图的遍历
图的遍历算法
1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。
如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。
由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。
(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。
(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。
⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。
下面将介绍两种算法的实现思路,分析算法效率并编程实现。
1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。
如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。
其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
第15讲图的遍历
V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
第7章图的深度和广度优先搜索遍历算法
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }
图的遍历及生成树
• •邻接表的DFS算法
void DFS(ALGraph G, int v) { ArcNode *p;
visited[v] = 1; /*置已访问标记*/ printf("%d ", v); /*输出被访问顶点的编号*/ p = G.vertices[v].firstarc; /*p指向顶点v的第一个邻接点*/ while (p!=NULL) {
•v11
•v1,
•v2
•v3
•v2,
•v4,
•v5
•v8,
•v4
•v6
•v7
•v5,
•v3,
•v8
•v6,
•v7
•
•图的DFS算法一般描述
•int visited[MAXVEX]; //访问标志数组
•void DFSTraverse(Graph G)
•{ //对图G作深度优先遍历
• for( v=0; v<G.vexnum; ++v ) visited[v]=FALSE;
•} // DFS1
•G.arcs[v][j] =1
•有邻接点
•visited [n]=0
•未访问过
•
分析:
在遍历图时,对图中每个顶点至多调用一次DFS函数 ,因为一旦某个顶点被标志成已被访问,就不再从它出发 进行搜索。
因此,遍历图的过程实质上是对每个顶点查找其邻接 点的过程。其耗费的时间则取决于所采用的存储结构。 如果用邻接矩阵来表示图,遍历图中每一个顶点都要从 头扫描该顶点所在行,因此遍历全部顶点所需的时间为 O(n2)。 如果用邻接表来表示图,虽然有 2e 个表结点,但只需扫 描 e 个结点即可完成遍历,加上访问 n个头结点的时间, 因此遍历图的时间复杂度为O(n+e)。
图的遍历的实验报告
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
图的深度优先遍历详解
图的深度优先遍历详解图的深度优先遍历详解说明1. 深度优先遍历,即先向纵深处挖掘遍历,等这条路⾛不通再回溯2. 设置要开始遍历的第⼀个顶点,然后寻找该顶点的第⼀个邻接顶点,如果第⼀个邻接顶点存在,则从第⼀个邻接顶点⼜重新开始深度优先,寻找它的第⼀个邻接顶点,直到他们的第⼀个邻接顶点不存在或者第⼀个邻接顶点已经被访问,那么寻找它的下⼀个邻接顶点,直到寻找完所有的顶点3. 很明显需要使⽤递归4. 当没有通路的最后⼀个邻接顶点相连的所有顶点全部遍历完时,则回溯判断上⼀个顶点的下⼀个邻接顶点,直到遍历完然后再回溯5. 直到遍历完所有的顶点6. 说明:当当前顶点的第⼀个邻接顶点已经被访问过时,才遍历它的下⼀个邻接顶点7. 源码见下源码及分析深度优先核⼼代码//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过* @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->");//将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}深度优先遍历代码实现package algorithm.datastructor.graph;import java.util.ArrayList;import java.util.Arrays;/*** @author AIMX_INFO* @version 1.0*/public class Graph {//使⽤邻接矩阵表⽰图//使⽤集合存储图的顶点private ArrayList<String> vertexList;//使⽤⼆维数组即矩阵描述顶点之间的关系private int[][] edges;//边的个数private int numOfEdges;//定义变量判断是否访问过private boolean[] isVisited;//测试public static void main(String[] args) {int n = 5;String[] vertexs = {"A", "B", "C", "D", "E"};//创建图Graph graph = new Graph(n);//添加顶点for (String vertex : vertexs) {graph.insertVertex(vertex);}//连接顶点graph.insertEdge(0, 1, 1);graph.insertEdge(0, 2, 1);graph.insertEdge(1, 2, 1);graph.insertEdge(1, 3, 1);graph.insertEdge(1, 4, 1);//显⽰图graph.showGraph();System.out.println("深度优先遍历");graph.dfs();}//n为顶点的个数public Graph(int n) {edges = new int[n][n];vertexList = new ArrayList<>(n);numOfEdges = 0;isVisited = new boolean[n];}//插⼊顶点public void insertVertex(String vertex) {vertexList.add(vertex);}/*** 