验证动量守恒定律实验
实验:验证动量守恒定律

实验:验证动量守恒定律 Revised by BETTY on December 25,2020实验七验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否相等.2.实验器材斜槽、小球(两个)、天平、直尺、复写纸、白纸、圆规、重垂线.3.实验步骤(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图1甲所示安装实验装置.调整、固定斜槽使斜槽底端水平.图1(3)白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把小球所有的落点都圈在里面.圆心P就是小球落点的平均位置. (5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如图乙所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理好实验器材,放回原处.(8)实验结论:在实验误差允许范围内,碰撞系统的动量守恒.1.数据处理验证表达式:m1·OP=m1·OM+m2·ON2.注意事项(1)斜槽末端的切线必须水平;(2)入射小球每次都必须从斜槽同一高度由静止释放;(3)选质量较大的小球作为入射小球;(4)实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.命题点一教材原型实验例1如图2所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.图2(1)实验中直接测定小球碰撞前后的速度是不容易的,但可以通过仅测量(填选项前的符号)间接地解决这个问题.A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)图中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.接下来要完成的必要步骤是 .(填选项前的符号)A.用天平测量两个小球的质量m1、m2B.测量小球m1开始释放高度hC.测量抛出点距地面的高度HD.分别找到m1、m2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)经测定,m1= g,m2= g,小球落地点的平均位置距O点的距离如图3所示.碰撞前后m1的动量分别为p1与p1′,则p1∶p1′=∶11;若碰撞结束时m2的动量为p2′,则p1′∶p2′=11∶ .实验结果说明,碰撞前后总动量的比值p1p 1′+p2′= .图3(4)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被碰小球做平抛运动的射程增大.请你用(3)中已知的数据,分析和计算出被碰小球m2平抛运动射程ON的最大值为 cm.答案(1)C (2)ADE (3)14 (4)解析(1)小球碰前和碰后的速度都用平抛运动来测定,即v=xt.而由H=12gt2知,每次竖直高度相等,所以平抛时间相等,即m1OPt=m1OMt+m2ONt,则可得m1·OP=m1·OM+m2·ON.故只需测射程,因而选C.(2)由表达式知:在OP已知时,需测量m1、m2、OM和ON,故必要步骤有A、D、E.(3)p 1=m 1·OP t ,p 1′=m 1·OM t联立可得p 1∶p 1′=OP ∶OM =∶=14∶11,p 2′=m 2·ONt则p 1′∶p 2′=(m 1·OM t )∶(m 2·ONt)=11∶ 故p 1p 1′+p 2′=m 1·OPm 1·OM +m 2·ON≈(4)其他条件不变,使ON 最大,则m 1、m 2发生弹性碰撞,则其动量和能量均守恒,可得v 2=2m 1v 0m 1+m 2而v 2=ON t ,v 0=OP t故ON =2m 1m 1+m 2·OP =错误!× cm≈ cm.变式1 在“验证动量守恒定律”的实验中,已有的实验器材有:斜槽轨道、大小相等质量不同的小钢球两个、重垂线一条、白纸、复写纸、圆规.实验装置及实验中小球运动轨迹及落点的情况简图如图4所示.图4试根据实验要求完成下列填空: (1)实验前,轨道的调节应注意 .(2)实验中重复多次让a 球从斜槽上释放,应特别注意 . (3)实验中还缺少的测量器材有 . (4)实验中需要测量的物理量是 . (5)若该碰撞过程中动量守恒,则一定有关系式 成立.