概率统计习题 5.2
14级--GZ《概率与统计》_第12讲_5.1大数定律_5.2中心极限定理

§2 中心极限定理
5.2 中心极限定理
简介
中心极限定理是研究在什么条件下,独立随机变 量序列部分和的极限分布为正态分布的一系列定理 的总称。 在自然界与生产中,一些现象受到许多相互独立 的随机因素的影响,如果每个因素所产生的影响都 很微小时,总的影响可以看作是服从正态分布的。 中心极限定理就是从数学上证明了这一现象 。 它是近两个世纪概率论研究的中心问题,因此这 些定理称为中心极限定理。
P(120000 aX 60000 ) 0.9,即 P( X
由棣莫弗 - 拉普拉斯定理知,
60000 ) 0.9. a
60000 X 60 60000 a 60 P( X ) P( ) 0 . 9. a 60 9.4% 60 9.4%
5.2 中心极限定理
定理1:独立同分布中心极限定理 (变形)
P( k 1
n
X
n
k
n
当n 时 x) ( x)
n
k
X
式中
k 1
n
n
X n n 1 X X
分子分母同时除以n n k 1
k
X 近似 ~ N (0,1) 故: n
或
X ~ N (,
为什么会有这种规律性?这是由于大量试验过程中,随
机因素相互抵消、相互补偿的结果。
用极限方法来研究大量独立(包括微弱相关)随机试验
的规律性的一系列定律称为大数定律。
5.1 大数定律
弱大数定理(辛钦大数定理)
设随机变量序列 X1, X2, … 独立同分布,具有有限的 数学期望 E(Xk)=μ, k=1, 2, …,则对任给 ε >0 ,有
棣莫弗 – 拉普拉斯定理 (针对二项分布)
概率与数据统计5.2极大似然法

设总体X分布函数为F(x;θ),θ为未知参数,
一次抽样中,得观测值(x1,x2,…,xn),则认为 (x1,x2,…,xn)出现的可能性最大,为了估计θ,
选取估计值 ,使ˆ得(x1,x2,…,xn)出现的可能
性最大.
最大似然估计就是通过样本值 (x1, , xn )来
求得总体的分布参数,使得(X1, , Xn ) 取值
只写有 出一 方个程待:d估dln参L 数 0时
ln L
2
0
ln L
m
0
4.求解似然方程(组)得最大似然估计值
ˆi ˆi (x1, x2,..., xn )并写出最大似然估计量
ˆi ˆi (X1, X2,..., Xn )
例1 求参数为p的0-1分布的最大似然估计.
解 P(X=0)=1-p P(X=1)=p
大似然估计.
( 1)x ,0 x 1, 1
例4
设总体X~
f (x)
0
, 其他
其中 是未知参数.(X1, , Xn )是来自总体的
一个容量为n 的简单随机样本,求 的最大似
然估计量 ˆ及E(e1nˆ ).
解
L( 当
x由01 ,所题x2x以,意.i..,得x1n:;E( i)(e11,n02iˆn,1)..(.,nE)(1X)1x1时iX,2 in01其lXnn它nxX)i
,m ),
P{X1 x1, X 2 x2 ,..., X n xn}
n
n
P{Xi xi} f (xi ;1,2, ,m )
i 1
i 1
似然函数:
n
L(1,2, ,m ) f (xi;1,2, ,m ) i 1
3 最大似然估计法(连续型)
概率论与数理统计习题集及答案_5

概率论与数理统计习题集及答案---------------------------------------《概率论与数理统计》作业集及答案第1章概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为:.(2)A 与B 都发生,而C 不发生表示为:.(3)A 与B 都不发生,而C 发生表示为:.(4)A 、B 、C 中最多二个发生表示为:.(5)A 、B 、C 中至少二个发生表示为:.(6)A 、B 、C 中不多于一个发生表示为:.2. 设}42:{},31:{},50:{≤(1)=⋃B A ,(2)=AB ,(3)=BA ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。
概率论与数理统计(英文) 第五章