添加边** @param v1 顶点在集合中存储的下标* @param v2 顶点在集合中的下标* @param weight 两个顶点之间的权值,0或者1,表⽰是否相连 */public void insertEdge(int v1, int v2, int weight) {edges[v1][v2] = weight;edges[v2][v1] = weight;numOfEdges++;}//返回节点的个数public int getNumOfVertex() {return vertexList.size();}//返回边的个数public int getNumOfEdges() {return numOfEdges;}//返回下标 i 对应的数public String getValueByIndex(int i) {return vertexList.get(i);}//返回v1和v2的权值public int getWeigh(int v1, int v2) {return edges[v1][v2];}//显⽰矩阵public void showGraph() {for (int[] link : edges) {System.out.println(Arrays.toString(link));}}//获取与当前顶点连接的第⼀个邻接顶点public int getFirstNeighbor(int v) {for (int i = 0; i < vertexList.size(); i++) {if (edges[v][i] > 0) {return i;}}return -1;}//根据前⼀个邻接顶点获取下⼀个邻接节点的下标 /*** @param v1 当前顶点* @param v2 当前顶点的第⼀个顶点* @return 返回下⼀个邻接顶点*/public int getNextNeighbor(int v1, int v2) {for (int i = v2 + 1; i < vertexList.size(); i++) { if (edges[v1][i] > 0) {return i;}}return -1;}//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过 * @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->"); //将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}。
图的遍历算法实验报告
图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。
在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。
本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。
二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。
三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。
四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。
通过邻接矩阵表示图的关系。
```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。
3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。
4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。
经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。
可以看出,DFS算法相对于BFS算法具有更高的效率。
五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。
2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。
DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。
3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。
这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。
图的遍历实验报告
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
图的两种遍历
输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.
图遍历算法实现策略概述
图遍历算法实现策略概述在算法和计算机科学领域中,图遍历算法是一种用于搜索和遍历图结构的算法。
图遍历算法的实现涉及到多种策略和技巧,本文将概述图遍历算法的实现策略。
一、深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法。
其基本思想是从图中的一个节点开始,递归地访问其相邻节点,直到找到目标节点或者无法继续访问为止。
DFS的实现可以使用递归或者栈来辅助实现,下面是一种常见的实现策略:1. 从起始节点开始,将其标记为已访问。
2. 遍历起始节点的邻居节点,选择一个未访问过的邻居节点进行递归访问。
3. 重复步骤2,直到无法再选取未访问的邻居节点为止。
4. 如果无法再选取未访问的邻居节点,则回溯到上一个节点,选择另一个未访问的邻居节点,并继续递归访问。
二、广度优先搜索(BFS)广度优先搜索也是一种常见的图遍历算法。
其基本思想是从图中的一个节点开始,按照层级顺序依次访问其邻居节点,直到找到目标节点或者遍历完整个图为止。
BFS的实现可以使用队列来辅助实现,下面是一种常见的实现策略:1. 从起始节点开始,将其标记为已访问,并将其加入到队列中。
2. 从队列中取出一个节点,访问其邻居节点,并将未访问过的邻居节点加入到队列中。
3. 重复步骤2,直到队列为空。
4. 如果队列为空,则表示已经遍历完整个图。
三、迭代深化深度优先搜索(IDDFS)迭代深化深度优先搜索是一种结合深度优先搜索和广度优先搜索的图遍历算法。
它的基本思想是在每一次迭代中,限制搜索的深度,从而逐渐递增搜索的深度,直到找到目标节点或者遍历完整个图为止。
