无碳小车结构设计方案
无碳小车结构设计报告_4
无碳小车结构设计报告一、设计概述根据题目要求,为达到“8”字绕行的目的,无碳小车应实现两个功能:重力势能的转换和周期性的转向。
据此可以将小车分为驱动机构和转向机构两部分。
驱动机构要求能量损耗小、传动比准确,优先选用齿轮机构。
转向机构因为轨迹重复性要求高,采用齿轮和拉杆结合控制前轮转向来满足小车走周期性“8”字要求。
二、设计方案1.小车以钢板做的底板为主体,上面安装三根吊挂重物的立杆。
2.使用滑轮机构将重块的能量通过细绳以转矩的形式传递到输入轴。
3.输入轴通过一级齿轮传动将能量传到驱动轴,带动驱动轮并驱使小车向前运动。
4.输入轴转动一圈,带动转动的大齿轮转动四分之一,使与之啮合的小齿轮转动二分之一,用连杆机构链接,使前轮走了一个圆时实现转向,从而小车走了“8”字形运动。
三、相关计算驱动机构转向齿轮(控制方向)转向机构(控制周期)1主动轮2驱动轮3主动轮4从动轮传动比2.5:1传动比1:2 主要零件尺寸:前轮半径后轮半径驱动1半径驱动2半径转向3半径转向4半径转向1半径转向2半径5mm 50mm 35mm 14mm 35mm 14mm 30mm 30mm厚度为10mm 厚度为6mm 设为转角30度,两个障碍物的距离为300毫米:设为小车的轨迹半径为x,则150*150-75*75=16875,对其开方约得130毫米。
由此可知,小车的轨迹为3.14*2*130*2=1632.8毫米,车轮要转5圈,所以轴的周长为2毫米才能保证小车在理论上转了8圈。
四、整体装配图五、作品创意1.优化各零件布局,降低小车重心2.三根立杆防止小车运行中重块摞动3. 不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率高、结构简单。
在不考虑其它条件时这是最优的方式。
4.曲柄连杆面积所受压力较小,且面接触便于润滑,故磨损减小,制造方便,已获得较高精度;两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触5.小车机构简单,单级齿轮传动,损耗能量少六、心得与体会在设计无碳小车的环节中,我们在此过程当中反复探索、不断前进。
无碳小车—结构设计方案5页
㈠无碳小车设计思路根据本届竞赛题目对无碳小车(以下简称:小车)功能设计、徽标设计的要求,我们首先确定如下的设计思路:1、根据能量守恒定律,物块下落的重力势能直接转化为小车前进的动能时,能量损失最少,所以小车前进能量来源直接由重物下落过程中减少的重力势能提供为宜。
2、根据小车功能设计要求(小车在前行时能够自动避开赛道上设置的障碍物),小车前进的路线具有一定的周期性;考虑到小车转向时速度有损失,小车前进的线路是命题设计要求的最优解。
3、结构的设计与成本分析、加工工艺设计统筹考虑,力求产品的最优化设计。
4、徽标反映本届竞赛主题:无碳小车㈡无碳小车设计方案以下是具体的设计方案介绍:一、徽标设计(图1)图1(1)设计说明:整个徽标是一个椭圆形的圈,包围着一个车轮,车轮下面写着“No Carbon”的字样。
其中,车轮代表着我们所做的无碳小车。
其后面是由众多抽象的“S”形条纹组成,代表着我们的无碳小车由所要求的“S”形跑到飞驰而出。
其下的“No Carbon”字样简单明了地说明了这届大赛的主题,并且外面的椭圆圈,代表着能量的意识,说明了势能与动能相互转换的过程。
最后,以整体上看,整个图形像一只眼睛。
看着远方,对未来全球实现无碳充满希望。
(2)材料:45钢(3)制作:激光打标机喷漆外圈红色R:255 G:0 B:0 内圈红色R:170 G:0 B:0 “No”R:85 G:85 :B::85 “Carbon”R:170 G:0 B:0车轮R:255 G:85 B:85 “S”R:255 G:85~170 B:0~85二、小车动力、动力—转向、转向系统1、小车的动力系统(图2)(1)方案:根据竞赛命题要求(小车前行过程中完成的所有动作所需的能量均重物损失最少,所以以绳拉力为动力为宜。
拉力作用于锥型原动轮(以下简称:原动轮)上,形成力矩,力矩对该原动轮产生转动效应,通过一系列齿轮的传动,将动力输出,使后轮转动,小车前进。
无碳小车设计文档
无碳小车机构设计方案一:设计目标:1:重力势能最大限度的转化为小车的动能;2:小车能够自动的转向绕开障碍物;3:行驶的距离最大化;二:设计思路:1:小车的动力来自于重物下落的重力势能。
用皮带将重物与驱动轮轴连接,通过重物下降使皮带带动后轮轴旋转,从而实现小车的运动。
然而重物下落不可避免的要与小车碰撞从而造成能量损失。
为使重力势能最大限度转化为动能(重物与小车碰撞时速度最小或为零),则需要重物的下降过程是静止——加速——匀速——减速——静止。
而这样的过程要通过改变主动力矩实现。
具体是通过一根大小合适的锥形轴,改变动力线缠绕的半径。
从而改变主动力矩,使其与摩擦阻力矩之间的大小发生转变。
2:要使小车自动转弯,首先需要将后轮的运动传递给转向机构,其次需要设计一套装置利用后轮传递过来的运动实现前轮的偏转与还原。
最后为达到有规律的自动转弯,需进行运动参数计算,得到行驶路线图,通过小车行驶一个周期的距离前轮偏转两次,设定传动比,设定转向部件尺寸与安装位置。