5. Random vectors and Joint Probability Distribution s随机向量与联合概率分布5.1 Concept of Joint Probability Distributions(1) Discrete Variables Case 离散型Often, trials are conducted where two random variables are observed simultaneously in order to determine not only their individual behavior but also the degree of relationship between them.( X, Y)For two discrete random variables X and Y, we write the probability that X will take the value x and Y will take the value y as P(X=x, Y=y). Consequently, P(X=x, Y=y) is the probability of the intersection of the events X=x and Y=y.(X=x, Y=y) ------ (X=x)∩(Y=y)The distribution of probability is specified by listing the probabilities associated with all possible pairs of values x and y, either by formula or in a table. We refer to the function p(x, y)=P(X=x, Y=y) and the corresponding possible values (X, Y) as the j oint probability distribution (联合分布)of X and Y.They satisfy(,)0, (,)1xyp x y p x y ≥=∑∑,where the sum is over all possible values of the variable.Example 5.1.1 Calculating probabilities from a discrete joint probability distributionLet X and Y have the joint probability distribution.(a) Find (1)P X Y +>;(b) Find the probability distribution ()()X p x P X x == of the individualrandom variable X . Solution(a) The event 1X Y +>is composed of the pairs of values (l,1), (2,0), and (2,l). Adding their corresponding probabilities(1)(1,1)(2,0)(2,1)0.20.100.3.P X Y p p p +>=++=++=(b) Since the event X =0 is composed of the two pairs of values (0,0) and (0,1), we add their corresponding probabilities to obtain(0)(0,0)(0,1)0.10.20.3P X p p ==+=+=.Continuing, we obtain (1)(1,0)(1,1)0.40.20.6P X p p ==+=+= and(2)(2,0)(2,1)0.100.1P X p p ==+=+=.In summary, (0)0.3X p =, (1)0.6X p = and (2)0.1X p =is the probabilitydistribution of X . Note that the probability distribution ()X p x of appears in the lower margin of this enlarged table. The probability distribution ()Y p y of Y appears in the right-hand margin of the table. Consequently, the individual distributions are called marginal probability distributions .(边缘分布)From the example, we see that for each fixed value of x , the marginalprobability distribution is obtained as()()(,)X yP X x p x p x y ===∑,where the sum is over all possible values of the second variable. Continuing, we obtain()()(,)Y xP Y y p y p x y ===∑.Example 3.5.3Suppose the number X of patent applications (专利申请)submitted by a company during a 1-year period is a random variable having thePoisson distribution with mean λ, (()!n e P X n n λλ-==)and the variousapplications independently have probability (0,1)p ∈ of eventually being approved.Determine the distribution of the number of patent applications during the 1-year period that are eventually approved.先求联合分布密度,再求边缘分布Solution Let Y be the number of patent application being eventually approved during 1-year period. Then the event {}Y k = is the union of mutually exclusive events {,}X n Y k == ()n k ≥.If X n =, then the random variable S has the binomial distribution with parameter n and p :(|)(1)k k n k n P Y k X n C p p -===-. (0)n k ≥≥ Thus(,)()(|)P X n Y k P X n P Y k X n ====== (1)!nk kn k n e C p p n λλ--=⋅⋅-when k>n, P(X=n, Y=k)=0,Hence the distribution of Y is()(,)(,)n n kP Y k P X n Y k P X n Y k ∞∞=========∑∑(1)!nk kn k n n ke C p p n λλ∞--==⋅⋅-∑!(1)!!()!nk n k n k n e p p n k n k λλ∞--==⋅⋅--∑(1)!()!kn kkn k n ke p p k n k λλλ-∞--==⋅⋅--∑()(1)(1)()()!!!mk k p m p p p e e ek m k λλλλλλ∞---=-==∑ ()!k pp e k λλ-= Thus, Y has the Poisson distribution of mean p λ. exercise从1,2,3,4,5五个数中不放回随机的接连地取3个,然后按大小排成123X X X <<,试求13(,)X X 的联合分布,x1,x3 独立吗?Homework Chap 5 1,(2) Continuous Variables Case 连续型随机向量There are many situations in which we describe an outcome by giving the values of several continuous random variables. For instance, we may measure the weight and the hardness of a rock, the pressure and the temperature of a gas. Suppose that X and Y are two continuous random variables. A function (,)f x y is called the joint probability density of these random variables, if the probability that , a X b c Y d ≤≤≤≤ is given by the multiple integral(, )(,)b da cP a X b c Y d f x y dxdy ≤≤≤≤=⎰⎰Thus, a function (,)f x y can serve as a joint probability density if all of the following hold:for all values of x and y , f is integrable on R 2 andTo extend the concept of a cumulative distribution function to the two variables case, we can define F (x , y )(, )(, )F x y P X x Y y =≤≤,and we refer to the corresponding function F as the joint cumulative distribution function of the two random variables.Example 5.1.2If the joint probability density of two random variables is given by236 for 0,0(,)0 elsewherex y e x y f x y --⎧>>=⎨⎩ Find the joint distribution function, and use it to find the probability(2,4)P X Y ≤≤.Solution By definition,23006 for 0, 0(,)(,)0 elsewhere y x yu vxe du e dv x y F x yf u v dudv ---∞-∞⎧>>⎪==⎨⎪⎩⎰⎰⎰⎰Thus,23(1)(1) for >0, >0(,)0 elsewhere x y e e x y F x y --⎧--=⎨⎩.Hence,412(2, 4)(2, 4)(1)(1)0.9817P X Y F e e --≤≤==--=.ExampleIf the joint probability density of two random variables is given by2,1,01(,)0,kxy x y x f x y ⎧≤≤≤≤=⎨⎩其他(a)find the k; (b)find the probability2((,)),{(,)|,01}P X Y D D x y x y x x ∈=≤≤≤≤solutionsince(,)1f x y dxdy ∞∞-∞-∞=⎰⎰24111001(,)()226x x kf x y dxdy dx kxydy k x dx ∞∞-∞-∞==-=⎰⎰⎰⎰⎰ hence k=6.21124001((,))663()4xx DP X Y D xydxdy dx xydy x x x dx ∈===-=⎰⎰⎰⎰⎰joint marginal densities 边缘密度Given the joint probability density of two random variables, the probability density of the X or Y can be obtained by integrating out another variable,The functions f X and f Y respectively are called the marginal density (边缘密度)of X and Y .,ExampleThe joint probability density of two random variables is given by26,1,01(,)0,xy x y x f x y ⎧≤≤≤≤=⎨⎩其他find the marginal density from the joint density when [0,1]x ∈,215()(,)633X xf x f x v dv xydy x x +∞-∞====-⎰⎰[0,1]x ∉,()0X f x =,hence 533,01()0,X x x x f x elsewhere ⎧-≤≤=⎨⎩23,01()0,Y y y f x elsewhere ⎧≤≤=⎨⎩exercises求服从B 上均匀分布的随机向量(X,Y )的分布密度及分布函数。
概率与概率分布

