杆件的轴向应变和轴向力计算

合集下载

轴力与应力计算

轴力与应力计算
FN1=F
FN3
F
2F
FN2
FN 2 F
FN 3 F
轴力图
F
2F A
2F B
F
FN
F
F x
F
例2:已知F1=10kN;F2=20kN; F3=35kN; F4=25kN;试画出图示杆件的轴力图。
A
B
F1
F2
C
D
F3
F4
A 1B
F1
1 F2
FN / kN 10
2 C 3D
2 F3 3 F4
25
P
三、轴向拉压时横截面上的应力
已知轴力的大小,是否就可以判定构件是否发生破坏?
如果轴力很大,而杆件的横截面面积也很大,杆件是 否一定发生破坏? 如果轴力很小,而杆件的横截面面积也很小,杆件是 否一定不发生破坏?
不能只根据轴力就判断杆件是否有足够的强度; 还必须用横截面上的应力来度量杆件的受力程度。 在拉压杆的横截面上,与轴力对应的应力是正应力。
Saint-Venant原理与应力集中示意图
变形示意图: P
a
b
c
P
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。) 应力分布示意图:
例1、 起吊三角架,如图所示,已知AB杆由2根截 面面积为10.86cm2的角钢制成,P=130kN,=30O。 求AB杆横截面上的应力。
B
C
A
P
NAB
变形前
受载后
F
F
所有的纵向线伸长都相等,而横向线保持为直 线且与轴线垂直。
1.平面假设 (Plane assumption)
变形前原为平面的横截面,在变形后仍保持为平面, 且仍垂直于轴线.

第07讲轴向力应变

第07讲轴向力应变

例1: 已知F1=20KN,F2=8KN,F3=10KN,试用截面法求图示 杆件指定截面1-1、2-2、3-3的轴力,并画出轴力图。 1 2 3 解:外力FR,F1,F2, F2 A F1 F3 F3将杆件分为AB、 B C D FR BC和CD段,取每段 1 2 3 左边为研究对象,求 F2 FN1 得各段轴力为:
∆L = - 0.025mm
d AB 例5:阶梯形杆各段直径分别为: = 12mm, d BC = 14mm, dCD = 10mm, l1 = 100 mm, l2 = 50 mm, l3 = 200 mm ,求(1)各段的纵向线应变;(2)全杆的纵 向变形;(3)各段直径的改变。材料的 E = 2 ×105 MPa, µ = 0.3. 解:作内力图,求各 段的内力。 4kN 3kN 7kN F = F = 4 kN
例:如图所示杆件,求各段内截面的轴力和应力,并画出轴 2 A1 = 200mm, 较 粗 力图。若杆件较细段横截面面积 L 段 A2 = 300mm 2 ,材料的弹性模量 E = 200GPa, = 100mm 求杆件的总变形。 解:分别在AB、 BC段任取截面, 如图示,则: 10KN A 40KN B L L C 30KN
轴力图:
用平行于杆轴线的x坐标表示 横截面位置,用垂直于x的坐 标FN表示横截面轴力的大小, 按选定的比例,把轴力表示 在x-FN坐标系中,描出的轴力 随截面位置变化的曲线,称 为轴力图。 F FN m
m F
x
FN 与杆件横截面的外法线同向 为正轴力 拉力 ,反之为负。 与杆件横截面的外法线同向,为正轴力 拉力),反之为负。 为正轴力(拉力 FN 轴力图特点: 轴力图特点: ①反映出轴力与截面位置变化关系,较直观; FN ②确定出最大轴力的数值及其所在横截面的位置, 即确定危险截面位置。 FN FN FN >0 FN <0