IDDFS的实现可以使用递归或者栈来辅助实现,下面是一种常见的实现策略:1. 从起始节点开始,将其标记为已访问,并将其加入到栈中。
2. 从栈中取出一个节点,访问其邻居节点,并将未访问过的邻居节点加入到栈中。
3. 重复步骤2,直到达到当前迭代的深度限制。
4. 如果达到当前迭代的深度限制,而且还有未访问的节点,则增加深度限制,并重复步骤1。
第7章 图3图的遍历PPT课件
123
1
AB
E
A
7D C5 G4
7D
23
B
E
C5 G4
6F H
I
89
前进 回退
深度优先搜索过程
6F H
I
89
深度优先搜索树
7
LOGO
•由以上图示过程可知,深度遍历是一个递归的过程
8
voLidOGTOraverseGraph(AdjMatrix *g)/*算法7.3
{ int vi; for(vi=0;vi<g->vexnum;vi++) visited[vi]=False; //访问标志数组初始 for(vi=0;vi<g->vexnum;vi++) //循环调用深度遍历连通子图的操作 if (!visited[vi]) DepthFirstSearch74(g,vi); //若图g是连通图,则此循环 调用函数只执行一次 //DepthFirstSearch75(g,vi); //DepthFirstSearch77(g,vi); //BreadthFirstSearch(g,vi)9; }
w=NextAdjVertex(g,v0,w);
/*找下一个邻接点*/
}}
12
12
B
E
C4 G3
w=3
H
6
void DepthFirstSearch74(AdjMatrix *g, int v0)/*算法7.4, 未具LO体GO展开邻接矩阵(邻接表)的深度优先遍历算法*/
{ int w;
v0=‘A’ v0=‘B’ v0=‘E’ v0=‘G’
visited[v0]=True;
图的遍历算法实验报告
图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。
图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。
在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。
首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。
通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。
这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。
接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。
通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。
这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。
通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。
DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。
因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。
总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。
通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。
希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。
图的遍历数据结构实验报告
图的遍历数据结构实验报告正文:1·引言本实验报告旨在介绍图的遍历数据结构实验的设计、实现和结果分析。
图是一种常见的数据结构,用于表示对象之间的关系。
图的遍历是指系统地访问图的每个节点或边的过程,以便获取所需的信息。
在本次实验中,我们将学习并实现图的遍历算法,并分析算法的效率和性能。
2·实验目标本实验的主要目标是实现以下几种图的遍历算法:●深度优先搜索(DFS)●广度优先搜索(BFS)●拓扑排序3·实验环境本实验使用以下环境进行开发和测试:●操作系统:Windows 10●编程语言:C++●开发工具:Visual Studio 20194·实验设计与实现4·1 图的表示我们采用邻接矩阵的方式来表示图。
邻接矩阵是一个二维数组,用于表示图中节点之间的关系。
具体实现时,我们定义了一个图类,其中包含了节点个数、边的个数和邻接矩阵等属性和方法。
4·2 深度优先搜索算法(DFS)深度优先搜索是一种经典的图遍历算法,它通过递归或栈的方式实现。
DFS的核心思想是从起始节点开始,尽可能深地访问节点,直到达到最深的节点或无法继续访问为止。
我们实现了一个递归版本的DFS算法,具体步骤如下:●从起始节点开始进行递归遍历,标记当前节点为已访问。
●访问当前节点的所有未访问过的邻接节点,对每个邻接节点递归调用DFS函数。
4·3 广度优先搜索算法(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式实现。
BFS的核心思想是从起始节点开始,逐层地遍历节点,先访问离起始节点最近的节点。
我们实现了一个使用队列的BFS算法,具体步骤如下:●将起始节点放入队列,并标记为已访问。
●从队列中取出一个节点,访问该节点并将其所有未访问的邻接节点放入队列。
●重复上述步骤,直到队列为空。
4·4 拓扑排序算法拓扑排序是一种将有向无环图(DAG)的所有节点线性排序的算法。
图的遍历(深度优先遍历和广度优先遍历)
遍历规则 从图中某结点v0出发,深度优先遍历(DFS: Depth First Search)图的规则为: 访问v0; 对v0的各个出点v01,v02,…,v0m,每次从它们中按一定方式(也可任选)选取一个未被访问过的结点,从该结点出发按深度优先遍历方式遍历。 然,因为我们没有规定对出点的遍历次序,所以,图的深度优先遍历结果一般不唯一。
20.2 深度优先遍历
例如,对图 20‑1给出的有向图与无向图,一些遍历结果(结点访问次序)为: 左图:从1出发:1,2,4,5;或1,5,2,4 从2出发:2,1,5,4;或2,4,1,5 右图:从a出发:a,b,c,d;或a,b,d,c; … …
A 如果不想让visited或top做为函数参数,也可以在函数中将其定义为static型量。但是,这样的程序是不可再入的,即函数再次被调用时,static型的量也不重新初始化,造成错误!