第5章 概率与概率分布一、思考题5.1、频率与概率有什么关系?5.2、独立性与互斥性有什么关系?5.3、根据自己的经验体会举几个服从泊松分布的随机变量的实例。
5.4、根据自己的经验体会举几个服从正态分布的随机变量的实例。
二、练习题5.1、写出下列随机试验的样本空间:(1)记录某班一次统计学测试的平均分数。
(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。
(3)生产产品,直到有10件正品为止,记录生产产品的总件数。
5.2、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。
5.3、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是31,A 发生且B 不发生的概率是91,求B 发现的概率。
5.4、设A 与B 是两个随机事件,已知P(A)=P(B)=31,P(A |B)= 61,求P(A |B ) 5.5、有甲、乙两批种子,发芽率分别是0.8和0.7。
在两批种子中各随机取一粒,试求:(1)两粒都发芽的概率。
(2)至少有一粒发芽的概率。
(3)恰有一粒发芽的概率。
5.6、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少?5.7、某种品牌的电视机用到5000小时未坏的概率为43,用到10000小时未坏的概率为21。
现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少?5.8、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。
从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少?5.9、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
概率统计c 5_2

Covariance
That is, since X – X and Y – Y are the deviations of the two variables from their respective mean values, the covariance is the expected product of deviations. Note that Cov(X, X) = E[(X – X)2] = V(X) V(X + Y) = V(X) + V(Y) + 2Cov(X,Y) The rationale for the definition is as follows.
13
Covariance
For a strong negative relationship, the signs of (x – X) and (y – Y) will tend to be opposite, yielding a negative product. Thus for a strong negative relationship, Cov(X, Y) should be quite negative. If X and Y are not strongly related, positive and negative products will tend to cancel one another, yielding a covariance near 0.
Where
X EX Y EY X and Y are V (X ) V (Y )
standardized rv of X and Y, respectively.
19
Example 17
概率论与数理统计第五章2

分布的上 分位数或上侧临界值, 的数tα(n)为t分布的上α分位数或上侧临界值, 其几何意义见图5-7. 其几何意义见图
标准正态分布的分位数
在实际问题中, 在实际问题中, α常取0.1、0.05、0.01. 常用到下面几个临界值: 常用到下面几个临界值:
u0.05 =1.645, , u0.05/2=1.96, ,
u0.01 =2.326 u0.01/2=2.575
数理统计中常用的分布除正态分布外, 数理统计中常用的分布除正态分布外,还有 三个非常有用的连续型分布, 三个非常有用的连续型分布,即
定理5.1 定理5.1
设(X1,X2,…,Xn)为来自正态总体 X~N( ,σ 2)的样本,则 的样本, ~ (1) 样本均值 X与样本方差S 2相互独立; 相互独立; n (2)
(n 1)S
2
σ
2
=
∑(X X)
i =1 i
2
σ
2
~ χ (n 1)
2
(5.8)
与以下补充性质的结论比较: 与以下补充性质的结论比较: 性质 设(X1,X2,…,Xn)为取自正态总体
上侧临界值. 如图. 上侧临界值 如图
概率分布的分位数(分位点) 概率分布的分位数(分位点) 定义 对总体X和给定的α (0<α<1),若存在xα, α 分布的上侧 分位数或 上侧α 使P{X≥xα} =α, 则称xα为X分布的上侧α分位数或 α y α o xα x
P{X≥xα} =α α
∫ xα
其中Sn
(5.10)
=
2 (n1 1)S1
2 2 S1、S2 分别为两总体的样本方差 分别为两总体的样本方差.
n1 + n2 2
概率统计:矩母函数