工程材料力学第四章轴向拉压杆的变形

工程材料力学第四章轴向拉压杆的变形
§4-5 轴向拉(压)杆的变形·胡克定律
拉(压)杆的纵向变形 (轴向变形) 基本情况下(等直杆,两端受轴向力):
纵向总变形Δl = l1-l (反映绝对变形量)
l 纵向线应变 (反映变形程度) l
1
fl
f ( x x)
x
f
l
x
x
沿杆长均匀分布 的荷载集度为 f 轴力图
fx
微段的分离体
y
pbd 2b 0
pd 2
13
所以
pd (2 10 Pa)(0.2m) -3 2 2(510 m)
6
4010 Pa 40 MPa
6
14
2.
如果在计算变形时忽略内压力的影响,则可认为
薄壁圆环沿圆环切向的线应变e(周向应变)与径向截面上
的正应力s 的关系符合单轴应力状态下的胡克定律,即
ν
亦即
- n
低碳钢(Q235):n = 0.24~0.28。
7
思考:等直杆受力如图,已知杆的横截面面积A和材料的 弹性模量E。
1.列出各段杆的纵向总变形ΔlAB,ΔlBC,ΔlCD以及整个 杆纵向变形的表达式。
2.横截面B, C及端面D的纵向位移与各段杆的纵向总变
形是什么关系?
uB L1
22
作业:4-7,4-91 Pa ~ 2.101011 Pa 200GPa ~ 210GPa
l 1 FN 胡克定律的另一表达形式: l E A




E
←单轴应力状态下的胡克定律
6
横向变形因数(泊松比)(Poisson’s ratio)
单轴应力状态下,当应力不超过材料的比例极限时,

杆件的变形及计算

杆件的变形及计算

τ=
Q ≤ [τ ] A
其中 Q 为剪切面上的剪力,由平衡条件求解;A 为剪切面面积;[τ]为材料的许用剪应力,单位 MPa. 为剪切面上的剪力,由平衡条件求解; 为剪切面面积; 为材料的许用剪应力 为材料的许用剪应力, .
二,挤压使用计算
在承载的情形下,连接件与其所连接的构件相互接触并产生挤压, 在承载的情形下,连接件与其所连接的构件相互接触并产生挤压,因而在二者接触面的局部区域产生 较大的接触应力,称为挤压应力,用符号σjy表示 单位MPa.挤压应力是垂直与接触面的正应力.其可 表示, 较大的接触应力,称为挤压应力,用符号 表示,单位 .挤压应力是垂直与接触面的正应力. 导致接触的局部区域产生过量的塑性变形,而导致二者失效. 导致接触的局部区域产生过量的塑性变形,而导致二者失效. 积压力为作用在接触面上的总的压力, 表示. 积压力为作用在接触面上的总的压力,用符号 Pjy 表示. 表示. 挤压面为接触面在挤压力作用线垂直平面上的投影, 挤压面为接触面在挤压力作用线垂直平面上的投影,用符号 Ajy 表示. 其强度设计准则
在例6-1中杆 的直径均为d=30mm,[σ]=160MPa,其它条件不变.试确定此时结构所能 例6-3 在例 中杆BC,EF 的直径均为 , ,其它条件不变. 承受的许可载荷? 承受的许可载荷? 中分析EF杆为危险杆 解:根据例1中分析 杆为危险杆,由平衡方程可得 根据例 中分析 杆为危险杆,
N2 =
第三节 连接件的强度设计
一,剪切实用计算
当作为连接件的铆钉,,销钉,键等零件承受一对等值, 当作为连接件的铆钉,,销钉,键等零件承受一对等值,反 ,,销钉 作用线距离很近的平行力作用时, 向,作用线距离很近的平行力作用时,其主要失效形式之一为沿 剪切面发生剪切破坏.发生相对错动的截面称为剪切面. 剪切面发生剪切破坏.发生相对错动的截面称为剪切面.由于剪 切面上剪应力分布比较复杂, 切面上剪应力分布比较复杂,可假定认为剪应力在剪切面上均匀 分布——剪切实用计算. 剪切实用计算. 分布 剪切实用计算 其设计准则为