3:行驶距离最大化,是需要各种其他损失最小化。
可以让小车的路线为直线——曲线——直线,即通过一个装置使小车在需要转向时转向并快速回复直线行驶,以避免曲线行驶造成的能量消耗。
也可以在小车结构尺寸设计时在满足其它条件后尽量减小尺寸,从而减小小车的重力和阻力。
三:详细设计方案1)小车结构尺寸如图所示2)机构分析1:动力机构:后轮的主运动通过缠绕在锥形轴上的皮带带动,当重物下降,带动皮带运动,皮带带动轴即后轮运动。
由于皮带缠绕在半径大小不等的锥形轴上,在起始时转动半径较大,启动转矩大,有利于启动。
启动后,转动半径开始减小(随缠绕的锥形轴半径减小),转速提高,转矩变小,和阻力平衡后小车匀速运动。
当重物距小车很近时,转径再次变小,皮带的拉力不足以使主动轴转动,但由于惯性,重物减速下降,直至与小车接触,此时重物速度很小或为零。
2:传动机构:后轮上通过键连接一个齿轮,模数为1,齿数17,然后与另一根轴(过渡轴)上齿数51的齿轮啮合,实现了一级传动比i=3,然后同一根轴上的另一模数为1,齿数17的齿轮被轴带动,它和第三根轴(转向动力轴)上齿数为68的齿轮啮合,实现了二级传动比i=4。
无碳小车方案设计
辅助机构
为了保证小车的正常 运行,避免中途停车,在 设计时必须对传动比取一 定的安全系数,这样就造 成小车的速度会越来越快 。这就存在小车因速度过 快而发生运动精确度降低 的危险。所以就需要一种 小车限速装置。
由于计算精度、加工精 度、场地限制等诸多因素的 影响,小车在成型后必须有 一套完善且尽可能简单的调 整辅助机构。
偏心线轮 非圆齿轮 偏心轮同步带
如何实现两个驱动轮的
几种非匀速比传动机构
偏心线轮 非圆齿轮 偏心轮同步带
如何实现两个驱动轮的
几种非匀速比传动机构
偏心线轮 非圆齿轮 偏心轮同步带
如何实现两个驱动轮的
如何解决同步带松动问题
1 装配间隙利用
2
弹簧张紧
3 偏心轮(凸轮)张紧
装配间隙利用
弹簧张紧
先设轨迹为一条类似正弦 曲线的平滑周期函数曲线
车体转动加速度 (其中的K表示车轮半径)
设初始位置小车中轴 线与轨迹图象x轴夹角 θ0,小车经过时间t 后转过角度Δθ,小 车驱动轴中点速度v。
行驶轨迹计算
积分方程组
∫Ωdt=Δθ
Vx=v cosθ Vy=v sinθ
X=∫Vxdt Y=∫Vydt θ0=dy/dx│t=0
偏心轮(凸轮)张紧
最终确定方案-------弹簧张紧
非匀速比传动相关计算
传动比的计算
传动比的计算
设轴距为L,偏心轮半径R,从动轮 半径r,偏心轮偏心距e、转速为ω ;时间t=0时两轮圆心距最大,偏心 轮顺时针转动。 则从动轮转速ω'=
转速比函数图象
小车行驶轨迹计算
设轴中点转弯半径R转,轮距d,左侧轮速度vl,右侧轮速 度vr。则有R转=
以离心离合器刹车和各个 调整机构为辅助
无碳小车最优设计方案
一.车架不用承受很大的力,精度要求低。
二.原动机构的作用是将重块的重力势能转化为小车的驱动力。
能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。
小车对原动机构还有其它的具体要求。
1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
2.到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。
同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。
3.由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。
在调试时也不知道多大的驱动力恰到好处。
因此原动机构还需要能根据不同的需要调整其驱动力。
三.转向机构直接决定着小车的功能。
转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。
能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。
我们选择曲柄连杆+摇杆优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小,制造方便,已获得较高精度;两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。
缺点:一般情况下只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律对制造、安装误差的敏感性增加;机构中做平面复杂运动和作往复运动的构件所长生的惯性力难以平衡,在高速时将引起较大的振动和动载荷,故连杆机构常用于速度较低的场合。
四.行走机构即为三个轮子,轮子越大小车受到的阻力越小,因此能够走的更远。
由于小车是沿着曲线前进的,后轮必定会产生差速。
对于后轮可以采用双轮同步驱动,双轮差速驱动,单轮驱动。
双轮同步驱动必定有轮子会与地面打滑,由于滑动摩擦远比滚动摩擦大会损失大量能量,同时小车前进受到过多的约束,无法确定其轨迹,不能够有效避免碰到障碍。
S无碳小车结构方案
“S”无碳小车结构方案一、设计思路1.根据能量守恒定律,物块下落的时能直接转化为小车的动能,推动小车前进,此时势能的损失最小,故小车前进的动能应有物块的势能直接转化。