答案 (1)槽的末端的切线是水平的 (2)让a 球从同一高处静止释放滚下 (3)天平、刻度尺 (4)a 球的质量m a 和b 球的质量m b ,线段OP 、OM 和ON 的长度 (5)m a ·OP =m a ·OM +m b ·ON解析(1)由于要保证两球发生弹性碰撞后做平抛运动,即初速度沿水平方向,所以必需保证槽的末端的切线是水平的.(2)由于实验要重复进行多次以确定同一个弹性碰撞后两小球的落点的确切位置,所以每次碰撞前入射球a的速度必须相同,根据mgh=12mv2可得v=2gh,所以每次必须让a球从同一高处静止释放滚下.(3)要验证m a v0=m a v1+m b v2,由于碰撞前后入射球和被碰球从同一高度同时做平抛运动的时间相同,故可验证m a v0t=m a v1t+m b v2t,而v0t=OP,v1t=OM,v2t=ON,故只需验证m a·OP=m a·OM+m b·ON,所以要测量a球的质量m a和b球的质量m b,故需要天平;要测量两球平抛时水平方向的位移即线段OP、OM和ON的长度,故需要刻度尺.(4)由(3)的解析可知实验中需测量的物理量是a球的质量m a和b球的质量m b,线段OP、OM和ON的长度.(5)由(3)的解析可知若该碰撞过程中动量守恒,则一定有关系式m a·OP=m a·OM+mb·ON.命题点二实验方案创新创新方案1:利用气垫导轨1.实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.2.实验方法(1)测质量:用天平测出两滑块的质量.(2)安装:按图5安装并调好实验装置.图5(3)实验:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前、后的速度(例如:①改变滑块的质量;②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.例2(2014·新课标全国卷Ⅱ·35(2))现利用图6(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.图6实验测得滑块A 的质量m 1= kg ,滑块B 的质量m 2= kg ,遮光片的宽度d = cm ;打点计时器所用交流电的频率f = Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B = ms ,碰撞前后打出的纸带如图(b)所示.若实验允许的相对误差绝对值(⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律写出运算过程. 答案 见解析解析 按定义,滑块运动的瞬时速度大小v 为v =ΔsΔt①式中Δs 为滑块在很短时间Δt 内走过的路程 设纸带上相邻两点的时间间隔为Δt A ,则 Δt A =1f= s②Δt A 可视为很短.设滑块A 在碰撞前、后瞬时速度大小分别为v 0、v 1. 将②式和图给实验数据代入①式可得v 0= m/s③ v 1= m/s④设滑块B 在碰撞后的速度大小为v 2,由①式有v 2=d Δt B⑤ 代入题给实验数据得v 2≈ m/s⑥设两滑块在碰撞前、后的动量分别为p 和p ′,则p =m 1v 0⑦p′=m1v1+m2v2⑧两滑块在碰撞前、后总动量相对误差的绝对值为δp =⎪⎪⎪⎪⎪⎪p-p′p×100%⑨联立③④⑥⑦⑧⑨式并代入有关数据,得δp≈%<5%因此,本实验在允许的误差范围内验证了动量守恒定律.创新方案2:利用等长的悬线悬挂等大的小球1.实验器材:小球两个(大小相同,质量不同)、悬线、天平、量角器等.2.实验方法(1)测质量:用天平测出两小球的质量.(2)安装:如图7所示,把两个等大的小球用等长的悬线悬挂起来.图7(3)实验:一个小球静止,将另一个小球拉开一定角度释放,两小球相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.例3如图8所示是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点下方桌子的边缘有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2右端接触且两球等高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A点离水平桌面的距离为a、B点离水平桌面的距离为b、C点与桌子边沿间的水平距离为c.此外:图8(1)还需要测量的量是、和 .