材料力学 杆件的变形计算

材料力学 杆件的变形计算

例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa, ν = 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上的正应力 σ (b) 螺栓的横向变形△d
解:1) 求横截面正应力 :
ε=
∆l 0.04 = = 7.41×10-4 l 54
l = 54 mm ,di = 15.3 mm, E=200 GPa, ν = 0.3, △l =0.04 mm
∆ac = a ′c′ − ac
∆ac ε′ = ac
二、拉压杆的弹性定律 1、等内力拉压杆的弹性定律 P P
PL NL dL = = EA EA
PL dL ∝ A
2、变内力拉压杆的弹性定律
N(x) N(x)
x dx dx 内力在n段中分别为常量时 内力在 段中分别为常量时
※“EA”称为杆的抗拉压刚度。 ※“ ”称为杆的抗拉压刚度。
C1
C点总位移: 点总位移:
∆C = ∆C y + ∆C x = 1.47mm
2 2
C0
Cx
(此问题若用圆弧精确求解) 此问题若用圆弧精确求解)
∆C x = 0.278mm ∆C y = 1.44mm
第二节 圆轴的扭转变形及相对扭转角
为 dx 的两个相邻截面之间有相对转角dϕ 的两个相邻截面之间有相对转角d
800 π × 0.04 4 80 ×109 32 = 0.03978rad / m
综合两段, 综合两段,最大单位扭转角应在BC 段 为 0.03978 rad/m
例4-5 图示一等直圆杆, 图示一等直圆杆,已知 d =40mm a =400mm G =80GPa, ϕ DB=1O , 求 : 1) 最大切应力 2)ϕ AC

工程力学第8章 变形及刚度计算

工程力学第8章 变形及刚度计算

39
40
解 (1)静力方面 取结点 A为研究对象,分析其受 力如图 8.15(b)所示,列出平衡方程:
(2)几何方面
(3)物理方面 由胡克定律,有:
41
(4)补充方程 式(u)代入式(t),得:
再积分一次,得挠度方程
15
16
17
18
例8.5 图8.7所示等截面简支梁受集中力F作用,已 知梁的抗弯刚度为EI,试求C截面处的挠度yC和A截面 的转角θA。
19
解 取坐标系如图所示,设左、右两段任一横截面 形心的坐标、挠度和转角分别为x1,y1,θ1和x2,y2, θ2。梁的支反力为
20
2
3
8.1.2 横向变形及泊松比 定义
4
5
8.2 圆轴扭转时的变形和刚度计算
8.2.1 圆轴扭转时的变形 在7.6节中提到,圆轴扭转时的变形可用相对扭转角 φ来表示,而扭转变形程度可用单位长度扭转角θ来表示。 由7.6.2节中的式(d),即
6
8.2.2 刚度计算 有些轴,除了满足强度条件外,还需要对其变形加 以限制,如机械工程中受力较大的主轴。工程中常限制 单位长度扭转角θ不超过其许用值,刚度条件表述为
(3)物理方面 由胡克定律,可得:
37
(4)补充方程 将式(q)代入式(p),可得:
(5)求解 联立求解方程(o)和(r),可得:
38
由上例可以看出解超静定问题的一般步骤为: (1)选取基本体系,列静力平衡方程; (2)列出变形谐调条件; (3)物理方面,将杆件的变形用力表示; (4)将物理关系式代入变形谐调条件,得到补充 方程; (5)联立平衡方程和补充方程,求解未知量。
34
(1)静力方面 选取右端约束为多余约束,去掉该约束并代之以多 余支反力FB,如图8.14(b)所示,称为原超静定问题 的基本体系。所谓基本体系,是指去掉原超静定结构的 所有多余约束并代之以相应的多余支反力而得到的静定 结构。列出其平衡方程为:

《工程力学》第五章 杆件的变形与刚度计算

《工程力学》第五章  杆件的变形与刚度计算

根据杆所受外力,作出其轴力图如 图 b所示。
(2)计算杆的轴向变形 因轴力FN和横截面面积A沿杆轴线变
化,杆的变形应分段计算,各段变形的 代数和即为杆的轴向变形。
l
FNili FN1l1 FN 2l2 FN 2l3
EAi
EA1
EA1
EA2
1 200 103
( 20 103 100 500
10 103 100 500
10 103 100 )mm 200
0.015mm
例5-2 钢制阶梯杆如图,已知
轴向外力F1=50kN,F2=20kN,
各段杆长为l1=150mm,
l2=l3=120mm,横截面面积为:
1
A1=A2=600mm2,A3=300mm2,
钢的弹性模量E=200GPa。求各
x
l 3
,ym
ax
9
Ml2 3E
I
xMl2 16EI
A
M 6EIl
(l 2
3b2 )
B
M 6EIl
(l 2
3a2 )
三、叠加法计算梁的变形
➢叠加法前提条件:弹性、小变形。 ➢叠加原理:梁在几个载荷共同作用下任一截面的挠度或转角, 等于各个载荷单独作用下该截面挠度或转角的代数和。
F1=2kN,齿轮传动力F2=1kN。主轴的许可变形为:卡盘 C处的挠度不超过两轴承间距的 1/104 ;轴承B处的转角
不超过 1/103 rad。试校核轴的刚度。
解(1)计算截面对中 性轴的惯性矩
Iz
D4
64
(1 4 )
804 (1 0.54 )mm4
64
188104 mm4
(2)计算梁的变形

