虑滤波器的带宽和衰减等因素。

2.优化部分滤波器的优化常常包括两个方面:性能优化和制造优化。

(1)性能优化针对滤波器的频率响应、损耗和抑制等性能,可以采用ADS软件提供的优化工具进行优化。

这里可以采用基于突变搜索和梯度搜索的不同优化算法,以达到滤波器尽可能优化的目的。

(2)制造优化制造优化主要是针对滤波器的制造工艺和工艺容差进行优化,以达到成本和生产效率方面的优化。

通常还需要考虑滤波器的布局、线宽度和间距等制造要素。

在整个设计和优化的过程中,需要进行仿真和测试,以验证滤波器的性能和有效性。

同时,需要充分考虑不同要素的交互影响和优化目标的平衡。

平行耦合线滤波器的设计

平行耦合线滤波器的设计

平行耦合线滤波器的设计摘要:通过ADS软件设计平行耦合线带通滤波器,并通过ADS优化控件优化滤波器电路参数,最后生成版图,并进行二维平面电磁场仿真,即Momentum 仿真。

关键词:滤波器S参数原理图设计优化设计Momentum仿真一、引言滤波器是模拟电路中最基本也是最常用的基本器件,在频率较低的模拟电路中,滤波器常用电感、电容等集总参数元件构成,在频率较高的电路中,滤波器则由一些不同长度和宽度的微带线组成,简称微带滤波器。

耦合微带线滤波器是最常用的微带滤波器,它由平行的耦合线节相连组成,构成谐振电路。

每一个耦合线节是左右对称的,长度约为四分之一波长(对中心频率而言)。

本文研究的耦合微带线滤波器为带通滤波器,通带3.0-3.1GHz,带内衰减小于2dB,2.8GHz 以下及3.3GHz以上衰减大于40dB,端口反射系数小于-20dB。

二、设计分析在进行设计时,主要是以滤波器的S参数作为优化目标进行优化仿真。

S21(S12)是传输参数,滤波器通带、阻带的位置以及衰减、起伏全都表现在S21(S12)随频率变化曲线的形状上。

S11(S22)参数是输入、输出端口的反射系数,由它可以换算出输入、输出端的电压驻波比。

如果反射系数过大,就会导致反射损耗增大,并且影响系统的前后级匹配,使系统性能下降。

三、原理图设计将滤波器节数定为5节,由于平行耦合线滤波器的结构是对称的,所以五个耦合线节中,第1、5及2、4节微带线长L、宽W和缝隙S的尺寸是相同的。

耦合线的这些参数是滤波器设计和优化的主要参数,因此要用变量代替,便于后面修改和优化。

滤波器两边的引出线是特性阻抗为50欧姆的微带线,它的宽度W可由微带线计算工具得到。

最后分别设置滤波器的尺寸参数和电气参数,得到的滤波器原理图。

四、优化设计当采用初始设定的参数时,滤波器的性能指标距设计要求相差很远,因此需要对滤波器的各个参数进行优化。

这里总共设置了四个优化目标,前三个的优化参数都是S21,用来设定滤波器的通带和阻带的频率范围及衰减情况(通带衰减小于2dB,阻带衰减大于40dB),最后一个的优化参数是S11,用来设定通带内的反射系数(反射系数小于-20dB)。

基于ADS仿真设计的微带带通滤波器

基于ADS仿真设计的微带带通滤波器

基于ADS仿真设计的微带带通滤波器引言在射频通信系统中,无论是发射机还是接收机,都需要选择特定频率的信号进行处理,滤除其他频率的干扰信号,这就需要使用滤波电路来分离有用信号和干扰信号。

因此,高性能的滤波器对设计一个好的射频通信系统具有重要意义。

微带电路由于体积小、重量轻、频带宽、易于与射频电路匹配等优点,近年来在滤波电路中得到了广泛的应用。

本文借助ADs2005a(AdvancedDesignsystem)仿真软件,设计出了一种边缘耦合的平行耦合线带通滤波器。

基本原理边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容,平行耦合线还需要考虑组合电容和电感。

每条微带线的特征阻抗为z0相互耦台的部分长度为L,微带线的宽度为w,微带之间的距离为s,偶模特征阻抗为乙,奇模特征阻抗为z0。

使用单个单元电路不能获得良好的频率特性,可以采用如图1所示的对称级联的方法获得良好的频率特性。

级联微带带通滤波电路的主要设计步骤如下:1 确定滤波器的参数:根据要一般来说,理论值的仿真结果和实际结果都有很大出入,需要进行优化。

可以使用Tune工具进行优化,或者采用Optim 工具。

观察最终的优化结果,直到达到设计要求。

设计过程设计要求中心频率为5GHz,带宽为8%,通带内的纹波为3dB,要求在5.3GHz处具有不小于30dB的衰减。

微带电路板参数如下:厚度1.27mm,介质相对介电常数为Er=9.8,相对磁导率为Mur=1,金属电导率Cond=(S/m),金属层厚度T=0.03mm,损耗正切角TanD=0,表面粗糙度Rough=0mm。