2.设计要求小车有自动避障的功能,小车的前进路线呈中周期性变化,但是当小车转向时速度有损失,故其前进路线需要通过精确计算得到.3.需要对小车的结构进行分析,综合考虑小车的加工工艺,成本,使得到的产品设计合理。
4.在设计的时候需要尽量减轻整车的质量,对小车进行受力分析,保证其行驶过程中运动平稳。
5.小车功能设计要求设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换来的。
给定重力势能为4焦耳(取g=10m/s2),比赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。
如右图所示:6.小车设计要求(1)要求小车行走过程中完成所有动作所需的能量均由此重力势能转换获得,不可使用任何其他的能量来源。
(2)要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
(3)要求小车为三轮结构(4)小车有效的绕障方法为:小车从赛道一侧越过一个障碍后,整体穿过赛道中线且障碍物不被撞倒(擦碰障碍,但没碰倒者,视为通过);重复上述动作,直至小车停止。
二、小车出发定位方案通过对小车的功能分析,小车需要完成自动避开障碍物,驱动自身行走,重力势能的转换功能。
所以我们将小车的设计分为以下部分,路径的选择,自动转向装置,能量转换装置和车架部分。
小车在运动中,其运动轨迹简化为余弦曲线图像,通过小车的传动比以及转向装置曲柄的长度计算出余弦曲线的幅值,将小车放置于幅值处。
将障碍物的方向定为Y轴,X 轴在水平面垂直于Y轴,画出小车前进路线轨迹,将障碍物在轨迹图中,找到能通过的位置,量取此时Y轴与小车出发的幅值处即为小车出发点。
S型无碳小车设计
3 构造设计及参数选择
完毕多种零件旳装配后得到了无碳小车旳完整装配图
3 构造设计及参数选择
完毕多种零件旳装配后得到了无碳小车旳完整装配图
4 仿真成果
在完毕整体装配图旳环境下,单击左下角旳运动算例,把动画模拟时间轴拉到20秒旳位置。 在无碳小车装配体中,单击虚拟马达,弹出马达类型对话窗,选择旋转马达,然后单击绳轮 面,为绳轮轴添加一种虚拟马达。虚拟马达模拟重锤下落时牵动绳子带动绳索转动旳情况, 设定虚拟马达旳转速为30r/min。 然后按下从头播放动画,观察小车齿轮、车轮、凹槽轮、拨杆运动情况。输出动画成果,对 成果进行分析。 对于建立旳无碳小车,在没有考虑其他摩擦力、阻力、能量损失旳情况下,加人虚拟马达模 拟运动时,绳轮能带动轴旳转动,引起齿轮2旳转动,齿轮2又带动齿轮1、齿轮3旳转动。当 车轮转过1.5圈时,凹槽轮刚好转过0.5圈,阐明齿轮1、齿轮2、齿轮3在齿数设计上符合拟定 旳运动轨迹转向要求。 对于转向机构旳设计,凹槽轮转动时,拨杆球面与凹槽面相切运动,伴随凹槽旳变化,拨杆 也能伴随凹槽途径变化,引起转向轴旳变化,带动前轮转动。阐明设计旳这种转向机构有一 定旳实用性,能够带动小车有规律旳转向。同理能够经过边凹槽轮上旳凹槽途径,设定出特 定规律旳途径,让无碳小车沿不同特定规律路线行走。例如走“8”字型、“0”路线。
谢谢观看
无碳小车
12/8/2023 023-12-8
课题内容
1
整体设计思绪
2
目录
4
仿真成果
3
构造设计及 参数选择
1 课题内容
本课题围绕主题:基于SolidWorks下无碳小车旳设计及模拟仿真,设计一种无碳小 车,根据能量转换原理,驱动小车运动旳能量是给定重力旳重锤下落旳势能转换来旳 机械能让其行走及转向旳。给定重力势能为4焦耳(取g=10m/s2),用质量为1Kg旳 重块(¢50×65 mm,一般碳钢)铅锤下降来取得,落差400±2mm,重块落下后, 能和小车一起运动并被小车承载,防止铅垂从小车上掉落。图1-1为小车示意图。
无碳小车设计
无碳小车设计方案
(机械工程学院工业工程10-1 王康王恒斌胡中王)
1、总体方案设计
方案一
1)构架部分
小车采用三轮结构采用(一个转向,两个驱动);
重物落差0.5米物重1kg;
图1
2)转向部分
转向机构与驱动轴相连;
通过凸轮作用前轮转向;
计算传动机构使小车每行驶2000mm转向轮摆动一个周期;
通过计算凸轮的形状,尽量减小转向轮的摆动角度,到达小车绕过更多障碍的目的;
图2
3)驱动
采用卷簧储能,绳子的拉力带动绳轮转动,将能量储存在卷簧上;
重物在下落的过程当中小车不行走,待重物落在小车上后,小车在卷簧的作用下行走,保证小车行走平稳;
采用齿轮传动,并设计单向离合结构,保证在卷簧能量释放完后小车能凭借惯性继续前行,又能避免卷簧反向储能;
方案二
1)构架部分
小车采用三轮结构采用(一个转向,两个驱动);
重物落差0.5米物重1kg;
2)转向部分
小车采用偏心轮(偏心轮由驱动轴通过带传动驱动)带动前轮转向杆实现转向,偏心轮与前轮转向杆采用柔性绳连接。
3)驱动
采用绳轮驱动驱动轴,绳子一端绕在绳轮上,另外一端连在重物上,重物下落通过绳子带动绳轮转动,实现驱动。
图3
3、结构设计见图纸
方案一装配图、零件图
方案二装配图、零件图。
《无碳小车设计说明》-公开课件
·在整个过程中,重力势能完 全转换为小车运动过程的损
耗。使小车行进的更远.
