《不等式及其基本性质》word教案 (公开课获奖)2022沪科版 (1)

合集下载

七年级数学下册教案-7.1 不等式及其基本性质3-沪科版

七年级数学下册教案-7.1 不等式及其基本性质3-沪科版

7.1不等式及其基本性质(1)一、教学目标:1.通过实际问题中数量关系的分析,体会到现实世界中有各种各样的数量关系存在,不等关系是其中的一种。

2.了解不等式及其概念;会用不等式表示数量之间的不等关系。

二、教学重、难点:1.本节课的重点是不等式的概念。

2.本节课的难点是正确分析实际问题中的不等关系并用不等式表示。

三、教具准备:多媒体课件四、学情分析:对于等量关系是学生比较熟悉的,会用等式(方程)进行表达不等关系虽然大量存在,但用数学方法表达学生还比较陌生.需要引导学生通过对实际问题的认真观察,仔细分析,抓住反映不等关系的关键词语(如多于、少于、不高于、不低于、最多、最少等),结合已有的数的大小比较、方程等知识,用不等式正确反映实际问题中的不等关系。

五、教学过程:1.回顾与提问:什么是等式?你能举个表示等式关系的例子吗?等式用什么符号连接?2.情境引入:[问题1] 用适当的符号表示下列关系:(1)2x与3的和不大于-6;(2)x 的5倍与1的差小于x 的3倍;(3)a与b的差是负数。

[问题2] 雷电的温度大约是28000℃,比太阳表面温度的4.5倍还要高。

设太阳表面温度为t℃,那么t应该满足怎样的关系式?[问题3] 一种药品每片为0.25g,说明书上写着:“每日用量0.75~2.25g,分3次服用”。

设某人一次服用 x 片,那么 x 应满足怎样的关系?通过两个实际问题:太阳表面温度和药品问题让学生体会到实际生活中广泛存在的不等关系。

3.新课讲解:(1)不等式的定义:用不等号(>、≥、<、≤或≠)表示不等关系的式子叫做不等式注意:不大于,即小于或等于,用“≤”表示(“≤” 也可以说成“至多”“不多于”;不小于,即大于或等于,用“≥”表示(“≥”也可以说成“至少”“不少于”)。

(2)知识巩固:判断下列式子是不是不等式:(1)3>0;(2)4x+3y=0;(3)x=3;(4) x-1;(5)x+2 ≤3;(6)a≠54.深化提高例1:列不等式(1)x的5倍与y的一半的差不大于1(2)x的4倍不大于x的3倍与7的差(3)代数式2y-3的值至少比y-2大3例2:爆破施工时导火索的燃烧速度是0.06米/秒,人离开的速度是4.8米/秒。

沪科版七年级下册7.1《不等式及其基本性质(1)》 教案设计

沪科版七年级下册7.1《不等式及其基本性质(1)》 教案设计

7.1不等式及其基本性质(1)一、教学目标1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种;2.了解不等式及其概念;会用不等式表示数量之间的不等关系;二、重点难点1.重点:了解不等式的意义,用不等式表示具体问题中的数量关系;2.难点:正确分析数量关系,列出表示数量关系的不等式.三、教学过程导入新课在古代,我们的祖先就懂得了翘翘板的工作原理,并且根据这一原理设计出了一些简单机械,并把它们用到了生活实践当中。

由此可见,“不相等”处处可见。

从今天起,我们开始学习一类新的数学知识:不等式。

新课讲解提纲:1.认真看书23页内容。

2.举出生活中一个不等量关系的例子。

3.注意表示不等关系的词语如“不大于”,“不高于”等等。

合作学习:问题1:用适当的符号表示下列关系:(1)2x与3的和不大于6;(2)x的5倍与1的差小于x的3倍;(3)a与b的差是正数。

问题2:雷电的温度大约是28000℃,比太阳表面温度的4.5倍还要高。

设太阳表面温度为t ℃,那么t应满足这样的关系式?问题3:一种药品每片为0.25g,说明书上写着“每日用量0.75~2.25g,分3次服用”。

设某人一次服用x片,那么x应满足怎样的关系式?根据题意,我们可以得到下列式子:2x+3 ≤6 5x-1 < 3x a-b > 0 4.5t < 28000 0.75 ≤ 3×0.25x≤ 2.25像上面那些式子,用不等号(>、≥、<、≤或≠)表示不等关系的式子,就叫做不等式。