et (12
)(12
2 2
)t2
/
2
因而 X
Y
~
N (1
2 ,12
2 2
).
M X (t) E(etX ), M (n) (0) EX n, M X (t) etM X (t),
X1, , Xn 独立 M X1 Xn (t) M X1 (t) M Xn (t),
X 和Y 有相同分布 M X (t) MY (t).
定义 5.1 设 X 为随机变量,I 是一个包含0的(有限或无限的)
开区间,对任意t I ,期望EetX 存在,则称函数
M X (t) E(etX )
etxdF (x), t I
为 X 的矩母函数,常把M X (t)简记为M (t).因此
(离散型)
M X (t)
etxi P( X
i
xi ) ,
10
矩母函数(10)
例 5.4 设 X ~ N (, 2),求 X 的矩母函数.
解 设Y ( X ) / ,则Y ~ N (0,1),MY (t) et2 / 2.因为
X Y ,故
M X (t) et MY ( t) et 2t2 / 2 .
11
作业
• 习题三: 34,35,36
12
命题 6.2
设 X ,Y 独立, X
~ N (1,12 ),
Y
~
N
(2,
2 2
)
,则
X
Y
~
N (1
2
,
2 1
2 2
)
证 M X (t) et112t2 / 2, MY (t) et2 22t2 / 2 ,故
M
吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版

吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.3 古典概型现习题3现习题4现习题5现习题6现习题7现习题8现习题9现习题101.4 条件概率习题3 空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题6.习题7习题8习题9习题10习题11现习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22现习题23现习题24第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.习题4 (空)习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10 纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布习题1习题2习题3习题4习题5习题6总习题二1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、。
概率统计5-2

则对于任意实数 x ,
D( X k )
k 1 n
n
E ( X k )
2
注
记
则 Z n 为 Xk
k 1
n
的标准化随机变量. lim PZ n x ( x)
n
Zn
k 1
n
即 n 足够大时,Z n 的分布函数近似于标准正态随机 变量的分布函数 近似 Z ~ N (0,1)
X k 近似服从 N (n , n 2 ) k 1
n
n
例1 炮火轰击敌方防御工事 100 次, 每次轰击命中的炮弹 数服从同一分布,其数学期望为 2 , 均方差为1.5. 若各次 轰击命中的炮弹数是相互独立的, 求100 次轰击(P158-14 (1) 至少命中180发炮弹的概率; (2) 命中的炮弹数不到200 发的概率. 解 设 X k 表示第 k 次轰击命中的炮弹数 X 1 , X 2 ,, X 100 E ( X k ) 2, D( X k ) 1.52 , k 1,2,,100 相互独立, 设 X 表示100次轰击命中的炮弹数, 则
15 200 200 0 200 (2) P(0 X 200) (0) (13.33) 0.5 15 15
近似
中心极限定理的意义
Ch5-24
在第二章曾讲过有许多随机现象服从 正态分布 是由于许多彼次没有什么相依关 系、对随机现象谁也不能起突出影响,而 均匀地起到微小作用的随机因素共同作用 (即这些因素的叠加)的结果. 若联系于此随机现象的随机变量为X , 则它可被看成为许多相互独立的起微小作 用的因素Xk的总和 X k,而这个总和服从
概率统计复习

仅供参考概率统计复习1.2例题四 ,1.3例题二、四,1.4例题一、六、七,1.5例题四,2.2例题四、五,2.3例题二,2.4例题一、三、四,2.5例题一、二、三,3.1例题一、二,3.2例题二,4.1例题一、三、五、六,4.2例题一、五、七、八,4.3例题一、六,4.3例题四、六,4.4例题一、二、五,5.2例题一、四,5.3例题一、二,6.1例题一,6.2例题一、五1.2习题四已知P (A )=P (B )=P (C )=41,()()161BC P AC P ==,()0AB P =,求事件A ,B ,C 全不发生的概率。
解: ()()()C B A P -1C B A P C B A P ⋃⋃=⋃⋃=()()()()()()()[]ABC P BC P -AC P -AB P -C P B P A P -1+++= 830161-161-0-414141-1=⎥⎦⎤⎢⎣⎡+++= 1.3习题一袋中装有5个白球,3个黑球,从中一次任取两个,求()1求取到的两个球颜色不同的概率;()2求取到的两个球有黑球的概率。
解: ()1 设A={取到的两个球颜色不同},则()2815C C C A P 281315==. ()2}{()}{,则由题意有球取到黑,球个黑取到设===B 2,1i i A i()()()()2121A P A P A A P B P +=+=149C C C C C C 282305281315=+= 1.4习题二假设一批产品中一、二、三等品各占60%,30%,10%,从中任1件,结果不是三等品,求取到的是一等品的概率。
解: 令A 为“取到的是i 等品”,i=1,2,3, ()()()()()329.06.0A P A P A PA A P A A P 3133131====.1.4习题三设10件产品中有4件不合格产品,从中任取2件,已知所取2件产品中有1件不合格品,求另一件也是不合格品的概率。
概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的
概率论与数理统计第5章作业题解