工程力学蔡路军版习题答案

工程力学蔡路军版习题答案

工程力学蔡路军版习题答案工程力学是一门应用力学原理研究工程结构和材料力学性能的学科。

蔡路军版习题是工程力学课程中常见的习题集,对于学生来说是非常重要的学习资料。

本文将回答一些蔡路军版工程力学习题,帮助学生更好地理解和掌握这门学科。

1. 题目:求解简支梁的弯曲应力分布解答:简支梁是工程力学中常见的结构之一。

根据弯曲理论,简支梁的弯曲应力分布可以通过弯矩和截面惯性矩来计算。

弯矩可以通过受力分析得到,而截面惯性矩可以通过截面形状和尺寸计算得到。

将这两个参数代入应力分布公式,即可得到简支梁的弯曲应力分布。

2. 题目:计算杆件的轴向应力解答:计算杆件的轴向应力需要考虑杆件的受力情况和材料的力学性质。

对于受力均匀的杆件,轴向应力可以通过受力分析和材料力学性质的关系计算得到。

常见的计算方法有静力法和变形法。

静力法是通过平衡条件和受力平衡方程来计算轴向应力,而变形法是通过杆件的变形和材料的本构关系来计算轴向应力。

3. 题目:求解悬臂梁的挠度解答:悬臂梁是一种只有一端支承的梁结构。

求解悬臂梁的挠度需要考虑梁的受力情况和材料的力学性质。

可以通过弯矩和截面惯性矩的关系,以及挠度和弯曲曲率的关系,来计算悬臂梁的挠度。

常见的求解方法有力学平衡法、能量法和虚功原理法等。

4. 题目:计算梁的剪力和弯矩图解答:计算梁的剪力和弯矩图是工程力学中常见的问题。

可以通过受力分析和力的平衡条件来计算梁的剪力和弯矩。

根据力的平衡条件,可以得到梁的受力方程。

通过求解这些方程,可以得到梁的剪力和弯矩分布。

绘制出剪力和弯矩图可以直观地了解梁的受力情况。

5. 题目:计算梁的挠度和转角解答:计算梁的挠度和转角需要考虑梁的受力情况和材料的力学性质。

可以通过受力分析和力的平衡条件来计算梁的挠度和转角。

根据平衡条件和材料的本构关系,可以得到梁的弯曲方程。

通过求解这个方程,可以得到梁的挠度和转角分布。

挠度和转角的计算可以通过积分方法或差分方法进行。

以上是对工程力学蔡路军版习题的一些解答,希望能够帮助学生更好地理解和掌握这门学科。

第九章 杆件变形及结构的位移计算.

第九章 杆件变形及结构的位移计算.
第九章
杆件变形及结构的位移计算
虚功原理
单位荷载法
功:力对物体作用的累计效果的度量 功=力×力作用点沿力方向上的位移
实功:力在自身所产生的位移上所作的功
F

W
1 F 2
M

W
1 M 2
W
1 F 2
F---广义力; ---广义位移
根据能量守衡定律,外力和内力实功是相等的。
W V
V---内力功
40 kN m 10 m
1
M1
1/ 3
2/3
1 1 2 B ( 10 40 EI 2 3 1 1 500 10 20 ) ( ) 2 3 3EI
图形分解
求 B
MP
20 A 20 kN m
EI
40
B
40 kN m 10 m
1
1 1 B 10 1 (20 EI 2 2 500 20 ) ( ) 3 3EI
ql 2 5ql 3 1 1 1 ql 2 C l 1 l 1 ( EI 3 2 2 EI 2 12 EI
)
应用举例
例 1. 已知 EI 为常数,求C、D两点相对水平位移 CD。
A
B
h
q l
2
q
ql / 8
MP
1
1
h
M1
h
解:作荷载弯矩图和单位荷载弯矩图 yc 1 2 ql 2 CD lh EI EI 3 8 qhl 3 ( ) 12 EI
(1)建立虚拟荷载状态,并作弯矩图 (2)作刚架实际荷载作用时弯矩图
(3)图乘求位移
Cx
Cy
1 1 ql 2 ql 4 EI l l () 2 2 2 8EI