注:不大于,即小于或等于,用“≤”表示;不小于,即大于或等于,用“≥”表示。

四、课堂检测1.用不等式表示下列关系①亮亮的年龄(记为x)不到14岁。

_____________②七年级(1)班的男生数(记为y)不超过30人。

_____________③某饮料中果汁的含量(记为x)不低于20%._____________2.甲市某天最低气温为-1℃,最高气温为5℃,设该市这天某一时刻的气温为t℃,求t应满足的数量关系。

沪科版七年级数学下册教案设计:7.1不等式及其基本性质

沪科版七年级数学下册教案设计:7.1不等式及其基本性质
回忆等式的基本性质,通过天平思考讨论交流得出不等式的基本性质。
三、练习巩固
P26 练习第1、2、3、4题
巡视,指导,点评
1,2题抢答,3、4题学生思考,个别回答。
四、小结反思
本节课学习了什么内容?你还有什么疑惑?
五、课后作业
习题7.1 第3、4、5题
情感与价值观
1.通过学生对不等式性质的探索,培养学生的钻研精神,同时还加强了同学间的合作与交流;
2.通过具体情景的创设,使学生在生活中发现数学,感受数学在生活中的重要应用,激发学生对数学学习的热情。
教学重点
不等式的概念及其基本性质。
教学难点
不等式的基本性质的掌握和应用,特别是不等式基本性质3的理解与应用。
(3)某段长为30km的公路AB,对行驶汽车限速为(不超过)60km/h,一辆汽车从A到B的行驶时间为t小时,求t满足的数量关系。
2.探究不等式基本性质(5个性质)
引导学生找出并理解不等式的概念。
给出对应的练习,巩固概念
类比等式的基本性质,通过天平探究不等式的基本性质。
学生自学找出不等式的概念。
独立完成,适当与同学交流。
教学过程
教学环节
教学内容
教师活动
学生活动
一、
创设问题情境,引入新课
1、翘翘板图
2、问题1:用适当的式子表示下列关系:
(1)2x与3的和不大于-6;
(2)x的5倍与1的差不小于x的3倍;
(3)a与b的差是负数;
(4)x的2倍与y的值不相等。
问题2:雷电的温度大约是28000℃,比太阳表面温度的4.5倍还要高。设太阳表面温度为t℃,那么t应该满足怎样的关系式?
第 七 单元课题《7.1不等式及其基本性质》

7.1不等式及其基本性质(第1课时)沪科版七年级数学下册教学设计

7.1不等式及其基本性质(第1课时)沪科版七年级数学下册教学设计
5.结合实际问题,培养学生将数学知识应用于解决生活问题的能力。
-设想活动:设计一些与生活相关的不等式问题,如购物打折、时间安排等,让学生在实际情境中应用所学知识。
6.重视课堂小结,通过师生共同总结,帮助学生梳理本节课的知识点,形成知识网络。
-设想活动:邀请学生分享自己在学习不等式过程中的心得体会,教师进行点评和补充。
4.教师将及时批改作业,对学生的作业进行评价和指导,帮助学生查漏补缺。
4.引导学生关注社会现象,将所学知识应用于实际情境,培养学生的社会责任感和公民意识。
在教学中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,教师要注重启发式教学,引导学生主动发现问题、解决问题,培养学生的创新思维和解决问题的能力。在此基础上,结合本章节内容,制定以下教学设计。
7.1不等式及其基本性质(第1课时)沪科版七年级数学下册教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,掌握不等式的表示方法,能够识别不等式的基本结构。
2.掌握不等式的基本性质,包括传递性、对称性和可加性,能够运用这些性质解决相关问题。
3.学会使用数轴表示不等式,理解不等式解集的概念,并能够求解简单的一元一次不等式。
设计意图:通过总结归纳,帮助学生梳理所学知识,形成系统化、结构化的知识体系。
在整个教学过程中,教师应关注学生的主体地位,注重启发式教学,引导学生主动探究、发现、解决问题。同时,关注学生的情感态度,营造轻松、和谐的学习氛围,使学生在愉快的氛围中掌握知识,提高能力。
五、作业布置
为了巩固本节课所学知识,提高学生的解题能力和应用意识,特布置以下作业:
1.基础作业:
-完成课本第7.1节后的练习题1、2、3。