4.细节设计
· 车身 · 车轮 · 轴承 以减小小车重力和动过程
· 传输功率=转矩X角速度 ,通过一系列的齿 轮,带轮,转轴产生转速比,使作用在后 轮的转矩和阻尼转矩平衡,物块低速匀速 下落。
· 在后轮转轴上安放多个不同半径的带轮, 微调转矩,适应不同的环境下阻力的不同。
· 制作多套后轮,微调转矩。改变后轮时, 也要相应的改变转向传动轮的大小,同时 保持车身水平,适当调整前轮转轴的长度。 (现场可实现)
无碳小车设计说明
· 构架 · 转向部分 · 驱动部分 · 细节说明
1.构架部分
· 小车采用三轮结构(1个转向,2个驱动) · 重物落差0.5米物重1kg.
2.转向
· 转向机构与驱动轴相连
· 小车的转向轮周期性的摆动
· 计算传动机构,使小车行使200厘米时,转 向轮摆动一个周期。
· 确定连杆在转盘有位置,尽量减小转向轮 的摆动角度,从而使小车先驱的实际距离 变大。确定初始位置与摆轮角度的关系。
3.驱动
· 原理:绳拉力为动力。将物块下落的势能 尽可能多的转换为小车的动能,进而克服 阻力做功。物块在下落的过程中不可避免 的要与小车发生碰撞,碰撞过程必然要有 能量损失,所以要解决的问题:1下降过程 中,尽可能的降低下落的速度;2在将要下 降到小车时,改变转速比,使物块减速下 落,进一步减少碰撞损耗。
·
二、小车的起始和结束过程
· 梯形原动轮的设计实现小车的起 动和物块的从低速到减速下落。 减小因碰撞而损失的能量。
梯形原动轮
无碳小车型设计方案
无碳小车型设计方案无碳小车型设计方案随着环保意识的不断增强,低碳环保已成为现代社会的一个重要趋势。
汽车作为人们日常生活中不可或缺的交通工具,其碳排放一直是环保问题的热点之一。
因此,设计一种无碳小车型,成为当代社会亟待解决的问题。
1.设计方案本设计方案的无碳小车型,主要特点是使用太阳能充电,具有零排放、低噪音、节能环保等特点。
其主要结构由车身、底盘、动力系统和控制系统四部分组合构成。
1.1 车身设计无碳小车采用轻量化车身结构,采用纤维复合材料制作,同时采用非常规的车身设计,使车辆在运动中可以最大限度地降低气动阻力,并且在车辆停车时可以更好地利用太阳能电池板进行充电。
1.2 底盘设计车辆底盘采用铝合金结构,以减轻车辆整体重量。
同时,车辆底盘也要具备良好的稳定性和强度,以保障整车的运行安全。
在设计中还要充分考虑悬挂系统和制动系统的设计,保证车辆在高速行驶、行驶过程中的平稳性和安全性。
1.3 动力系统设计车辆使用太阳能电池板为主要动力源。
使用最新的环保电池,进行技术创新和优化升级,做到电池匹配合理,能够最大限度延长车辆的使用寿命和续航里程。
1.4 控制系统设计车辆采用先进的控制系统,实现动力系统的电力调度,同时实现对车辆动力的精确调整和管理,通过车载气压传感器、温度传感器等进行实时监控,保证车辆在各种工作状态下高效、稳定、安全地运行。
同时在车载系统中配备智能导航系统、语音控制系统等,方便驾驶者使用。
2.实施方案建立一个以太阳能充电为主要能源的无碳小车型生产工厂,采用纳米技术、智能化技术、智能制造技术以及信息技术等现代先进技术手段,同时采用ISO9000质量管理体系和ISO14000环境管理体系,制定严格的标准和流程控制,以保证车辆质量和安全性。
其中,生产工厂将建立一个以能源开发、生产、运输、存储、销售及售后服务为一体的动力系统实验室,以保障太阳能动力系统的稳定性和可靠性,为市场提供优质的产品和服务。
另外,在无碳小车型的使用过程中,需要建立完善的充电站网络,通过互联网与车辆控制系统进行连接,实现自动化充电,方便车主使用。
无碳小车8型设计方案
无碳小车8型设计方案无碳小车基本上有以下几个部分构成:驱动、转向机构、车身和载物架部分。
以下是小编整理的无碳小车8型设计方案,欢迎阅读。
一、小车设计:1.工作原理给定1kg的重块在400mm的高度落下来,由重力势能转化成小车前进的动能,同时利用转向装置实现小车按8字形曲线(近似看作)绕桩前进,桩距400mm。
当重物下落时,其所带的绳子带动绕线轴转动,带动与绕线轴同轴的主动齿轮Z1与Z3转动,Z1又带动前面的与前轮同轴的从动齿轮Z2转动,驱动小车前进。
主动齿轮Z3带动后面的齿轮曲柄转动,而曲柄带动摇杆推动后轮左右摆动!2.动力装置传动的选择及其原理:重物下落采取连线方式,在杆顶部装一个定滑轮,因为这样可以改变力的方向,当重块下落时连线使所绕的绕线轴转动,从而带动主动齿轮转动,进而实现小车前进和转弯.3.转向装置(1)转向装置的选择:选择采用空间曲柄摇杆机构来实现转向,其原理是利用曲柄摇杆机构曲柄转一圈,摇杆带动连杆做前后运动,使车轮偏转一定角度,从而实现车轮的转向,完成指定路线的运动。