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

材料力学例题及解题指导

材料力学例题及解题指导

图 2-8 解:设在荷载 G 作用下,横梁移动到 AB位置(图 2-8b),则杆 1 的缩短量为 l1,而杆 2、3 的伸长量为 l2、l3。取横梁 AB 为分离体,如图 2-8c,其上除荷载 G 外,还有轴力 N1、N2、N3 以及 X。由于假设 1 杆缩短,2、3 杆伸长,故应将 N1 设为压力,而 N2、N3 设 为拉力。 (1) 平衡方程
例题及解题指导
图 3.6
例 2-5 图 3-6 所示螺钉承受轴向拉力 F,已知许可切 应力[]和拉伸许可应力[]之间的关系为:[]=0.6[],许 可 挤 压 应 力 [bs] 和 拉 伸 许 可 应 力 [] 之 间 的 关 系 为 : [bs]=2[]。试建立 D,d,t 三者间的合理比值。
解:(1) 螺钉的拉伸强度
时单位杆长的分布力 q=A1,此处 是材料单位体积的重量即容重。将 q 代入上式得到
l A l2 Al l Gl
2EA 2EA 2EA 此处 G=Al 是整个杆的重量。上式表明等直杆自重引起的总伸长等于全部重量集中于 下端时伸长的一半。
解题指导:对于轴力为变数的杆,利用虎克定律计算杆件轴向变
N1 得正号说明原先假设拉力是正确的, 同时也就表明轴力是正的。AB 段内任一截 面的轴力都等于+6kN。 再求 BC 段轴力,在 BC 段任一截面 2-2 处 将杆件截开,仍考察左段(图 2-5c),在截 面上仍设正的轴力 N 2,由 X=0 得
-6+18+N2=0
N2=-12kN
N2 得负号说明原先假设拉力是不对的
解:根据强度条件式(4-6)得出:
10
d 3 16MT 3 16 7.64 106 109mm
[ ]
30
11
再根据刚度条件式(4-9b )得出:

工程力学-第7章-轴向拉压杆件的强度与变形计算

工程力学-第7章-轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院
7
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽
斜拉桥承受拉力的钢缆 车 学 院
8
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院9来自 7-1轴向拉压杆横截面上的应力
胡克定律



工程力学
17
轴向拉压的变形分析
P
P
A 细长杆受拉会变长变细,
P
B 受压会变短变粗
C 长短的变化,沿轴线方向, 称为纵向变形
l+Dl l
d-Dd d
D 粗细的变化,与轴线垂直,
称为横向变形
P
P
P
7-3轴向拉压杆的变形计算 胡克定律
工程力学
Guang Zhou Auto College
变形量的代数和:


Δ
l

FNi li FNi ADlEADA+i
=Dl AD DlDE DlEB Dl
FNDElDE + FNEBlEB + FNBClBC
BC

Ec AAD
Ec ADE
Es AEB
Es ABC
=1.2106 m 0.6106 m 0.285106 m 0.428106 m
广
承受轴向载荷的拉(压)杆在工程中的