沪科版数学七年级下册 不等式及其基本性质 教案

沪科版数学七年级下册 不等式及其基本性质 教案
三、学习者分析
学生在学习了有理数的大小比较、等式及其基本性质的基础上,积累了一定的经验,本节课主要采用类比等式的方法进行不等式的探究教学,这样不仅有利于学生掌握不等式的基本性质,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生辩证思维的能力。本节课运用移动终端设备的多种交互式互动功能,让学生们在轻松快乐的氛围中进行数学知识的学习,让学生们在愉快的数学活动中掌握数学知识,并学会运用,使数学知识的学习融入到生活实践中。
四、教学重难点分析及解决措施
教学重点:不等式的概念及不等式基本性质1、2、3;
教学难点:不等式的基功能,让学生快乐参与,玩中学,学中玩,不知不觉中掌握了知识难点,激发了学生学习数学的兴趣,并提升了解决问题的能力。
五、教学设计
教学环节
环节目标
教学内容
学生活动
7.1不等式及其基本性质
一、基本信息
学校
课名
不等式及其基本性质
教师姓名
学科(版本)
沪科版
章节
第七章第一节
课时
年级
七年级
二、教学目标
知识与技能:
1、了解不等式及其概念,会用不等式表示具体问题中的数量关系;
2、掌握不等式的基本性质1、2、3,通过类比等式的基本性质,经历探索不等式性质的过程。
数学思考:
1、通过用不等式表述数量关系的过程,体会建立不等式这一数学模型的思想,建立符号意识;
探究新知
活动二、列不等式
会列不等式
分析问题中的不等关系,并列出不等式
找出表示不等关系的词语,并列出不等式,用平板拍照上传
有利于教师及时掌握孩子的学习效果
二、
探究新知
活动三、探究不等式基本性质
掌握不等式的基本性质1、2、3

6.5不等式及其性质1教案沪教版

6.5不等式及其性质1教案沪教版

6.5不等式及其性质(1)教学目标:1、理解不等式的有关概念,会用不等式表示不等量之间的关系.2、经历不等式性质1的探究过程,感受类比的数学思想,体会从特殊到一般的探究问题的方法。

3、理解并能正确应用不等式性质1教学重点与难点:不等式性质1及其应用.教学过程:教师活动学生活动教学设计意图一、情景引入1、观察思考观察以上图片中的交通标志,请同学思考分别表示什么意义。

用语言描述照片中交通标志的数学符号的意义。

2、用数学关系式表示交通标志的含义①如果用V来表示速度,汽车的速度每小时不能超过60千米用数学关系式可以怎样表示?(可以写成V≤40千米/每小时)②如果用P来表示载重量,用h表示汽车的高度,怎样用数学关系式表示汽车的载重量和汽车的高度呢?(P≤20(T)h <4(米)二、不等式的概念学习1、不等号的含义①符号“≤”表示什么意义?②除了“≤”,还有哪些不等号,它们分别表示什么意义?“≠”也是不等号,它表示什么意义?学生口答左下表示:汽车的速度不能超过每小时40千米;左上表示:汽车高度不能超过4米;右图表示:汽车的重量不能超过20吨;板书:“≤”表示小于或等于。

“≥”表示大于于或等于。

“<”表示小于。

“>”表示大于。

“≠”表示小于或大于。

从学生经常看到的交通标志出发,引出不等量关系,使学生更感亲切,进一步体验到生活中处处有数学,数学为生活服务的道理,提高兴趣,也对学生进行交通安全知识的教育.对于交通标志的意义学生不清楚时教师可直接告诉学生.此处讲清“ ”的含义.用符号语言表示不等关2、不等式概念引入同学们,在日常生活中,我们经常用>、<、≥、≤、≠这些带有方向性的不等号来表示不等量之间的关系.用不等号“>”、“<”、“≥”、“≤”、“≠”表示的关系式,叫做不等式(inequality).今天我们就来学习不等式及其性质.【出示课题:6.5不等式及其性质(1)】2、例题分析:例1.用不等式表示(1)消费金额满30元的顾客可以凭收银条参加抽奖活动(用M表消费金额)(2)在大人的带领下,超过1.2米的儿童乘公共汽车必须买车票(用h表示儿童的身高)例2. 用不等式表示(文字语言↔数学符号)(1)a与b的和小于0;(2)x与y的积是正数提问:一个数是正数,如何用不等式表示?(3)a的2倍与-1的差是非正数提问:一个数是非正数,如何用不等式表示?(4)m与n的和的平方是非负数提问:一个数是非负数,如何用不等式表示?(5)a的相反数不大于2提问:x不大于y,如何用不等式表示?提问:x不小于y,如何用不等式表示?归纳:文字语言↔数学符号。