(2)车**能的选择:因考虑小车走8字形需要更高的稳定*,本方案采用前轮驱动、后轮转向!前轮驱动比后轮驱动更加稳定,驱动力更加平衡。
本小车采用后轮转向,这样可以避免两后轮同轴,实现两轮差速,所以在转8字形大弯的时候可以避免后轮打滑导致能量损失和轨迹变形。
综合考虑之后我们确定前轮驱动后轮转向。
(3)工作原理:绕线轴与转向装置之间用齿轮联动,在从动齿轮上钻孔,安装曲柄。
从动齿轮转一圈,曲柄转动,摇杆带动连杆杆做前后运动,小车现实转向前进,通过计算,完全可以实现“8”字形绕桩前进。
4.基本尺寸由以上得出:齿轮标准得表格R前轮50mm,R后轮=20mm,r线=10mm;车长230mm车宽150mm二、设计工艺:(1)小车的底板采用的是镂空硬质铝板,可以增强小车的强度,同时减轻小车的总质量。
(2)在每一个轴上都加油滚动轴承,可以减小摩擦,同时可以保*运动的精确*。
8字形无碳小车结构设计说明
8字形无碳小车结构设计说明1.设计概述:为达到沿8字绕行的目的,无碳小车应实现两个功能:重力势能的转换和周期性的转向。
据此可以将小车分为车架、原动机构、传动机构、转向机构、微调机构五个模块,进行模块化设计。
驱动模块要求能量损失小,运行稳定;转向模块要求精确度高,转向平稳。
2.设计思路和方案:(1)设计思路:①为使小车结构稳定,运行平稳,小车底板采用钢板材料的三角结构,前轮转向,后轮驱动,并且两后轮中一轮为主动轮,一轮为从动轮。
为减少小车运动过程中的能量损失,提高传动精度,首选齿轮传动。
在驱动模块中重物牵引线通过定滑轮缠绕在绕线轴上,绕线轴与齿轮固结,通过齿轮带动后轮转动,驱动小车前进。
②为使小车精度高,转向平稳,在转向模块中采用含有向心关节轴承的空间曲柄连杆机构,绕线轴转动并带动皮带转动,将驱动力传给曲柄,再通过连杆带动前轮的摇杆转动,从而使前轮实现周期性转向,达到绕桩的目的。
③为进一步使小车的运行精度,保持小车的运行轨迹,在小车上加入微调机构。
(2)设计思路:小车的原动机构采用锥形轮,小车的传动机构采用皮带传动和齿轮传动,通过调整齿轮合适的传动比,降低小车的运动速度,保持小车运动过程中的稳定性。
小车的转向机构采用空间曲柄连杆机构,小车的微调机构无级变速,V字形微调,连杆长度微调。
通过计算确定好个各机构的尺寸后,进行组装调试,稳定小车的重心。
工作计划时间工作方向分工工作细则6月24日收集车架机构资料明确车架结构陈雷收集车架资料,画出车架草图吴秀东分析车架受力挑选车架,画草图隋秉宪依据现有车架和所查资料确定车架完成每日工作总结6月25日分析转向传动机构陈雷搜查空间四杆机构的原理吴秀东查找有关平面四杆机构的转向原理确定小组方案为小车选择合适的转向方案隋秉宪查找四杆机构的原理,完成每日工作总结6月26日考试6月27日研究齿轮传动原理为小车确定初步齿轮传动结构陈雷查阅书籍了解齿轮传动知识吴秀东计算齿轮传动比以便初步设计隋秉宪上网搜集前辈小车的齿轮传动方案6月28日分析轴承配合原理选择合适的固定轴承方案陈雷查阅相关书籍了解合适的固定方式吴秀东以前辈设计方案为参考确定我们小车固定方案隋秉宪辅助队友完成资料查阅和方案确定,完成每日工作总结6月29日分析驱动轮和从动轮了解差速原理了解双轮同步原理陈雷查阅书籍资料研究差速传动与同步传动原理选择最优方案吴秀东上网收集相关资料隋秉宪研究学长小车差速传动配合方法完成每日工作总结6月30日研究平行轴无级变速周期调节机构原理陈雷查阅书籍资料,弄清楚传动原理吴秀东上网查阅相关文字视频资料隋秉宪看以往小车此传动方法的可靠性完成工作总结7月1日——7月3日考试7月4日讨论前期工作成果查找成员需改进的方面明确下阶段工作方向陈雷带领组员开工作总结会讨论前期成果,明确下阶段目标吴秀东小组讨论隋秉宪小组讨论,写工作总结7月5日设计小车转向机构陈雷画小车转向机三维图吴秀东根据理论知识画小车转向草图隋秉宪画小车转向二维图7月6号设计小车的传动机陈雷画小车传动机构三维图构,并作图吴秀东查阅资料,学习齿轮传动的原理隋秉宪确定所选用的齿轮传动机构,并绘制简图7月7日设计小车的微调机构,并作图陈雷画小车微调机构三维图。
S型无碳小车-结构设计方案
(此栏由赛务工作人员填写)