应用非常广泛。

由汽缸、活塞、连
杆所组成的机构中,不

仅连接汽缸缸体和汽缸
盖的螺栓承受轴向拉力,

带动活塞运动的连杆由

工程力学第8章 变形及刚度计算

工程力学第8章 变形及刚度计算
第8章 变形及刚度计算
结构构件在满足强度要求条件下,若其变形过大, 会影响正常使用。本章将学习杆件的变 形及刚度计算。
1
8.1 轴向拉压杆的变形
杆件在发生轴向拉伸或轴向压缩变形时,其纵向尺 寸和横向尺寸一般都会发生改变,现分别予以讨论。 8.1.1 轴向变形 图8.1所示一等直圆杆,变形前原长为l,横向直径 为d;变形后长度为l′,横向直径为d′,则称
8.8 题8.8图所示一直径为d的圆轴,长度为l,A端 固定,B端自由,在长度方向受分布力偶m 作用发生扭 转变形。已知材料的切变模量为G,试求B端的转角。
56
8.9 某传动轴,转速 n=150 r/min,传递的功率 P =60 kW,材料的切变模量为 G =80GPa,轴的单位长度 许用扭转角[θ]=0.5(°)/m,试设计轴的直径。
30
例 8.9 简支梁受力如图 8.11所示
31
8.4 简单超静定问题
8.4.1 超静定问题的概念 前面几章所研究的杆或杆系结构,其支座反力和内 力仅仅用静力平衡条件即可全部求解出来,这类问题称 为静定问题(staticallydeterminateproblem)。例如,图 8.12所示各结构皆为静定问题。在工程实际中,有时为 了提高强度或控制位移,常常采取增加约束的方式,使 静定问题变成了超静定问题或静不定问题 (staticallyindeterminateproblem)。超静定问题的特点 是,独立未知力的数目大于有效静力平衡方程式的数目, 仅仅利用静力平衡条件不能求出全部的支座反力和内力。
52
8.5 高为l的圆截面锥形杆直立于地面上,如题8.5图 所示。已知材料的重度γ和弹性模量E,试求杆在自重作 用下的轴向变形Δl。
53
54

第四章 杆件的变形计算

第四章 杆件的变形计算

3)分别作AC1和BC2的垂线交于C0
A F B 30oC2 C
Cx CC2 0.277mm C y CC1 / sin30 CC 2 cot30
C1
1.44mm
C点总位移:
Cy
C C y C x 1.47mm
(此问题若用圆弧精确求解)
2
2
Cx
C0
T3 C
1)根据题意,首先画出扭矩图
T1 d1 A Mx N· m B T2 d2 C T3
2)AB 段单位长度扭转角:
1400
800
AB
M xAB GI pAB
+
x
1400 4 π 0.06 80 10 9 32 0.01375rad / m
3)BC 段单位长度扭转角: M xBC BC
M xi li j i 1 GI pi
n
请注意单位长度扭转角和相对扭转角的区别
例4-3 一受扭圆轴如图所示,已知:T1=1400N· m, T2=600N· m, T3=800N· m, d1=60mm,d2=40mm,剪切弹性模量G=80GPa,计 算最大单位长度扭转角。
T1 d1 A
T2 d2 B
第四章
• • • • •
杆件的变形计算
本部分主要内容:
拉压杆的轴向变形 圆轴的扭转变形与相对扭转角 梁的弯曲变形、挠曲线近似微分方程 用积分法求梁的弯曲变形 用叠加法求梁的弯曲变形
第一节 拉压杆的轴向变形
直杆在其轴线的外力作用下,纵向发生伸长或缩短变形, 而其横向变形相应变细或变粗 杆件在轴线方向的伸长

泊松比ν 、弹性模量 E 、切变模量G 都是材料的弹性常数, 可以通过实验测得。对于各向同性材料,可以证明三者之间存 在着下面的关系

第7章 杆件的变形与刚度

第7章  杆件的变形与刚度

32Tmax ⋅180 4 32 × 2000 ×180 d ≥4 = ×103 = 83.5mm G[θ ]⋅ π 2 80 ×109 × 0.3π 2
该圆轴直径应选择:d =83.5mm.
[例2]图示圆轴,已知mA =1.4kN.m, mB =0.6kN.m, mC =0.8kN.m;d1 =40mm,d2 =70mm; l1 =0.2m,l2 =0.4m; [τ]=60MPa,[θ]=1°/m,G=80GPa;试校核该轴的强度和刚 度,并计算两端面的相对扭转角。 mC
D
解:本题应分4段考虑。 π D4 I P1 = I P 2 = 32
d
A
a
1
2
B 3 b b
4
a
C
32 π D3 Wt1 = Wt 2 = 16 d4 π D3 (1 − 4 ) Wt 3 = Wt 4 = 16 D
I P3 = I P 4 =
π
(D4 − d 4 )
0.5kN.m 0.3kN.m 0.8kN.m 4 1 2 3
16mC