(2)根据测量的数据,该实验中动量守恒的表达式为 .(忽略小球的大小)答案(1)弹性球1、2的质量m1、m2立柱高h桌面离水平地面的高度H(2)2m1a-h=2m1b-h+m2cH+h解析(1)要验证动量守恒必须知道两球碰撞前后的动量变化,根据弹性球1碰撞前后的高度a和b,由机械能守恒可以求出碰撞前后的速度,故只要再测量弹性球1的质量m1,就能求出弹性球1的动量变化;根据平抛运动的规律只要测出立柱高h和桌面离水平地面的高度H就可以求出弹性球2碰撞前后的速度变化,故只要测量弹性球2的质量m2和立柱高h、桌面离水平地面的高度H就能求出弹性球2的动量变化.(2)根据(1)的解析可以写出动量守恒的方程2m1a-h=2m1b-h+m2cH+h.创新方案3:利用光滑长木板上两车碰撞1.实验器材:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥、小木片.2.实验方法(1)测质量:用天平测出两小车的质量.(2)安装:如图9所示,将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车甲的后面,在甲、乙两小车的碰撞端分别装上撞针和橡皮泥.长木板下垫上小木片来平衡摩擦力.图9(3)实验:接通电源,让小车甲运动,小车乙静止,两车碰撞时撞针插入橡皮泥中,两小车连接成一体运动.(4)测速度:可以测量纸带上对应的距离,算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.例4某同学设计了一个用打点计时器探究碰撞过程中不变量的实验:在小车甲的前端粘有橡皮泥,推动小车甲使之做匀速直线运动.然后与原来静止在前方的小车乙相碰并粘合成一体,而后两车继续做匀速直线运动,他设计的具体装置如图10所示.在小车甲后连着纸带,打点计时器的打点频率为50 Hz,长木板下垫着小木片用以平衡摩擦力.图10(1)若已得到打点纸带如图11所示,并测得各计数点间距并标在图上,A为运动起始的第一点,则应选段计算小车甲的碰前速度,应选段来计算小车甲和乙碰后的共同速度(以上两格填“AB”“BC”“CD”或“DE”).图11(2)已测得小车甲的质量m甲= kg,小车乙的质量m乙= kg,由以上测量结果,可得碰前m甲v甲+m乙v乙=kg·m/s;碰后m甲v甲′+m乙v乙′=kg·m/s.(3)通过计算得出的结论是什么答案(1)BC DE(2) (3)在误差允许范围内,碰撞前后两个小车的mv之和是相等的.解析(1)观察打点计时器打出的纸带,点迹均匀的阶段BC应为小车甲与乙碰前的阶段,CD段点迹不均匀,故CD应为碰撞阶段,甲、乙碰撞后一起匀速直线运动,打出间距均匀的点,故应选DE段计算碰后共同的速度.(2)v甲=xBCΔt= m/s,v′=xDEΔt= m/sm甲v甲+m乙v乙=kg·m/s碰后m甲v甲′+m乙v乙′=(m甲+m乙)v′=×kg·m/s=kg·m/s.(3)在误差允许范围内,碰撞前后两个小车的mv之和是相等的.。
动量守恒定律的实验验证

动量守恒定律的实验验证动量守恒定律是物理学中的基本定律之一,它在描述物体运动时起着重要的作用。
为了验证动量守恒定律的有效性和可靠性,进行了一系列实验。
实验一:弹性碰撞实验在实验室中,准备了两个相同质量的小球A和B,它们分别处于静止状态,相距一定距离。
首先给小球A以某一初速度,让其沿着一条直线轨道运动。
当小球A与小球B发生完全弹性碰撞后,观察两球的运动情况。
实验结果显示,小球A在碰撞前具有一定的动量,而小球B则静止。
在碰撞后,小球A的速度减小而改变了运动方向,而小球B则具有与小球A碰撞前小球A相同大小的速度,并沿着小球A碰撞前运动的方向运动。
实验结果表明,碰撞过程中总动量守恒,即小球A的动量减小,而小球B的动量增加,两者之和保持不变。
实验二:非弹性碰撞实验在实验室中,同样准备了两个相同质量的小球A和B,它们分别处于静止状态,相距一定距离。
与实验一不同的是,在这次实验中,小球A与小球B发生非弹性碰撞。
实验结果显示,小球A与小球B发生碰撞后,它们黏在一起并以共同的速度沿着小球A碰撞前运动的方向运动。
与弹性碰撞不同的是,碰撞过程中能量有一部分转化为内能而被损失,因此总动量守恒,但总机械能不守恒。
实验三:爆炸实验在实验室中,放置了一块弹性墙壁,并将一个质量较大的小球C静止放在墙壁前方。
在小球C与墙壁发生碰撞时,观察碰撞后的情况。
实验结果显示,当小球C与墙壁发生碰撞时,小球C的动量改变,由静止变为运动状态。
这说明,碰撞过程中小球C获得了墙壁的动量。