上面函数中的参数visited和top实质上是中间变量,只是为了避免在递归调用时重新初始化而放在参数表中,造成使用的不方便,为此,做个包装程序: long DFS1(int g[][CNST_NumNodes], long n, long v0, long *resu ) { char *visited; long top=0; visited = new char[n]; for (long i=0; i<n; i++) visited[i]=0; long num=DFS1( g, n, v0, visited, resu, top ); delete visited; return num; }
深度优先遍历非递归算法的一般性描述。
long DFS_NR(图g,结点v0)
单击此处可添加副标题
实验四 图的遍历算法
实验四图的遍历算法4.1.实验的问题与要求1.如何对给定图的每个顶点各做一次且仅做一次访问?有哪些方法可以实现图的遍历?2.如何用这些算法解决实际问题?3.熟练掌握图的基本存储方法4.熟练掌握图的两种搜索路径的遍历方法5.掌握有关图的操作算法并用高级语言实现4.2.实验的基本思想和基本原理和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
遍历常用两种方法:深度优先搜索遍历;广度优先搜索遍历4.2.1 深度优先搜索(Depth-First Traversal)深度优先搜索是一种递归的过程,正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。
在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续下去。
当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。
这一过程一直进行到已发现从源结点可达的所有结点为止。
如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。
1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v 为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
图的遍历的概念
图的遍历的概念图的遍历是指通过遍历图中的所有节点,访问图中的每个节点一次且仅一次的过程。
在图的遍历过程中,我们会将节点标记为已访问,以确保不重复访问节点。
图的遍历是解决许多图相关问题的基础,如查找路径、遍历连通图、检测图的连通性等。
常用的图遍历算法有深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)。
深度优先搜索(DFS):DFS是一种先访问节点的深层节点,再回溯访问较浅层节点的遍历方式。
DFS通过递归或者使用栈来实现。
从图的某个起始节点开始,沿着一条路径访问到尽头,再回溯返回上一个节点,继续向另一条路径遍历。
DFS的过程可以看作是沿着树的深度进行遍历的过程。
DFS的一个经典应用是在迷宫中找到一条路径。
广度优先搜索(BFS):BFS是一种先访问离起始节点最近的节点,再逐渐扩展访问离起始节点更远节点的遍历方式。
BFS通过使用队列实现。
从图的某个起始节点开始,先将该节点加入队列中,然后逐个访问队列中的节点,把与当前节点相邻且未访问过的节点加入队列。
BFS的过程可以看作是树的层次遍历的过程。
BFS的一个经典应用是在社交网络中寻找两个人之间的最短路径。
在图的遍历中,我们除了记录已访问节点外,还可能需要记录节点的前驱节点,以便在找到目标节点后,能够回溯找到从起始节点到目标节点的路径。
在实际应用中,图的遍历可以用来解决许多问题。
比如在地图应用中,我们可以用图的遍历算法来查找最短路径。
在社交网络中,我们可以用图的遍历算法来查找两个人之间的路径或者关系的强度。
在编译器设计中,我们可以用图的遍历算法来检查代码的连通性。
在迷宫问题中,我们可以用图的遍历算法来找到一条通往出口的路径。
然而,图的遍历并不是一个简单的任务,尤其是针对大规模的图。
在处理大规模图的遍历时,我们需要考虑空间复杂度、时间复杂度以及算法的效率。
为了提高图的遍历的速度和效率,我们可以借助剪枝等优化技巧,以减少搜索空间。
图的遍历:拓扑排序(+反向拓扑)
图的遍历:拓扑排序(+反向拓扑)【需要解决的问题】对⼀个有向⽆环图(DAG)拓扑排序。