第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明1{02}P X λλλ-<<≥.解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201kk V V==∑,求(105)P V >的近似值。
概率统计

概率统计 §6 随机事件的概率一、选择题1、随机事件A 的频率mn满足[ ] A 、0mn = B 、1m n= C 、1mn>D 、01m n≤≤ 2、m 件产品中含有n 件次品,现逐个进行检查,直到次品全部查出为止,若第m -1次查出n -1件次品的概率为r ,则第m 次查出最后一个次品的概率为[ ]A 、r -1B 、rC 、r +1D 、13、从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2 张卡片上的字母恰好是按字母顺序相邻的概率是[ ]A 、15B 、25C 、310D 、7104、在100张奖券中,有4 张中奖,从中任取两张,则两张都中奖的概率是[ ]A 、150B 、125C 、1825D 、149505、若某停车场能把12辆车排成一列停放,有8个车位停放车,而4个空位连在一起,这种事件发生的概率是[ ]A 、8127C B 、8128C C 、8129C D 、81210C 6、从6名选手中,选取4个人参加奥林匹克竞赛,其中某甲被选中的概率是[ ]A 、13B 、12C 、23D 、35二、填空题7、将一枚硬币连掷三次,出现“2个正面,1 个反面”的概率是__________;出现“1个正面、2个反面”的概率是___________。
8、从装有10个红球和5个白球的口袋中,任意摸出4个球,则这4个球的颜色相同的概率是_________。
9、一年按365天计算,两名学生的生日相同的概率是_________。
三、解答题10、从数字1,2,3,4,5中任取3 个,组成没有重复数字的三位数,计算: ①这三个数字是5的倍数的概率; ②这三个数是奇数的概率; ③这三个数大于400的概率; 11、5个同学任意站成一排,计算: ①甲站在正中的概率;②甲、乙两个人站在两端的概率。
12、分配5人担任5种不同的工作,求甲不担任第一种工作,且乙不担任第二种工作的概率。
概率论与数理统计(理工类.第四版)吴赣昌主编答案5,6,7,8章

第五章数理统计的基础知识5.1 数理统计的基本概念习题一已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表X¯=1n∑i=1nXi与Sn2=1n∑i=1n(Xi-X¯)2分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(x)={λe-λx,x>00,其它,F(x)={1-e-λx,x>00,x≥0,X(2)的概率密度为f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
《概率论与数理统计》课后练习题册

《概率论与数理统计》课后练习题册 习题一 随机事件及其概率和性质1.1 选择题(1)设A 、B 为任意两个事件,则下列关系式成立的是( )。
(A )A B B A =-⋃)( (B )A B B A ⊃-⋂)( (C )A B B A ⊂-⋂)( (D )A B B A =⋃-)((2)以A 表示“甲种产品畅销,乙种产品滞销”,则对立事件A 为( )。
(A )甲种产品滞销,乙种产品畅销 (B )甲、乙产品均畅销(C )甲种产品滞销 (D )甲产品滞销或乙产品畅销 1.2 指出下列关系中那些是正确的,那些是错误的,并说明理由。
(1)(A ∪B )- C = A ∪(B -C ); (2)(A ∪B )- A = B ;(3))(B A ⋃C =A B ∪B C ; (4)AB B A B A B A =⋃⋃;(5)=))((B A AB ∅; (6)若A B ⊂,则A B A =⋃。
1.3 试把C B A ⋃⋃表示成三个两两互不相容事件的和。
1.4 设}20|{≤≤=Ωx x ,}15.0|{≤<=x x A ,}5.125.0|{<≤=x x B ,请具体写出下列各事件:(1)B A ; (2)B A ⋃;(3)B A ; (4)AB 。
1.5 一个工人生产了四件产品,以i A 表示他生产的第i 件产品是正品(4,3,2,1=i ),试用)4,3,2,1(=i A i 表示下列事件:(1)没有一件产品是次品; (2)至少有一件产品是次品;(3)恰有一件产品是次品; (4)至少有两件产品不是次品。
1.6 设A 、B 、C 是三个事件,且41)()()(===C P B P A P ,81)(=AC P , 0)()(==BC P AB P ,求A 、B 、C 中至少有一个发生的概率。
1.7 设A 、B 是两事件,且P (A ) = 0.6,P (B ) =0.7。
问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?1.8 袋中有白球5只,黑球6只,依次从袋中不放回取出三只,求顺序为黑白黑的概率。
概率论与数理统计教程(魏宗舒第二版)5-6章答案_split_1