根据动量守恒定律,小球C的动量增加被墙壁吸收,总动量守恒。
通过以上实验可以得出一个普遍的结论:在孤立系统中,如果没有外力作用,系统总的动量保持不变。
这就是动量守恒定律的实验证明。
总结:动量守恒定律是物理学中非常重要的定律之一,通过弹性碰撞、非弹性碰撞和爆炸等实验证明了动量守恒定律的有效性和可靠性。
实验结果表明,无论是弹性碰撞还是非弹性碰撞,总的动量保持不变,只有部分能量转化或损失。
验证动量守恒定律实验结论

验证动量守恒定律实验结论一、实验目的二、实验原理1. 动量的定义和动量守恒定律2. 实验装置及测量方法三、实验步骤四、实验结果与分析1. 实验数据处理与分析2. 实验误差分析及讨论五、结论与讨论一、实验目的本次实验旨在通过验证动量守恒定律,探究物体相互碰撞时动量守恒的规律,并了解物体碰撞时动能转化为其他形式能量的过程。
二、实验原理1. 动量的定义和动量守恒定律动量是物体运动状态的基本物理量,用符号p表示。
在经典力学中,一个质点的动量定义为其质量m与速度v之积,即p=mv。
而对于多个质点组成的系统,则可以用各个质点动量之和来描述整个系统的运动状态。
当两个物体相互作用时,它们之间会产生一个力,这个力称为相互作用力。
根据牛顿第三定律,两个物体之间相互作用力大小相等方向相反。
根据牛顿第二定律F=ma, 可以得到:F = m1*a1F = m2*a2将以上两个式子相加,可以得到:F = m1*a1 + m2*a2根据牛顿第三定律,a1和a2大小相等方向相反,所以可以得到:F = (m1+m2)*a将上式两边同时乘以t,可以得到:F*t = (m1+m2)*a*t根据动量的定义p=mv,可以得到:p1 + p2 = m1*v1 + m2*v2在碰撞前后,质点的动量守恒,则有:p1' + p2' = p1 + p2其中p'表示碰撞后物体的动量。
因此,在碰撞前后物体的动量守恒。
2. 实验装置及测量方法实验装置包括:弹性小车、不同重量的铁块、光电门、计时器等。
实验步骤如下:(1) 将弹性小车靠在桌子边缘,并调整其位置使其不会滑落。
(2) 在小车上放置一个铁块,并用光电门测量小车运动的速度。
(3) 记录下小车与铁块相撞前后的速度,并计算出它们之间的相对速度。
(4) 重复以上步骤多次,记录数据并进行处理和分析。
三、实验步骤1. 将弹性小车靠在桌子边缘,并调整其位置使其不会滑落。
2. 在小车上放置一个铁块,并用光电门测量小车运动的速度。
物理【实验】验证动量守恒定律

物理【实验】验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速度v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒.2.实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等.方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥.方案四:斜槽、小球(两个)、天平、复写纸、白纸等.3.实验步骤方案一:利用气垫导轨完成一维碰撞实验(如图所示)(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图所示)(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图所示)(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=Δx/Δt 算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(如图所示)1.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球。
动量守恒的实验验证

动量守恒的实验验证动量守恒是物理学中的重要定律之一,它表明在一个系统内,当没有外力作用时,系统的总动量将保持不变。
本文将介绍几种实验验证动量守恒的方法。
一、小球碰撞实验1.实验目的通过观察小球碰撞过程,验证动量守恒定律。
2.实验材料两个相同质量的小球、平滑水平面3.实验步骤- 将两个小球置于水平面上,使它们保持静止。
- 以一定的速度使一个小球向另一个小球运动。
- 观察碰撞过程中两个小球的运动状态。
4.实验结果分析如果两个小球碰撞之后静止,或者以相同的速度相背而去,那么可以得出结论:系统的总动量在碰撞过程中守恒。