拓扑排序就是,对图上的点进⾏排序,使得排在后⾯的点不能通过⼀条路径到前⾯的点。
⽐如下⾯这个图:其中⼀个拓扑排序是1,2,3,4,5;⽽1,2,5,3,4就不⾏,因为3能到达5。
因此可以得出:⽤⼀个队列实现,先把⼊度为0的点放⼊队列,每次将队⾸元素加⼊ans[i…j]中,删除队⾸元素,并删除该点连接的所有边,于是每次删除⼀个点都会产⽣⼀个新的⼊度为0的点,再把这个点插⼊队列,递归即可。
拓扑排序模板如下://复杂度:O(N+M),N为点数,M为边数//输⼊:n,vector变量g[] n表⽰点的个数,g[i][j]表⽰从点i连出去到点j的边,有g[i][j]=j;//输出:返回对给定的图,是否能够拓扑排序;L[]⽤来记录拓扑排序的结果const int MAXN=100005;vector<int> g[MAXN];int degree[MAXN],L[MAXN],n,m;bool toposort(){memset(degree,0,sizeof(degree));for(int i=0;i<n;i++)for(int j=0;j<g[i].size();j++)degree[g[i][j]]++;int tot=0;queue<int> que; //tuposort的实现类似于BFSfor(int i=0;i<n;i++)if(!degree[i])que.push(i);while(!que.empty()){int x=que.front();que.pop();L[tot++]=x;for(int j=0;j<g[x].size();j++){int t=g[x][j];degree[t]--;if(!degree[t])que.push(t);}}if(tot==n) return true;return false;}但实际上,在⼀个图的拓扑排序的问题中,因为常常有不⽌⼀种排序⽅式,所以题⽬往往要求在所有排序⽅式中,让序号⼩的尽量排前(只要满⾜拓扑条件),所以⽤queue不够,得⽤优先队列priority_queue来解决;⽽且,⽤优先队列实现时,不是把⼊度为0的点先放⼊队列,⽽是出度为0的点先⼊队(反向拓扑);拓扑排序+优先队列模板如下:const int MAXN=100005;vector<int> g[MAXN];int degree[MAXN],L[MAXN],n,m;void toposort(){int tot=0;priority_queue<int> que; //toposort的实现类似于BFSfor(int i=1;i<=n;i++)if(!degree[i])que.push(i);while(!que.empty()){int x=que.top();que.pop();L[tot++]=x;for(int j=0;j<g[x].size();j++){int t=g[x][j];degree[t]--;if(!degree[t])que.push(t);}}// if(tot==n) return true;// return false;}inline void init_input(int m){memset(degree,0,sizeof(degree)); memset(L,0,sizeof(L));memset(g,0,sizeof(g));for(int i=0;i<m;i++){scanf("%d %d",&a,&b);g[b].push_back(a);degree[a]++; //important}}。
第8章图第3讲-图的遍历 - 副本
19/21
图搜索算法设计一般方法 图搜索算法设计
转化
DFS或BFS算法求解 提示:两个遍历算法是图搜索算法的基础,必须熟练掌sited[i]
10/21
采用邻接表的BFS算法:
void BFS(AdjGraph *G,int v) { int w, i; ArcNode *p; SqQueue *qu; InitQueue(qu); int visited[MAXV]; for (i=0;i<G->n;i++) visited[i]=0; printf("%2d",v); visited[v]=1; enQueue(qu,v);
1 初始点 2 3
4
0
DFS:1→2 →4 …
2 1
用栈保存访问过的顶点
栈
如何确定一个顶点是否访问过? 设置一个visited[] 全局数组, visited[i]=0表示顶点i没有访问; visited[i]=1表示顶点i已经访 问过。
i visited[i]