○ 1kN.m
π [τ ]
16 × 2000 3 = ×10 6 π 60 ×10
3
= 55.4mm
mA A
mB
mC
⑵按刚度条件
l1
B l C 2
2kN.m

○ 1kN.m
θ max = T ⋅ 180 ≤ [θ ] (°/m) GI p π π 4 Tmax 180 IP = d ≥ ⋅ 32 G[θ ] π
d2
mA
d1
mB
解: ⑴按强度校核
C
l2
A l1 B
0.6kN.m
T1 16mB τ1 = = Wt1 π d13 16 × 600 = = 47.7 MPa < [τ ] 3 π ×4

材料力学全部习题解答

材料力学全部习题解答

弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y

第五章 杆件的内力与内力图

第五章 杆件的内力与内力图

Mz (x) = m - FRAx = m (l -x ) / l (a < x≤ l ) 3°画 FQy (x)图和 Mz (x)图。
四、剪力、弯矩和荷载集度之间的关系
y FP
q(x) MZ(x) q(x) MZ(x)+d MZ(x) C FQY(x)+d FQY(x) dx
x
x dx
FQY(x)
FRA FQy
(KN)
FRB
60 20 x = 3.6m
Mz6 = 72 ×12 - 160 - 20×10 ×5 = 0
88
当FQY(x)=0时, Mz (x)有极值。
Mz x = 3.6m处, FQY(x)=0 。(KNm)
16 113.6 144
80

Mz7 = 72 ×5.6 - 160 - 20×3.6 ×3.6 / 2 = 113.6 KNm
MZ —— 弯矩
A FRA
x
m
C
MZ
m FQY
规 定:
∑FP
FQY 下剪力正, 反之为负
∑M
MZ
MZ
∑M
MZ:
上凹下凸弯矩正, 反之为负
a A
FP1
m m
FP2 B
由∑Fyi=0, FRA- FP1 - FQY =0
x
FRA y A
x
FRB FP1
m
C
得 FQY = FRA- FP1
x = 2m 时 , FN (x) = - 1KN。
3KN
A 2m 3
B 2KN/ m C 2m 2m
D 1KN
FN (KN) 1
规律:没有力作用的杆段,轴力为常数;
分布荷载为常数的杆段,轴力线性变化;

材料力学 杆件的变形计算

材料力学 杆件的变形计算
必知弓力三石者,当弛其弦以绳缓擐之者,谓不张之,别以 一条 绳系两箭,乃加物一石张一尺、二石张二尺、三石张三 尺。其中 “两萧” 就是指弓的两端。 胡:郑老先生讲“每加物一石,则张一尺”。和我讲的完全是同一 个意思。您比我早1500 中就记录下这种正比关系,的确了不起, 真是令人佩服之至』我在1686 年《关于中国文字和语言的研究 和推测》一文中早就推崇过贵国的古代文化:“目前我们还只 是刚刚走到这个知识领域的边缘,然而一旦对它有了充分的认 识,就将会在我们面 前展现出一个迄今为止只被人们神话般
B
30oC2
C
C1
1.44mm
胡:请问,“ 弛其弦,以绳缓援之” 是什么意思 ?
郑:这是讲测量弓力时,先将弓的弦 松开,另外用绳子松松地套住弓 的两端,然后加重物,测量。
胡:我明白了。这样弓体就没有初始应力,处于自然状态。
郑:后来,到了唐代初期,贾公彦对我的注释又作了注疏,他说: 郑又云假令弓力胜三石,引之 中三尺者,此即三石力弓也。
400
400
FN KN 40
2)求伸长量
+
x l l AB lBC

20
l AB
FNABl AB EAAB
40 10 3 400 200 10 3 800
0.1mm
伸长
lBC
FNBC l BC EABC
20103 400 0.167mm
200103 240
缩短
l lAB lBC 0.1 0.167 0.067mm 缩短
A
1m
F
B
30o
C
分析
A
B
通过节点C的受力分析可以判断AC 杆受拉而BC杆受压,AC杆将伸长,而 F BC杆将缩短。