二、火箭发射实验1.实验目的通过火箭发射实验,验证动量守恒定律。
2.实验材料小型火箭模型、发射器、计时器3.实验步骤- 在室外安全的地方进行实验。
- 将火箭模型放入发射器中。
- 点燃火箭模型的发动机。
- 使用计时器记录火箭从发射器射出到完全停止的时间。
4.实验结果分析在火箭发射过程中,如果火箭以一定的速度射出,并且在空中逐渐减速直至停止,那么可以得出结论:火箭前后的动量改变之和等于零,验证了动量守恒定律。
三、弹簧振子实验1.实验目的通过观察弹簧振子的运动过程,验证动量守恒定律。
2.实验材料弹簧振子装置、标尺、计时器3.实验步骤- 将标尺固定在垂直方向上,用于测量振子的位移。
- 将弹簧振子拉到一定距离,释放后观察其振动过程。
- 使用计时器记录振子从一个极端位置振动到另一个极端位置的时间。
4.实验结果分析弹簧振子在振动过程中,如果振幅和周期保持一致,可以得出结论:振子在每个极端位置的动量改变之和等于零,并验证了动量守恒定律。
综上所述,通过小球碰撞实验、火箭发射实验和弹簧振子实验,我们可以验证动量守恒定律的有效性。
这些实验结果证明了在没有外力作用时,系统的总动量将保持不变的原理。
对于我们理解物体运动和相互作用具有重要意义,并在工程设计和科学研究中发挥着重要作用。
第5节 实验:验证动量守恒定律

(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复1
0次。用圆规画尽量小的圆把所有的小球落点圈在里面。圆心就是小球落点的平均位置。
(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度
(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次。用步骤(4)
三、注意事项
1.前提条件:碰撞的两物体应保证“水平”和“正碰”。
2.案例提醒
水平
(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨______。
(2)若利用平抛运动规律进行验证:
①斜槽末端的切线必须水平;
同一高度
②入射小球每次都必须从斜槽__________由静止释放;
大
③选质量较____的小球作为入射小球;
1
1 02
2
1
2
联立解得 1
2
1
2
2 −1
,代入数据可得 1
21
2
= 1 12 + 2 22
=
= 0.34。
【视角2】 研究斜槽末端小球碰撞时的动量守恒
例2 用如图甲所示装置研究两个半径相同的小球在轨道水平部分
碰撞前后的动量关系。
AC
(1)关于本实验,下列说法中正确的是_____。
是否为弹性碰撞。完成下列填空:
(1)调节导轨水平;
(2)测得两滑块的质量分别为0.510 kg和0.304 kg。要使碰撞后两滑块运动方向相反,
0.304
应选取质量为______kg的滑块作为;
[解析] 用质量较小的滑块碰撞质量较大的滑块,碰后运动方向相反,故选质量为
0.304 kg的滑块作为A。
第4节 实验:验证动量守恒定律

1.找一个碰撞过程,设计实验装置
2.设法测量出碰撞前后系统的动量
3.比较前后动量的大小关系
4.处理数据并得出结论
第4节 实验:验证动量守恒定律
目录
方案一:气垫导轨法
方案二:打点计时器法
方案三:单摆法
方案四:抛体法
一、气垫导轨法
1.天平测质量m
2.光电门测速度V
(1)用图中所示各个物理量的符号表示碰撞前后A、B
两球的速度(设A、B两球碰前的速度分别为vA、vB,
碰后速度分别为vA′、vB′),则vA=________________,
( − )
vA′=________________,
( − ) vB=____,
0 vB′=__________。
【典例1】在“验证动量守恒定律”实验中常会用到气垫导轨,导轨与滑块
之间形成空气垫,使滑块在导轨上运动时几乎没有摩擦。现在有滑块A、B
和带竖直挡板C、D的气垫导轨,用它们验证动量守恒定律,实验装置如图
所示(弹簧的长度忽略不计)。采用的实验步骤如下:
a.用天平分别测出滑块A、B的质量mA、mB;
b.调整气垫导轨使之水平;
3.列表处理数据
注意:导轨一定保持水平
质
量
速
度
mv
碰撞前
m1
m2
m1
m2
v1
v1’
v2’
v2
m1v1+m2v2
碰撞后
m1v1’+m2v2’
一、气垫导轨法
1.天平测质量m
2.光电门测速度V
3.列表处理数据
①在两车碰撞处加轻弹簧,使
验证动量守恒定律实验报告