沪科版七年级数学下册7.1《不等式的基本性质》教学设计

沪科版七年级数学下册7.1《不等式的基本性质》教学设计
3.不等式的解集表示:然后,我会介绍如何利用数轴表示不等式的解集,包括开区间、闭区间、半开半闭区间等表示方法。
4.不等式的应用:最后,我会结合实际案例,让学生学会将实际问题转化为不等式模型,并运用不等式解决这些问题。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。各小组针对以下问题进行讨论:
在教学过程中,要关注学生的个体差异,充分调动他们的主观能动性,使学生在轻松愉快的氛围中掌握不等式的基本性质,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.知识与技能方面的重难点:
-理解并掌握不等式的基本性质,特别是乘法和除法性质在不同情况下的应用。
-学会使用数轴准确表示不等式的解集,特别是含有多个不等式的复合不等式的解集。
1.学生对不等式定义的理解程度,帮助他们巩固和拓展已有知识。
2.引导学生从实例中观察、总结不等式的基本性质,培养他们的发现能力和抽象思维能力。
3.关注学生在数轴操作方面的掌握情况,适时给予指导,提高他们运用数轴解决不等式问题的能力。
4.针对不同学生的学习需求,设计具有挑战性的问题和任务,激发学生的求知欲,促进他们的个性化发展。
-采用形成性评价,关注学生的学习过程,及时给予反馈,指导学生调整学习方法。
-采用终结性评价,通过单元测试、期中考试等方式,全面评估学生对不等式基本性质的理解和运用能力。
4.教学资源:
-利用多媒体课件,生动形象地展示不等式的性质和解集的表示方法。
-借助网络资源,提供丰富的不等式例题和实际应用案例,拓展学生的学习视野。
4.结合实际生活情境,引导学生发现并提出问题,培养学以致用的能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,激发他们探索数学规律的欲望,增强学习数学的兴趣和自信心。

沪科版七年级数学下册第七章《不等式及其基本性质1》公开课课件

沪科版七年级数学下册第七章《不等式及其基本性质1》公开课课件
1 不等关系
不相等 处处可见
在古代,我们的祖先就懂得了翘翘板的工作原理,
并且根据这一原理设计出了一些简单机械,
并把它们用到了生活实践当中.
由此可见,“不相等”处处可见. 从今天起,我们开始学习一类新的数学知识:不等式.
1 不等关系
不相等 处处可见
用不等号表示的式子叫做不等式。.
如图,a与b的大小关系如何?
可得到
针对练习
1.如果在不等式8>0的两边都乘以―8可得到
-64 < 0
2.如果-3x>9,那么两边都除以―3可得到
x < -3
3.设m>n,用“>”或“<”填空:
m-5> n-5(根据不等式的性1质

-6m<
-6n(根据不等式的性3质

今天我学会 了……
28
想一想: 你发现了什么规律?
不等式的两边都乘以(或除以)同一个 正数,不等号的方向不__变__;而乘以(除以)同 一个负数,不等号的方向改__变___.
不等式的基本性质1:
不等式的两边都加上(或减去)同一个 整式,不等号的方向不变.
不等式的基本性质2:
不等式的两边都乘以(或除以)同一个 正数,不等号的方向不变.
自学检测
1.如果x-5>4,那么两边都 加上可5 得 到x>9
2.如果在-7<8的两边都加上9,可得到 2 < 17
3.如果在5>-2的两边都加上a+2,可得 a+7 > a

-21>-28
4.如果在-3>-4的两边都乘以7,可得到64 > 0
5.如果在8>X 0的Байду номын сангаасX边都乘以8,可得到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式及其基本性质》
学习目标:
1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种.
2.了解不等式及其概念;会用不等式表示数量之间的不等关系.
3.掌握不等式的基本性质,并能利用不等式的基本性质对不等式进行变形.
学习重点:
不等式的概念和不等式的性质.
学习难点:
不等式的性质3以及正确分析实际问题中的不等关系并用不等式表示.
教学过程:
(一)探究性质
1.明确定义
2.不等式的意义:表示生活中量与量之间不等关系的式子.
例题:1.“神七”速度v超过11200米/秒,才能脱离地球引力,飞入太空,怎样表示v和11200之间的关系?
3.想一想:
(1)如果a<b,用不等号连接下列各式的两边.
① a + 2 b+ 2 ② a– 5 b– 5
(2)如果2x-8≥3 ,那么2x 11.
4.小结:
不等式性质1:

(二)探究性质
1.用不等号填空:
①已知5<8,则5×38×3;5×(-3)8×(-3)
②已知 -5>-8,则-5×3 -8×3;-5×(-3) -8×(-3)
归纳:不等式两边同时乘以一个正数,不等号方向;不等式两边同时乘以一个负数,不等号方向 .
2.用不等号填空:
①已知6<8,那么6÷28÷2;6÷(-2)8÷(-2)
②已知-6>-8,那么-6÷2 -8÷2;6÷(-2) -8÷(-2)
归纳:不等式两边同时除以一个正数,不等号方向;不等式两边同时除以一个负数,不等号方向 .
(三)例题分析
例1.(1)若x +1>3,则x _____________.根据___________ __.
(2)2x >-6,则x _____________.根据_______ _____.
(3)-3y ≤5,则y .根据 .
例2.如果m > n .判断下列不等式是否正确.
(1)m +7 < n +7 ( ) (2)m -2 < n -2 ( )
(3)3m < 3n ( ) (4)9
9n m >( ) 例3.利用不等式的基本性质,将下列各不等式化为“x a >”或“x a <”的形式.
(1)546x x <- (2)5621x x -+<+
(四)课堂练习
1.用代数式表示:比x 的5倍大1的数不小于x 的
21与4的差_____________. 2.若a >b .下列各不等式中正确的是( )
A.a -1<b -1
B.b a 8
181-<- C.8a <8b D.-a +1<-b -1 3.下列四个命题中,正确的有 .
①若a >b ,则a +1>b +1 ②若a >b ,则a -1>b -1
③若a >b ,则-2a <-2b ④若a >b ,则2a <2b
有理数的乘法和除法
教学目标:
1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

重点:有理数除法法则的运用及倒数的概念
难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。

教学过程:
一、创设情景,导入新课
1、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘.
几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有一个因数是0,积就为0.
2、有理数乘法运算律:
a ×
b = b ×a (a ×b )×
c = a ×(b ×c ). a ×(b+c )=a × b + a ×c
3、计算(分组练习,然后交流)(见ppt )
二、合作交流,解读探究
1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?
(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3)
学生:独立思考后,再将结果与同桌交流。

教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。

同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。

根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。

2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。

同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。

0除以以何一个为等于0的数都得0
教师指出:为了使商存在且唯一,要求除数不等于0,即0不能作除数。

三、应用迁移,巩固提高
例1 计算
(1) (-24)÷4 (2)(-18)÷(-9) (3) 10÷(-5) 引导学生按照有理数除法法则进行计算,既先确定商的符号,再计算绝对值。

请四位同学到黑板做,完成后,师生共同订正。

四、合作交流,解读探究
1、小学里学过有关倒数的概念是什么?怎么求一个数的倒数?(用1除以这个数) 4和+32的倒数是多少?0有倒数吗?为什么没有?
2、小学里学过的除法与乘法有何关系?例如10÷0.5=10×2;0÷5=0×(
51),你能总结总结出一句话吗?(除以一个数等于乘以这个数的倒数)
我们已经知道 10÷(-5)= -2 ,又 10×(-
51)=-2 所以就有:10 ÷(-5)=10×(-5
1) 引入倒数的概念。

如果两个数的乘积等于1,那么把其中一个数叫做另一个数的倒数,也称这两个数互为倒数。

这里(-5)×(-51 )=1,我们把-5
1 叫作-5的倒数。

3、5÷0=?,0÷0=?呢?(这些式子无意义)也就是说0是没有倒数的。

提问:(1)以上两组数的计算结果怎样?(2)5与
51,52-与25-是一对什么数? 由上面的计算,你能得出什么结论?除以一个非零数等于乘上这个数的倒数。

上述结论称之为有理数除法的第二个法则。

例2(1)写出9,3
2-
,87 ,-1,1,-241的倒数。

(2)计算:(1) (-12)÷3
1; (2) 15÷(-73) (3) (-152)÷(-32) 3、课堂练习:P36练习第1、2、3题
四、总结反思
(1)有理数的除法法则是什么?
(2)如何运用除法法则进行有理数的除法运算?
五、作业:P41习题1.5A组第6、7、8题。

相关文档
最新文档