5/21
采用邻接表的DFS算法:
void DFS(AdjGraph *G,int v) { ArcNode *p; int w; visited[v]=1; //置已访问标记
} }
该算法的时间复杂度为O(n+e)。
6/21
深度优先遍历过程演示
0 1 2 3 4
v0
v1 v2 v3 v4
1 2 3 4
1 0 1 0 0
3 2 3 1 2
4 3 4 2 3
∧ ∧ ∧
4
∧
∧
0
v=2的DFS序列: 2 1 0 遍历过程结束
3
7图的遍历
数据结构
广度优先搜索算法
void BFSTraverse(Graph G, Status (* visit)(int v)) { for(v=0; v<G.vexnum; ++v) visited[v] = FALSE; IntiQueque(Q); for(v=0; v<G.vexnum; ++v) if(!visited[v]) { visited[v] = TRUE; Visit (v); EnQueue(Q,v); while(!QueueEmpty(Q)){ DeQueue(Q,u); for(w=FirstAdjVex(G, u);w;w = NextAdjVex(G,u,w)) if(!visited[w]) {visited[w]=TRUE; visited(w); EnQueue(G,w); } } } 7 数据结构 }
void DFSTree(Graph G,int v ,CSTree &T) { //从第 个顶点出发深度优先遍历图G 建立以T //从第v个顶点出发深度优先遍历图G,建立以T为根的生成 从第v 树 visited[v]=TRUE; first=TRUE; for(w=FirstAdjVex(G,v);w>=0; w=NextAdjVex(G,v,w)) if(!visited[w]) p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 { p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 *p={GetVex(G,w),NULL,NULL}; //w 的第一个未被访问的邻接顶点, if (first) //w是v的第一个未被访问的邻接顶点,作 为 根的左孩子结点 T{ T->lchild=p; first=FALSE; } //w 的其它未被访问的邻接顶点, else { //w是v的其它未被访问的邻接顶点,作为上一 邻 接顶点的右兄弟 q->nextsibling=p; } q=p; D 从第w //从第 DFSTree(G,w,q); //从第w个顶点出发深度优先遍历 A 图 G,建立生成子树q 建立生成子树q 12 数据结构 B C E }
离散数学中的图的遍历与最短路径
离散数学是数学的一个重要分支,研究离散结构与离散量的关系。
在离散数学当中,图是一个重要的概念,它用来描述事物之间的关系。
图的遍历与最短路径是图论中的两个重要问题,它们在计算机科学和网络通信等领域有广泛的应用。
图的遍历是指通过某种策略,按某个顺序访问图的所有节点。
在图的遍历过程中,我们需要使用一种数据结构来记录已经访问过的节点,并按照某种规则来选择下一个要访问的节点。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是一种递归的搜索算法,它会首先访问一个节点的所有邻接节点,然后再依次递归访问这些节点的邻接节点,以此类推,直到没有未访问的邻接节点。
深度优先搜索能够完整地遍历图中的每个节点,并且可以用来解决一些需要遍历整个图的问题,例如判断图的连通性或寻找图的割点。
广度优先搜索是一种非递归的搜索算法,它从图的某个起始节点开始,先访问该节点的所有邻接节点,然后再依次访问这些邻接节点的邻接节点,以此类推,直到遍历完整个图。
广度优先搜索能够找到最短路径,因为它首先访问的是距离起始节点最近的节点,然后再访问离起始节点更远的节点。
因此,广度优先搜索常用于寻找最短路径或解决一些需要在有限步数内找到目标节点的问题。
最短路径是图论中的一个常见问题,它用于寻找两个节点之间最短的路径。
在有向图中,最短路径可以使用Dijkstra算法或Bellman-Ford算法来求解。
Dijkstra算法通过维护一个距离数组来记录起始节点到其他节点的距离,并通过选择路径距离最短的节点来更新距离数组,直到找到最短路径。