验证动量守恒定律实验报告一、实验目的验证在碰撞过程中动量守恒定律的正确性。
二、实验原理在一个理想的物理系统中,如果没有外力作用,系统的总动量保持不变。
在本实验中,通过研究两个物体的碰撞前后的动量变化,来验证动量守恒定律。
对于两个相互碰撞的物体,设它们的质量分别为 m1 和 m2,碰撞前的速度分别为 v1 和 v2,碰撞后的速度分别为 v1' 和 v2'。
根据动量的定义,动量 p = mv,碰撞前系统的总动量为 P = m1v1 + m2v2,碰撞后系统的总动量为 P' = m1v1' + m2v2'。
如果在实验误差允许的范围内,P = P',则验证了动量守恒定律。
三、实验器材1、气垫导轨2、光电门计时器3、两个滑块(质量分别为 m1 和 m2)4、天平5、细绳、滑轮四、实验步骤1、用天平分别测量两个滑块的质量 m1 和 m2,并记录下来。
2、将气垫导轨调至水平。
可以通过调节导轨底部的螺丝,使滑块在导轨上能保持匀速直线运动,从而判断导轨是否水平。
3、安装光电门计时器。
在气垫导轨的适当位置安装两个光电门,分别用于测量滑块碰撞前后通过光电门的时间。
4、给滑块 m1 一定的初速度,使其与静止的滑块 m2 发生碰撞。
5、记录滑块通过光电门的时间 t1、t2、t1' 和 t2'。
6、根据公式 v = d / t(其中 d 为光电门遮光片的宽度),计算出碰撞前后滑块的速度 v1、v2、v1' 和 v2'。
7、计算碰撞前系统的总动量 P = m1v1 + m2v2 和碰撞后系统的总动量 P' = m1v1' + m2v2'。
8、重复实验多次,以减小实验误差。
五、实验数据记录及处理|实验次数|m1(kg)|m2(kg)|v1(m/s)|v2(m/s)|v1'(m/s)|v2'(m/s)|P(kg·m/s)|P'(kg·m/s)|||||||||||1|_____|_____|_____|_____|_____|_____|_____|_____||2|_____|_____|_____|_____|_____|_____|_____|_____||3|_____|_____|_____|_____|_____|_____|_____|_____|计算每次实验的碰撞前总动量 P 和碰撞后总动量 P',并计算它们的差值ΔP = P P'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理一轮复习学案第六周(10.8—10.14)第四课时验证动量守恒定律实验【考纲解读】1.会用实验装置测速度或用其他物理量表示物体的速度大小.2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒.【重点难点】验证动量守恒定律【知识结构】一、验证动量守恒定律实验方案1.方案一实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。
实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。
2.方案二实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。
实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。
3.方案三实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。
实验情境:完全非弹性碰撞(撞针、橡皮泥)。
4.方案四实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。
实验情境:一般碰撞或近似的弹性碰撞。
5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。
还可用频闪法得到等时间间隔的物体位置,从而分析速度。
二、验证动量守恒定律实验(方案四)注意事项1.入射球质量m1应大于被碰球质量m2。
否则入射球撞击被碰球后会被弹回。
2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。
否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。
3.斜槽末端的切线应水平。
否则小球不能水平射出斜槽做平抛运动。
4.入射球每次必须从斜槽上同一位置由静止释放。
否则入射球撞击被碰球的速度不相等。