说明:本习题答案是针对魏宗舒编写的《概率论与数理统计教程》(第二版).5.1设(x l ,x 2,···,x n )及(u 1,u 2,···,u n )为两组子样的观测值,它们有如下关系:u i =x i −ab,(b =0,a 为常数)求子样均值¯u 与¯x ,子样方差S 2u 与S 2x 的关系.解:¯u =1n n ∑︁i =1u i =1n n ∑︁i =1x i −a b =1b (︃1n n ∑︁i =1x i −a )︃=1b(¯x −a )S 2u=1n n ∑︁i =1(u i −¯u )2=1n n ∑︁i =1(︂x i −a b −¯x −a b )︂2=1b 2[︃1n n ∑︁i =1(x i −¯x )2]︃=1b2S 2x.5.2若子样观测值x 1,x 2,···,x m 的频数分别为n 1,n 2,···,n m ,试写出计算子样平均数¯x 和子样方差S 2n 的公式(这里n =n 1+n 2+···+n m )解:¯x =1n m∑︁i =1m i x iS 2n=1n m∑︁i =1m i (x i −¯x )2.5.3利用切比雪夫不等式求钱币需抛掷多少次才能使子样均值¯ξ落在0.4到0.6之间的概率至少为0.9?如何才能更精确地计算是概率接近0.9所需要的次数是多少?解:设需要掷n 次,E ¯ξ=0.5,D (¯ξ)=14n.由切比雪夫不等式可得:P (0.4≤¯ξ≤0.6)=P (|¯ξ−0.5|≤0.1)≥1−14n ×(0.1)2=1−25n≥0.9⇒n ≥250.所以由切比雪夫不等式估计,至少需要掷250次才能使样本均值落在0.4到0.6之间的概率至少为0.9.¯ξ−0.5√︀1/(4n )=2√n (¯ξ−0.5)近似服从标准正态分布,所以P (0.4≤¯ξ≤0.6)=P (︀2√n (0.4−0.5)≤2√n (¯ξ−0.5)≤2√n (0.6−0.5))︀=2Φ(2√n ×0.1)−1≥0.9⇒Φ(0.2√n )≥0.95.其中Φ(x )是标准正态分布N (0,1)的分布函数,查表可得Φ(1.645)=0.95.因此0.2√n =1.647⇒n =67.65,因此至少要掷68次硬币.5.4若一母体ξ的方差σ2=4,而¯ξ是容量为100的子样的均值.分别利用切比雪夫不等式和极限定理求出一个下界,使得¯ξ−μ(μ为母体ξ的数学期望Eξ)夹在这界限之间的概率为0.9.解:设P (|¯ξ−μ|≤a )≥0.9.注意到母体的数学期望为μ,方差为σ2.所以E ¯ξ=μ,D ¯ξ=σ2/n =125.由切比雪夫不等式可知:P (|¯ξ−μ|≤a )≥1−D ¯ξa 2=1−125a2≥0.90⇒1/(25a 2)≤0.1⇒a ≥0.4.故由切比雪夫不等式得到的界限是0.4.根据大数定律可知¯ξ−μ√︀1/25=5(¯ξ−μ)近似服从标准正态分布,所以P (|¯ξ−μ|≤a )=P (5(¯ξ−μ)≤5a )=2Φ(5a )−1≥0.9⇒Φ(5a )≥0.95⇒5a ≥1.645⇒a ≥0.329.由大数定律得到的界限是0.329.5.5假定¯ξ1和¯ξ2分别是取自正态总体N(μ,σ2)的容量为n的两个独立子样(ξ11,ξ12,···,ξ1n)和(ξ21,ξ22,···,ξ2n)的均值,确定n使得两个子样均值之差超过σ的概率大约为0.01.解:由题意可知¯ξi∼N(μ,σ2/n),i=1,2,并且¯ξ1,¯ξ2相互独立.因此¯ξ1−¯ξ1∼N(0,2σ2/n),即√n¯ξ1−¯ξ2√2σ∼N(0,1).由P(|¯ξ1−¯ξ2|>σ)=0.01可得:P(√n⃒⃒⃒⃒¯ξ1−¯ξ2√2σ⃒⃒⃒⃒>√nσ√2σ)=0.01⇒P(√n⃒⃒⃒⃒¯ξ1−¯ξ2√2σ⃒⃒⃒⃒>√︂n2)=0.01⇒2(1−Φ(√︀n/2))=0.01⇒√︀n/2=2.576⇒n=13.27.