第一幅照片(小车正面)
(注意照片的放置方向与页面方向一致,
照片上不允许出现参赛学校信息,阅后删除。)
第二幅照片(小车侧面)
(注意照片的放置方向与页面方向一致,
照片上不允许出现参赛学校信息,阅后删除。)
第五届全国大学生工程训练综合能力竞赛(广西赛区)
The 5thNational UndergraduateEngineering Training Integration Ability Competition(Guangxi Division)
2、小车出发定位方案
无碳小车的行走路线近似于余弦曲线,通过计算小车的运动可以计算出该余弦曲线的幅值,小车出发位置在偏离原点一个幅值长度的地方。通过对小车的运动计算可得其运动方程,再通过计算可得出小车转向轮的偏向角度,偏向角度可通过微调机构调节。通过小车出发时垂直摆桩方向的距离以及此时小车前轮的偏向角度,从而确定小车的理论出发位置。
2..通过计算并确定两齿轮的的传动比i,并实现小车驱动轮每行走i个周长长度,转向机构运动实现一个周期,小车也行走一个完整的S路线。
3.使用滑轮组将重物的重力势能通过细绳以转矩的形式传递到输入轴;输入轴通过一级齿轮传动将能量传到驱动轴,带动驱动轮并驱使小车向前运动;小车通过输入轴带动圆盘并通过空间四杆机构实现小车的转向。具体调试过程中,通过调节杆长以满足小车周期性转向;小车采用单向轴承,从而实现两后轮的差速,便于转弯,并最大程度上实现了小车结构的优化。
产品名称
小车
共5页
第1页
编号
第五届全国大学生工程训练综合能力竞赛(广西赛区)
The 5thNational UndergraduateEngineering Training Integration Ability Competition(Guangxi Division)
S形轨迹无碳小车的结构设计(精选五篇)
S形轨迹无碳小车的结构设计(精选五篇)第一篇:S形轨迹无碳小车的结构设计“S形轨迹无碳小车的结构设计摘要:针对第四届全国大学生工程训练综合能力竞赛题目,设计一辆通过重力驱动的纯机械结构的无碳小车,且小车具有周期性越障功能。
通过所学知识,设计并制作该小车,参加比赛。
设定不同的参数,借助工程软件MATLAB对小车的轨迹进行仿真计算。
通过分析,设计出一辆满足比赛要求的小车。
并且通过调试证明,小车能够稳定行驶,具有较高的可靠性。
关键词:无碳小车越障轨迹仿真0前言本文针对第四届全国大学生工程训练综合能力竞赛关于“S”形轨迹的要求,设计并制作了一种将重力势能转换为动能,并且按照“S”形轨迹稳定前行的无碳小车。
小车为三轮结构,前轮为方向轮;后面一轮为驱动轮,一轮为从动轮。
小车具有可调节的转向控制机构,以适应700-1300mm间距的不同间距障碍物。
1小车结构设计本文把小车的机构分为:原动机构、传动机构、转向机构、微调机构与车身。
除了轴承、螺栓螺母等标准件可以直接选用外,小车的其余部件均使用LY102铝合金制作。
本文的设计目的是使小车各部分的尺寸协调,满足强度要求、实现不同距离的越障功能。
下面是各个机构的设计: 1.1原动机构设计原动机构是利用重物下落时的重力势能转化为动能,从而驱动小车前进和转向的机构。
重物是1kg的标准砝码,重物周围是三根均布的钢管,从而约束重物的自由度,使重物直线下降,减少了能量损失,保证了小车重心的稳定性。
重物通过尼龙线绕在小车的绳轮上,在下降的过程中,带动绳轮的转动,实现了能量转换。
在实际测试中,证明了该结构简单、能量转化率高、成本低等特点。
1.2传动机构设计传动部分是原动机构和小车主动轮动力传递的枢纽,本文设计的小车的传动机构由后轮、一级齿轮、及其相关零件组成。
由于小车具有转向的功能,为不干扰小车的转向,后轮采用差速连接。
小车的右后轮为主动轮,左后轮为从动轮。
主动轮与传动机构相连,驱使小车的运动,从轮轮用轴承空套在后轴上,跟随小车的运动。
无碳小车设计方案
无碳小车设计方案小车设计1:工作原理如图(1)所示为小车的示意图:图(1)先由重物长带(1)上,由于重力的作用,带向下运动,带动轮轴转动,这时候,车轮转动,同时,轮轴通过短带(2)带动轮盘(3)的转动,轮盘(3)带动导向轮(4)的右边的转向杆(5)前后摆动,实现车的转向。
2:动力装置图(2)一):传动的选择及其原理:可以利用带传动,因为带传动比较容易实现,同时也容易保证较好的传动比。