计算参数1.1.5.3GHz的归一化频率为Ω=1.476。

根据要求选择滤波器原型为3dB等纹波切比雪夫低通滤波电路,在Ω=1.476处,具有大于30dB的衰减,查表可知至少需要选择5阶滤波电路,本文即选择5阶滤波电路。

对应的归一化参数为:g0=1.0,g1=g5=3.4817,g2=g4=0.7618,g3=4.538,g6=10 2.通过计算可得奇模和偶模阻抗,如表1所示(单位Ω)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ADS仿真平行耦合微带线带通滤波器
滤波器是用来分离不同频率信号的一种器件。

它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。

在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。

微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

1 基本原理当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。

如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

图1 5级耦合微带线带通滤波器2 设计步骤2. 1 设计低通原型根据带通滤波器的一系列参数通过频率变换和查表选择低通原型滤波器的归一化原型参量。

用&omega;1 和&omega;2 表示带通滤波器的下边界和上边界,&omega;0表示中心频率。

将带通滤波器变换为低通原型。

归一化带宽:查表得到归一化设计参数g1, g2. . . gN gN + 1。

2. 2 计算各节偶模和奇模的特性阻抗设计用g1, g2. . . gN gN + 1和BW 确定带通滤波器电路中的设计参数耦合传输线的奇模和偶模的特性阻抗:2. 3 计算微带线的几何尺寸根据微带线的偶模和奇模阻抗,按照给定的微带线路板的参数,使用ADS 中的微带线计算器L ineC alc计算得到微带线的几何尺寸W, S, L。

2. 4 仿真及优化连接好电路,将计算出的W, S, L 输入,扫描参数为S11, S21,进行仿真。

一般来说用理论值的得到仿真结果和实际想要得到结果有出入,这就需要进行优化。

我们可以用ADS中的Opt im 工具来进行多次的优化直到达到预定的设计要求。

3 设计实例设计指标: 中心频率f 0 为2. 6 GHz,带宽200MH z,在f = 2. 8 GH z及2. 4 GHz上衰减不小于40 dB,通带内纹波3 dB,输入输出特性阻抗均为50 。

微带电路板的参数如下: 厚度H = 0. 4mm,介质相对介电常数为E r = 3. 66,相对磁导率为Mur= 1,金属层厚度T = 0. 03mm,损耗正切角TanD = 0。

根据设计的指标及式( 1) 我们选用n = 5 的3 dB纹波切比雪夫低通原型。

查表求得低通滤波器原型的原件取值为:g0 = g6 = 1, g1 = g5 = 3. 481 7, g2 = g4 = 0. 761 8,g3 = 4. 538 1由式( 3)得:计算平行耦合线的W, S, L,由ADS中的L ineC alc得到。

表1 各节耦合微带线的尺寸单位: mm 图2 ADS L inecalc模块。

将上述的结构尺寸输入ADS中并设置微带电路板的参数和S参数的频率扫描范围进行原理图仿真。

以下图3是理论计算值的仿真原理图,图4是仿真结果。

图3 微带线带通滤波器设计原理图。

图4 传输、反射系数仿真曲线图。

经过分析仿真结果出现了中心频率点偏移的,并且通带内的反射系数较大,在2. 4 GH z上衰减没有达到要求,因此需要对其进行优化。

优化时要注意: 耦合线的W, S, L 不要设为具体的值,而是要有各个变量来代替,因为这些参数就是优化的目标。

变量的设置要需要借助变量控件VAR来完成,在VAR中要设置合理的数据范围。

优化还需要Optim 控件和目标控件Goa,l 将Opt im 控件中的M axlters的值该为100,增加优化次数。

根据我们的设计要求设置四个Goal控件。

依次分别为: 优化通带内的S ( 2, 1)、优化通带内的S ( 1, 1) (优化通带内的反射系数)、优化低端阻带内的S ( 2, 1) (设定2. 4 GH z以下达到40 dB衰减)和优化高端阻带内的S ( 2, 1) (设定2. 8 GH z以上衰减达到40 dB)。

如果一次优化不能满足设计指标的要求,则需要再改变变量的取值范围,进行重新优化,直到满足要求为止。

图5为优化原理图,图6是优化后生成的仿真结果。

由图6 中可以看到f = 2. 6 GHz时, S ( 2,1) =- 0. 113 dB, f= 2. 8 GH z和f = 2. 4 GH z时衰减都大于40 dB,反射系数也比较
理想,各项基本满足设计要求。

微带滤波器的实际电路是由实际电路板和微带线构成的,实际电路的性能可能会与原理图仿真的结果会有很大的差别。

因此,需要在ADS中对版图进行进一步的仿真之后才能进行电路板的制作。

首先我们要生成版图,由优化后的原理图生成的版图。

接着我们对电路版图进行矩量法Momen tum 仿真,仿真结果如图8。

由图8可以看出版图仿真得到的曲线满足指标要求。

版图的仿真是采用矩量法直接对电磁场进行计算,考虑了实际因素,其结果比在原理图中仿真更加真实。

图5 微带线带通滤波器优化原理图图6 优化后的S 参数曲线图。

图7 微带版图。

图8 微带版图仿真曲线。

4 结论本文从耦合微带线的基本理论出发,完整的阐述一种利用ADS 来进行微带带通滤波器的设计方法,并设计出了一个达到预期的微带带通滤波器。

利用ADS软件可以大大减少工程师的工作量,并且能提高效率,降低成本。

相关文档
最新文档