所以当n=13时,可使得两个子样均值之差超过σ个概率大约为0.01.5.6设母体ξ∼N(μ,4),(ξ1,ξ2,···,ξn)是取自此母体的一个子样,¯ξ为子样均值.试问:子样容量n应取多大,才能使(1)E(|¯ξ−μ|2)≤0.1;(2)E(|¯ξ−μ|)≤0.1;(3)P(|¯ξ−μ|≤0.1)≥0.95.解:由题意可知√n2(¯ξ−μ)∼N(0,1).设η∼N(0,1),那么E(|η|2)=∫︁∞−∞1√2π|x|2e−12x2dx=2∫︁∞−∞1√2πx2e−12x2dx=Eη2=Dη+(Eη)2=1;E(|η|)=∫︁∞−∞1√2π|x|e−12x2dx=2∫︁∞1√2πxe−12x2dx=−2√2πe−12x2⃒⃒⃒∞=√︂2π.(1).E(|¯ξ−μ|2)=4nE⃒⃒⃒⃒√n2(¯ξ−μ)⃒⃒⃒⃒2=4n≤0.1⇒n≥40.所以当n取40时,可以使得E(|¯ξ−μ|2)≤0.1.(2).E(|¯ξ−μ|)=2√nE⃒⃒⃒⃒√n2(¯ξ−μ)⃒⃒⃒⃒=2√n√︂2π≤0.1⇒n≥800π.(3).P(|¯ξ−μ|≤0.1)=P(|√n2(¯ξ−μ)|≤0.1√n2)≥0.95⇒2Φ(0.1√n2)−1≥0.95⇒Φ(0.1√n2)≥0.975⇒0.1√n2≥1.96⇒n≥39.22=1536.6.即当n≥1537时,才能使P(|¯ξ−μ|≤0.1)≥0.95.5.7设母体ξ∼b(1,p)(二点分布),(ξ1,ξ2,···,ξn)为取自此母体的一个子样,¯ξ为子样均值.(1).若p=0.2,子样容量n应取多大,才能使①P(|¯ξ−p|≤0.1)≥0.75;②E(|¯ξ−p|2)≤0.01.(2).若p ∈(0,1)为未知数,则对每个p ,子样容量n 为多大时才能使E (|¯ξ−p |2)≤0.01.解:记q =1−p ,则√n (¯ξ−p )近似服从正态分布N (0,pq ).(1).P (|¯ξ−p |≤0.1)=P (⃒⃒√n (¯ξ−p )/√pq ⃒⃒≤0.1√n √pq )≈2Φ(︂0.1√n √pq)︂−1所以由P (|¯ξ−p |≤0.1)≥0.75可得Φ(︂0.1√n √pq)︂≥0.875.查表得Φ(1.15)=0.875,因此0.1√n/√pq ≥1.15⇒n ≥11.52×pq =21.16,即当n ≥22时,才能保证P (|¯ξ−p |≤0.1)≥0.75.②.E (|¯ξ−p |2)=E (¯ξ−p )2=E (¯ξ−E ¯ξ)2=D ¯ξ=Dξ/n =pq/n =0.16/p .所以要使E (|¯ξ−p |2)≤0.01,只需0.16n≤0.01⇒n ≥0.160.01=16,故只有当n ≥16,才能使E (|¯ξ−p |2)≤0.01.(2).类似于(1)中的②,E (|¯ξ−p |2)=D ¯ξ=p (1−p )n.因此要使E (|¯ξ−p |2)≤0.01,子样容量n 必须≥p (1−p )0.01=100p (1−p ).5.8设母体ξ的k 阶原点矩和中心矩分别为v k =Eξk ,μk =E (ξ−v 1)k ,k =1,2,3,4.ξk ,m k 分别为容量为n 的子样k 阶原点矩和中心矩,求证:∙E (¯ξ−v 1)3=μ3n 2;∙E (¯ξ−v 1)4=3μ2n 2+μ4−3μ22n3.解:令η=ξ−v 1=ξ−Eξ,ηi =ξi −v 1,那么η1,η2,···,ηn 就是来自总体η的子样,并且Eηki =Eηk =E (ξ−v 1)k =μk .令¯η=1n ∑︀n i =1ηi ,那么¯η=¯ξ−v 1.