如图(2)传动:二):传动比与路程的设计计算:由于带传动的过程中,圆周走过的路程的相同的所以下面的车轮轴也走过了 S轴圆周= S落差=500mm因为R车轮/R轴=S车/S落差,那么可以设计自己不同的轴来保证行走最远的距离。
取 R车轮/R轴=S车/S落差=8取 R轴=15mm则 R车轮=120mm。
则车可以行走距离为 S车/=500*8=4000mm3:转向装置图(2)一):转向装置的选择:选择采用空间四杠机构来实现转向,其原理是利用曲柄摇杆机构曲柄转一圈,摇杆转动一定角度,原理如图(2):在连杆与小车导向杆之间利用球铰连接,因为要实现不同方向的转动。
二):工作原理:用车轮轴带动轮盘(1),用轮盘(1)作为四杠机构的曲柄,杠(2)是其连杆,杠(3)是摇杆,轮盘(1)转动一圈,杠(3)摆动一定的角度,通过行使的路程,计算好每个转弯的的位置,以实现转弯。
三):计算:设计轮盘(1)每转动一圈,小车穿过一个障碍物,所以小车走1m车轴转动圈数为: 1000/(3.14*120)=2.65轮轴带轮盘(1)传动比为 R轮盘(1)/R车轴=2.65:1所以带轮盘(1)直径为 R轮盘(1)=2.65*15=39.8mm设计工艺(1)小车的地板采用的是硬制透明的塑料,它可以减轻小车的重量,减少与地面摩擦而产生的能量损失。
(2)皮带可以采用拉的相对比较紧些,这样就比较容易拉动周的转动。
(3)所有转动副连接处,都采用球轴承,可以减小摩擦,同时可以保证运动的准确性。
工程创新设计方案
无碳小车设计方案岳阳无碳小车设计方案1.概述无碳小车设计方案是根据全国大学生工程训练综合能力竞赛的要求制定的。
该方案综合考虑了无碳小车的驱动、转向等功能性要求,制造的难易程度、经济性等因素而制定。
2.组成无碳小车主要组成部分包括:驱动组件、转向组件、滑轮组件、小车板(序号3)、长杆(序号4)等,见图1.驱动组件主要包括:●重锤(序号5)●绳子(橡胶绳或钢丝绳)(序号8、16)●长轴(序号24)●驱动轮(序号14)●后车轮(序号13)●长支撑柱(序号13)●后支撑板(序号11)●衬套(序号15)●U型卡(序号12)转向组件主要包括:●转向盘(序号12)●前支撑板(序号19)●短支撑柱(序号2)●销子(序号20、23)●前车轮(序号22)●U型卡(序号21)滑轮组件主要包括:●滑轮架(序号6)●滑轮(序号7)连接两者的销子。
其他零件还包括螺母(序号17)等。
无碳小车的主要零件图见图3—图12.3.工作原理无碳小车的主要工作原理是:当重锤下落时,绳子通过滑轮机构、衬套等环节带动固连在长轴上的驱动轮转动,由于后车轮、长轴、驱动轮三者固连,所以在重锤下落时,绳子带动后轮转动。
由于绳子的另一端固连在转向轮,并缠绕在转向轮上,在绳子带动下,转向轮也跟着转动。
此时,铆接在转向轮上的销子(序号20)也转动,同时在前支撑板(序号19)的空槽中滑动,带动前支撑板及前车轮改变方向,实现小车在前进中的转向。
为了实现前进1000mm转向,需要驱动轮的外径和转向盘符合一定的数学关系,这可以在实际制作时通过实验获得准确的参数。
本方案制作原理性设计,具体实现需结合实际零件加工的结果而定。
4.工艺方案为了无碳小车的加工制作容易实现,并且经济可行,本方案在转动机构中没有采用价格较贵的滚珠轴承,而是采用了较多的氟塑料棒材料。
氟塑料棒材料摩擦系数较小,容易加工,价格便宜,制作本方案中的小车很合适。
本方案中采用氟塑料棒材料的零件有:前后车轮、滑轮、转向盘、驱动轮、前支撑板等。
无碳小车方案一
方案一、凸轮机构+摇杆
凸轮是具有一定曲线轮廓或凹槽的构件,它运动时,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动。
凸轮结构优点是只要设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且响应快,结构简单紧凑。
但是,图轮廓线与推杆间是点线接触,易磨损,且制造困难。
凸轮机构的平面结构简图;
先设计小车的轨迹路线为正弦函数:
Y=300sin(2π·x/2000);
300按小车后轮间距一半加上档杆半径在适当增大确定的
2000为两个档杆间距,即一个周期正弦函数的长
前轮转θ角时,前轮与后轮之间的关系如上图,设前轮与后轮之间的距离为a=225,曲线的曲率半径为ρ,则θρsin /a =
故前轮转角应满足 )/arcsin(ρθa =
曲率半径 2''2/32')1(y y +=
ρ,
从而推出θ与X 的关系