5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。
6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。
【典型例题】例1.某同学利用气垫导轨上滑块间的碰撞来寻找滑块相互作用过程中的“不变量”,实验装置如图所示,实验过程如下(“+”、“–”表示速度方向):(1)实验1:使m1=m2=0.25 kg,让运动的m1碰静止的m2,碰后两滑块分开,记录数据如表1。
碰前碰后滑块m1滑块m2滑块m1滑块m2速度v(m·s–1)+0.110 0 0 +0.108根据实验数据可知,在误差允许范围内:碰前滑块的速度________(填“等于”或“不等于”)碰后滑块的速度;碰前滑块的动能________(填“等于”或“不等于”)碰后滑块的动能;碰前滑块的质量与速度的乘积________(填“等于”或“不等于”)碰后滑块的质量与速度的乘积。
(2)实验2:使m1=m2=0.25 kg,让运动的m1碰静止的m2,碰后两滑块一起运动,记录数据如表2。
碰前碰后滑块m1滑块m2滑块m1滑块m2速度v(m·s–1)+0.140 0 +0.069 +0.069于”)碰后滑块速度的矢量和;碰前滑块的动能________(填“等于”或“不等于”)碰后滑块动能的和;碰前滑块的质量与速度的乘积________(填“等于”或“不等于”)碰后滑块质量与速度乘积的矢量和。
(3)实验3:使2m1=m2=0.5 kg,让运动的m1碰静止的m2,碰后两滑块分开,记录数据如表3。
碰前碰后滑块m1滑块m2滑块m1滑块m2速度v(m·s–1)+0.120 0 –0.024 +0.070根据实验数据可知,在误差允许范围内:碰前滑块的速度________(填“等于”或“不等于”)碰后滑块速度的矢量和;碰前滑块的动能________(填“等于”或“不等于”)碰后滑块动能的和;碰前滑块的质量与速度的乘积________(填“等于”或“不等于”)碰后滑块质量与速度乘积的矢量和。
(4)综上,滑块相互作用过程中的不变量可能为________________________。
例2.某同学设计了一个用打点计时器做“验证动量守恒定律”的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动。
他设计的具体装置如图所示,在小车A后连着纸带,电磁打点计时器电源频率为50 Hz,长木板下垫着小木片用以平衡摩擦力。
(1)若实验得到的纸带如图所示,并测得各计数点间距,则应选________段来计算A的碰撞前速度v0;应选_________段来计算A和B碰后的共同速度v。
(2)实验中测得小车A的质量m A=0.40 kg,小车B的质量m B=0.20 kg。
则碰前:m A v0=______kg·m/s;碰后:(m A+m B)v=_______kg·m/s。
(计算结果保留三位有效数字)(3)由本次实验获得的初步结论是____________________________________。
【达标训练】1.图为“碰撞中的动量守恒”实验装置示意图。
(1)入射小球1与被碰小球2直径相同,均为d,它们的质量相比较,应是m1______m2。
(2)为了保证小球做平抛运动,必须调整斜槽使______________。
(3)继续实验的步骤为:A.在地面上依次铺白纸和复写纸;B.把球2放在立柱上,球1放在斜槽末端,调节立柱高度使球1、球2的球心等高,在球1正下方放下重垂线,确定重锤对应点O;C.不放球2,让球1从斜槽滑下,确定它落地点位置P;D.把球2放在立柱上,让球1从斜槽滑上,与球2正碰后,确定球1和球2落地点位置M和N;E.用刻度尺测量OM、OP、ON的长度;F.看m1·OM+m2·ON与m1·OP是否相等,以验证动量守恒。
上述步骤有几步不完善或有错误,请指出并写出相应的正确步骤:2.如图所示是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点正下方桌子的边沿有一竖直立柱。
实验时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球等高。
将球1拉到A点并由静止释放,当它摆到悬点正下方时与球2发生对心正碰。
碰后球1向左最远可摆到B点,球2落到水平地面上的C点。
测出弹性球1、2的质量m1、m2,A、B点到水平桌面的距离a、b。
(小球的半径可忽略)(1)实验还需要测量的物理量及其符号为___________________________________。