第7章 轴向拉压杆件的强度与变形计算

第7章 轴向拉压杆件的强度与变形计算

F NBC 56 . 6 kN (压力) F NBA 40 kN
(拉力)
(2)由强度条件确定各杆截面尺寸 对BA杆
A BA
d
4
2

F NBA
s
d
4 F NBA

s
17 . 8 mm
可取
d 18 mm
F NBC
对BC杆
A BC a
2

w
a
F NBC
【例】已知AB梁为刚体,CD为拉杆,拉杆直径
d=2cm,E=200GPa,FP=12kN, 求B点位移。
C 0.75m A D B
1m
1.5m
FP
解:(1)受力分析,求轴力
FN
F Ax
A
D
B
F Ay
1m
1.5m
FP

M
A
0
F P AB F N AD sin
FN
解:(1)受力分析, 求各杆轴力

F NBD
F x 0, Fy 0
2 F P 31 . 4 kN
(2)求各杆应力

BD
F NCD F P 22 . 2 kN
F NBD A BD F NCD A CD 22 . 2 kN 31 . 4 kN

CD
3
m

DD BB

AD AB
B B D D /(
AD AB
)
4 . 17 10
3
m
7.4 轴向拉压杆的强度计算
• 工作应力

FN A
• 失效:工作应力超过了杆件材料所能承受的极 限应力;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杆件的轴向应变和轴向力计算
杆件是工程中常见的构件之一,广泛应用于建筑、桥梁、机械等领域。

在设计
和分析杆件时,了解轴向应变和轴向力的计算方法是非常重要的。

一、轴向应变的定义和计算方法
轴向应变是指杆件在受到轴向力作用时,单位长度的变形量。

轴向应变可以用
公式表示为:
ε = ΔL / L
其中,ε表示轴向应变,ΔL表示杆件在受到轴向力作用后的长度变化量,L表
示杆件的原始长度。

轴向应变的计算方法主要有以下几种:
1. 直接测量法:通过使用应变计等测量仪器,直接测量杆件在受力后的长度变
化量,然后根据上述公式计算轴向应变。

2. 应变计法:在杆件上粘贴应变计,应变计的电阻值会随着杆件受力而发生变化,通过测量电阻值的变化,可以计算出轴向应变。

3. 数值模拟法:通过有限元分析等数值方法,对杆件的受力情况进行模拟计算,从而得到轴向应变的数值结果。

二、轴向力的定义和计算方法
轴向力是指作用在杆件上的沿着杆件轴线方向的力。

轴向力可以用公式表示为:
N = A * σ
其中,N表示轴向力,A表示杆件的横截面积,σ表示轴向应力。

轴向力的计算方法主要有以下几种:
1. 直接测量法:通过使用力传感器等测量仪器,直接测量作用在杆件上的轴向力。

2. 应力计算法:根据杆件受力情况和材料的力学性能参数,计算轴向应力,然
后通过上述公式计算轴向力。

3. 数值模拟法:通过有限元分析等数值方法,对杆件的受力情况进行模拟计算,从而得到轴向力的数值结果。

三、轴向应变和轴向力的关系
轴向应变和轴向力之间存在一定的关系。

根据胡克定律,轴向应变和轴向力之
间的关系可以表示为:
σ = E * ε
其中,σ表示轴向应力,E表示杆件的弹性模量,ε表示轴向应变。

根据上述公式,可以通过已知轴向应变或轴向力,计算出轴向应力。

同时,也
可以通过已知轴向应力和轴向应变,计算出杆件的弹性模量。

四、轴向应变和轴向力的应用
轴向应变和轴向力的计算在工程设计和分析中有着广泛的应用。

通过对轴向应
变和轴向力的计算,可以评估杆件的受力状态和变形情况,从而确定杆件的安全性和可靠性。

在建筑和桥梁设计中,轴向应变和轴向力的计算可以用于确定柱子、梁等结构
的受力情况,从而保证结构的稳定性和承载能力。

在机械设计中,轴向应变和轴向力的计算可以用于确定轴承、连接件等部件的
受力情况,从而保证机械的正常运转和使用寿命。

总结:
轴向应变和轴向力是杆件设计和分析中的重要参数。

通过合适的计算方法,可以准确地计算出轴向应变和轴向力的数值结果。

这些计算结果对于评估杆件的受力状态和变形情况,保证工程结构的安全性和可靠性具有重要意义。

因此,对于工程师和设计人员来说,掌握轴向应变和轴向力的计算方法是非常必要的。

相关文档
最新文档