由θ和给出的数据可以推出推杆的位移S
S=θ×d;由此可以设计出凸轮形状;
传动:凸轮一周期转动一周,再由Y=300sin(2π·x /2000)经行积分可以得出一个周期内小车的路程S ’,小车后轮半径为R ,则传动比
i=(S ’÷(2π×R ))。
无碳小车设计方案
无碳小车设计草案一、设计意图1,以重力势能驱动的具有方向控制功能的自行小车”。
2,设计小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而得到的。
该给定重力势能由竞赛时统一使用质量为1Kg的标准砝码(¢50×65 mm,碳钢制作)来获得,砝码的可下降高度为400±2mm。
标准砝码始终由小车承载,小车不掉落图1 无碳小车示意图3,小车在行走过程中完成所有动作所需的能量均由此给定重力势能转换而得,不可以使用任何其他来源的能量。
4,小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
5,小车为三轮结构。
二、设计原理1,以重物为驱动件,通过重力做功将重力势能转化为小车的动力,驱动后轮前进。
2,利用合适的转向机构使前轮跟随后轮的旋转做周期性的摆动,以实现前轮的转弯,3,3,设计一个合理的调节机构,使前轮的摆动弧度得以控制,以适应不同的障碍物间距,达到调可节目的三、设计结构图四、细节设计1、小车底座小车底座起支撑小车的作用,由于小车的传动是重块的重力势能转化为动能,重块需要400mm的高度,所以需要底座质量稍微大点,使小车的重心尽可能的靠近地面以保持稳定。
2、重物连接机架后方向上设计突出加高,在顶部连接一个滑轮,重物通过细线连接后轴绕过定滑轮再连接重物3、传动机构指重块重力势能转化为下面齿轮旋转运动的构件组合。
包括重物、定滑轮、绳子、轴、齿轮。
绳子的一端连在重物上,另一端连在轴上,重物下降时通过绳子在轴上的缠绕来促使后轮轴的转动,从而带动固连载轴上的齿轮的转动,进而通过下一个齿轮将运动传递下去。
4、转向机构如上图所示,大齿轮及其左边的机构。
随大齿轮的转动带动紧挨着的滑块机构B,使B做往复移动运动,B左端是一个铰链-滑动机构,从而将B的往复运动传递到摆杆C的摆动,使小车在前行的过程中前轮做正玄型曲线式的摆动,从而使小车能够周期性的左右绕过木桩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无碳小车
共 3 页
第 1 页
组别
第一组
小车装配图
比例
第 页
江苏大学专业综合实践
共 页
⑥制作二维工程图。
(小车结构以及工程图纸见图纸页)
2、小车出发定位方案
小车对准障碍物的一侧,并向障碍物一侧旋转一定的角度。小车在制作后会经过多次调试,最终确定小车出发的最佳位置。
3、总结和体会
在这次无碳小车设计过程中,我们体会到了团队合作的重要性和尺寸、计算精确度的重要性。在这时长三周的专业实践设计过程中,我们小组先是各自发挥自己的长处,设计出不同的方案,并且最终定下了最好的方案。在精确计算各部分尺寸之后,我们开始使用UG软件绘图。我们大家熟悉了ug软件的建模,装配,作二维图的过程,而且为下学期毕业设计的顺利进行打下了坚实的基础。不过设计过程初期我们也遇到了一点麻烦,陈寒松老师对我们的方案指出错误、提出建议,给我们指明了方向,让我们小组少走了很多弯路。
江苏大学专业综合实践
小车照片
The car photosructureDesignScheme
项 目
无碳小车一组
1、设计思路
命题的结构设计要求是给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在前行时能够自动避开赛道上设置的障碍物。给定重力势能为 4 焦耳,用质量为 1Kg 的重块铅垂下降来获得,落差 400±2mm,重块落下后,须被小车承载并同小车一起运动。先将重物卷起至最高处,将小车放置起点,重物落下时,带动线轴转动,通过齿轮传递给后轮以及轮盘。小车行驶,轮盘通过横杆来驱动前轮转向,按预先设计的角度行走“S”线。具体步骤:
①每个人自行设计方案,画出机构简图,对比方案优劣,选择最优方案。
②确定方案之后,进行数据计算近似模拟小车路径,算出小车车轮的偏角,设计转向结构设计。
③在转向机构设计完成之后,估算周期路径长度,合理设置传动比以及小车行走的距离。
④进行三维建模,装配,消除干涉,改进车体大小。
⑤在UG软件之中进行仿真,分析小车路径,对装配进行修正。