(2)验证动量守恒的表达式为____________________________________。
3.为了验证碰撞中的动量守恒和两小球的对心正碰可近似认为是弹性碰撞,某同学选取了两个体积相同、质量不等的小球,按下述步骤做实验,并回答问题。
①用天平测出两小球的质量分别为m1和m2,且m1>m2;②如图所示安装好实验装置,将槽AB固定在桌边,使槽末端的切线水平,将斜面BC连接在槽末端;③先不放小球m2,让小球m1从槽顶端A处由静止滚下,记下小球在斜面上的落点位置;④将小球m2放在槽末端,让小球m1仍从槽顶端A处由静止滚下,使它们发生碰撞,记下小球m1和小球m2在斜面上的落点位置;⑤用毫米刻度尺量出各个落点位置到槽末端点B的距离。
图中D、E、F点是该同学记下的小球在斜面上的几个落点位置,到B点的距离分别为L D、L E、L F。
(1)在没有放m2时,让小球m1从槽顶端A处由静止滚下,m1的落点是______点。
(2)用测得的物理量表示,只要满足关系式_________________,就说明碰撞中动量守恒。
(3)用测得的物理量表示,只要再满足关系式___________________,就说明两小球的碰撞是弹性碰撞。
4.两位同学用如图甲所示装置,通过半径相同的A、B两球的碰撞来验证动量守恒定律。
(1)实验中必须满足的条件是_____。
A.斜槽轨道尽量光滑以减小误差B.斜槽轨道末端的切线必须水平C.入射球A每次必须从斜槽轨道的同一位置由静止滚下D.两球的质量必须相等(2)测量所得入射球A的质量为m A,被碰小球B的质量为m B,图甲中O点是小球抛出点在水平地面上的垂直投影。
实验时,先将入射球A多次从斜槽轨道上同一位置由静止释放,找到其平均落点的位置P,测得平抛射程为OP;再将入射球A从斜槽轨道上同一位置由静止释放,与小球B相撞,分别找到球A和球B相撞后的平均落点M、N,测得平抛射程分别为OM和ON。
当满足表达式____________________时,说明两球碰撞过程动量守恒;如果还满足表达式_________________时,说明两球的碰撞为弹性碰撞。
【总结反思】验证动量守恒定律实验例1.【参考答案】(1)等于等于等于(2)等于不等于等于(3)不等于不等于等于(4)质量和速度乘积的矢量和3(3)从表3数据可知,碰前速度v1=0.120 m/s,碰后速度矢量和v2=(–0.024+0.070)m/s=0.046 m/s,不相等;碰前动能E k1=12×0.25×0.122 J=0.001 8 J,碰后的动能E k2=(12×0.25×0.0242+12×0.5×0.072)J=0.001 3 J,碰撞前后动能不相等;碰前滑块质量与速度的乘积m1v1=0.25×0.12 kg·m/s=0.03 kg·m/s,碰后滑块质量与速度乘积的矢量和mv=(–0.25×0.024+0.5×0.07)kg·m/s=0.029 kg·m/s,在误差允许范围内相等。
(4)综上实验,碰撞前后只有滑块质量和速度乘积的矢量和始终相等例2.【参考答案】(1)BC DE(2)0.420 0.417 (3)在误差允许范围内,系统动量守恒(3)根据碰撞前后的动量关系可知在误差允许的范围内系统动量守恒。
达标训练:1.【参考答案】(1)> (2)其末端切线水平(3)球1应每次从斜槽上相同的位置滑下;P、M、N点应该是多次实验落地点的平均位置;应看m1·OM+m2·(ON–d)与m1·OP是否相等【详细解析】(1)为了保证实验现象明显,小球1不会反弹,要满足m 1>m 2。
(2)要保证两个小球均要做平抛运动,必须调整斜槽使其末端切线水平。
(3)球2的水平射程小于ON ,实际为ON –d 。
【名师点睛】用平抛法测量碰撞前后的速度,使用末端带立柱的斜槽比只使用斜槽更准确,对两球的射程的测量误差更小。
不使用立柱的情况,做实验时,一半会使用两个体积很小的球来碰撞。
2.【参考答案】(1)球2到水平桌面的高度h 、桌面高H 和C 点与桌子边沿间的水平距离c(2)2m 1a h -=2m 1b h -+2H h+(2)对小球1,由机械能守恒有m 1g (a –h )=2102m v ,m 1g (b –h )=2112m v ,得v 02()g a h -,v 12()g b h -2,由平抛运动规律有c =v 2t ,H +h =12gt 2,得v 2=2()g c H h +若动量守恒则有m 1v 0=m 1v 1+m 2v 2,可得2m a h -m b h -2H h+。