Bellman-Ford算法则利用动态规划的思想,通过多次循环来更新距离数组,直到没有更新为止。
在无向图或有向无环图中,最短路径可以使用广度优先搜索来求解。
广度优先搜索能够找到距离起始节点最近的节点,并且同时能够记录节点之间的路径。
因此,在广度优先搜索过程中,我们可以使用一个数组来记录节点之间的路径,并根据起始节点到目标节点的路径来回溯,从而找到最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:图的遍历专业班级:计算机科学与技术2班指导老师:骆嘉伟完成时间:2010年12月7日问题描述:若用有向网表示网页的连接网络,其中顶点表示某个网页,有向弧表示网页之间的连接关系,试设计一个网络蜘蛛系统,分别以广度优先和深度优先的策略抓取网页。
基本要求:(1)首先输入顶点数,然后各定点对应的字母,再输入各条弧(权值都设置为1)。
(2)输出从首个顶点开始的广度优先遍历序列和深度优先遍历序列。
(3)输入输出形式:输入输入顶点数和弧数:8 9输入8个顶点.输入顶点0:a输入顶点1:b输入顶点2:c输入顶点3:d输入顶点4:e输入顶点5:f输入顶点6:g输入顶点7:h输入9条弧.输入弧0:a b 1输入弧1:b d 1输入弧2:b e 1输入弧3:d h 1输入弧4:e h 1输入弧5:a c 1输入弧6:c f 1输入弧7:c g 1输入弧8:f g 1输出广度优先遍历: a b d h e c f g深度优先遍历: a b c d e f g h实现提示(1)设图的顶点大于1个,不超过30个,每个顶点用一个编号表示(如果一个图有n个顶点,则它们的编号分别为0, 1, 2, 3, …, n-1)。
(2)此题为求有向图的遍历问题,采用邻接表存储图,实现图的基本操作,并编写DFS实验分析:(1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。
(2)对图的遍历路径有可能构成一个回路,从而造成死循环,所以算法设计要考虑遍历路径可能出现的死循环问题。
(3)一个顶点可能和若干个顶点都是邻接顶点,要使一个顶点的所有邻接顶点按照某种次序被访问。
深度优先搜索遍历连通图的深度优先遍历递归算法可描述为:(1)访问顶点vi并标记顶点vi为已访问;(2)查找顶点v的第一个邻接顶点vj;(3)若顶点v 的邻接顶点vj存在,则继续执行,否则算法结束;(4)若顶点vj尚未被访问,则深度优先遍历递归访问顶点vj;(5)查找顶点vi的邻接顶点vj的下一个邻接顶点,转到步骤(3)。
当寻找顶点vi的邻接顶点vj成功时继续进行,当寻找顶点vi的邻接顶点vj失败时回溯到上一次递归调用的地方继续进行。
为了在遍历过程中便于区分顶点是否被访问,需附设访问标志数组visited[ ],其初值为0,一旦某个顶点被访问,则其相应的分量置为1。
图的广度优先遍历算法:需要一个队列以保持访问过的顶点的顺序,以便按顺序访问这些顶点邻接顶点。
连通图的广度优先遍历算法为:(1)访问初始顶点v并标记顶点v为已访问;(2)顶点v入队列;(3)当队列非空时则继续执行,否则算法结束;(4)出队列取得队头顶点u;(5)查找顶点u的第一个邻接顶点w;(6)若顶点u的邻接顶点w不存在,则转到步骤(3),否则执行后序语句:①若顶点w尚未被访问,则访问顶点w并标记顶点w为已访问;②顶点w入队列;③查找顶点u的邻接顶点w后的下一个邻接顶点,转到步骤(6)。
实验代码:#include <iostream>#define INFINITY 32767#define MAX_VEX 20 //最大顶点个数#define QUEUE_SIZE (MAX_VEX+1) //队列长度using namespace std;bool *visited; //访问标志数组//图的邻接矩阵存储结构typedef struct{char *vexs; //顶点向量int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵int vexnum,arcnum; //图的当前顶点数和弧数}Graph;//队列类class Queue{public:void InitQueue(){base=(int *)malloc(QUEUE_SIZE*sizeof(int));front=rear=0;}void EnQueue(int e){base[rear]=e;rear=(rear+1)%QUEUE_SIZE;}void DeQueue(int &e){e=base[front];front=(front+1)%QUEUE_SIZE;}public:int *base;int front;int rear;};//图G中查找元素c的位置int Locate(Graph G,char c){for(int i=0;i<G.vexnum;i++)if(G.vexs[i]==c) return i;return -1;}//创建无向网void CreateUDN(Graph &G){int i,j,w,s1,s2;char a,b,temp;cout<<"输入顶点数和弧数:";cin>>G.vexnum>>G.arcnum;temp=getchar(); //接收回车G.vexs=(char *)malloc(G.vexnum*sizeof(char)); //分配顶点数目cout<<"输入顶点:"<<endl;for(i=0;i<G.vexnum;i++){ //初始化顶点cout<<"输入顶点"<<i<<":";cin>>G.vexs[i];temp=getchar(); //接收回车}for(i=0;i<G.vexnum;i++) //初始化邻接矩阵for(j=0;j<G.vexnum;j++)G.arcs[i][j]=INFINITY;cout<<"输入弧:"<<endl;for(i=0;i<G.arcnum;i++){ //初始化弧cout<<"输入弧"<<i<<":";cin>>a>>b>>w; //输入一条边依附的顶点和权值temp=getchar(); //接收回车s1=Locate(G,a);s2=Locate(G,b);G.arcs[s1][s2]=G.arcs[s2][s1]=w;}}//图G中顶点k的第一个邻接顶点int FirstV ex(Graph G,int k){if(k>=0 && k<G.vexnum){ //k合理for(int i=0;i<G.vexnum;i++)if(G.arcs[k][i]!=INFINITY) return i;}return -1;}//图G中顶点i的第j个邻接顶点的下一个邻接顶点int NextV ex(Graph G,int i,int j){if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理for(int k=j+1;k<G.vexnum;k++)if(G.arcs[i][k]!=INFINITY) return k;}return -1;}//深度优先遍历void DFS(Graph G,int k){int i;if(k==-1){ //第一次执行DFS时,k为-1for(i=0;i<G.vexnum;i++)if(!visited[i]) DFS(G,i); //对尚未访问的顶点调用DFS}else{visited[k]=true;cout<<G.vexs[k]; //访问第k个顶点for(i=FirstV ex(G,k);i>=0;i=NextVex(G,k,i))if(!visited[i]) DFS(G,i); //对k的尚未访问的邻接顶点i递归调用DFS }}//广度优先遍历void BFS(Graph G){int k;Queue Q; //辅助队列QQ.InitQueue();for(int i=0;i<G.vexnum;i++)if(!visited[i]){ //i尚未访问visited[i]=true;cout<<G.vexs[i];Q.EnQueue(i); //i入列while(Q.front!=Q.rear){Q.DeQueue(k); //队头元素出列并置为kfor(int w=FirstV ex(G,k);w>=0;w=NextV ex(G,k,w))if(!visited[w]){ //w为k的尚未访问的邻接顶点visited[w]=true;cout<<G.vexs[w];Q.EnQueue(w); } } }}//主函数void main(){int i;Graph G;CreateUDN(G);visited=(bool *)malloc(G.vexnum*sizeof(bool));cout<<"广度优先遍历: "; for(i=0;i<G.vexnum;i++) visited[i]=false;DFS(G,-1);cout<<endl;cout<<"深度优先遍历: "; for(i=0;i<G.vexnum;i++) visited[i]=false;BFS(G);}实验结果:。