所以(1)E (¯ξ−v 1)3=E ¯η3=1n3∑︁i,j,kEηi ηj ηk =1n 3⎛⎜⎝n ∑︁i =1Eη3i +∑︁i,j,k 不全相等Eηi ηj ηk ⎞⎟⎠=1n 3⎛⎝nμ3+3∑︁i =j,i =kEηi (ηj ηk )⎞⎠=1n 2μ3+3n 3∑︁i =j,i =kEηi E (ηj ηk )=μ3n 2(2)E (¯ξ−v 1)4=E ¯η4=1n4∑︁i,j,k,lEηi ηj ηk ηl=1n 4⎛⎝n ∑︁i =1Eη4i +∑︁i =j =k =lEη2i η2k +∑︁i =k =j =lEη2i η2j +∑︁i =l =k =jEη2i η2j +E∑︁elseηi ηj ηk ηl ⎞⎠=1n 4(︀nμ4+3n (n −1)μ22)︀=3(n −1)μ22n 3+μ4n 3=μ4−3μ22n 3+3μ22n2其中对i,j,k,l 求和时,把这四个下标分成三类,一类是i =j =k =l ,第二类是这四个下标分成两组,在同组中的下标都相等,其余的分在第三类.注意在第三类中,我们肯定可以找到一个下边,它和其余三个下标都不同,此时Eηi ηj ηk ηl =0,这因为,比如i 不等于其余三个下标,那么Eηi ηj ηk ηl =Eηi Eηj ηk ηl ,而Eξi =0.5.9.设母体ξ∼N (μ,σ2),子样方差S 2n =1n ∑︀n i =1(ξi −¯ξ)2.求ES 2n ,DS 2n ,并证明当n 增大时,他们分别为σ2+o (1n )和2σ4n +o (︀1n )︀.解:ES 2n =(n −1)σ2n=σ2−1nσ2=σ2+o (1).(注:习题中有错误,不是o (1n ),1n 的高阶无穷小,而是o (1),即无穷小.)对于后一问,只需利用P 233的定理5.1,我们在这里这需计算μ2,μ4.μ2=Dξ=σ2,μ4=E (ξ−μ)4=∫︁∞−∞(x −μ)4p ξ(x )dx =∫︁∞−∞x 41√2πσexp {︂−12x 2σ2}︂dx =∫︁∞−∞x 31√2πσexp {︂−12x 2σ2}︂dx 22=−x 3σ√2πexp {︂−12x 2σ2}︂⃒⃒⃒∞−∞+3σ2∫︁∞−∞x 21√2πσexp {︂−12x 2σ2}︂dx=3σ4.把μ2,μ4的结果带入定理5.1,可知:DS 2n=σ4[︀2n−2n 2]︀=2σ4n+o (︀1n )︀.实际上,我们也可以这样计算:令随机变量η∼χ2(n ),那么Eη=∫︁∞0x 12n 2Γ(n 2)x n 2−1e −12x dx =2n +22Γ(n +22)2n 2Γ(n 2)=n Eη2=∫︁∞x 212n 2Γ(n 2)x n 2−1e −12x dx =n (n +2).因此Eη=n,Dη=2n .从以上可知:D (S 2n )=σ4n2D (︂nS 2n σ2)︂=2(n −1)σ4n 2=2σ2n+o(︂1n)︂.5.10设(ξ1,ξ2)为取自正态母体ξ∼N (0,σ2)的一个子样,试证:(1).ξ1+ξ2与ξ1−ξ2是相互独立的;(2).(ξ1+ξ2)2(ξ1−ξ2)2服从F (1,1)分布.解:(ξ1,ξ2)是ξ∼N (μ,σ2)的子样,从而ξ*=[︃ξ1ξ2]︃∼N(︃[︃μμ]︃,σ2I 2)︃,其中I 2表示二阶单位矩阵.那么η=[︃η1η2]︃=[︃111−1]︃ξ* Bξ*∼N (︃B [︃μμ]︃,σ2BI 2B ′)︃,即η∼N (︃[2μ,0]′,[︃2002]︃)︃.因此可知η1,η2即ξ1+ξ2,ξ1−ξ2相互独立,且分别有分布N (2μ,2),N (0,2).5.11设母体的分布函数为F (x ),(ξ1,ξ2,···,ξn )是取自该母体的一个字样.若F (x )的二阶矩存在,¯ξ为字样均值,试证(ξi −¯ξ)与(ξj −¯ξ)的相关系数为ρ=−1n −1,i =j =1,2,···,n .解:方法一:由相关系数的定义,我们先计算Cov(ξi −¯ξ,ξj −¯ξ)和D (ξi −¯ξ)=D (ξj −¯ξ).记总体ξ的期望为μ,方差为σ2.令ηi =ξi −μ,i =1,2,···,n ,那么Eηi =0,Eηi ηj =0,i =j,Eη2i=σ2.从而可知:Cov(ξi −¯ξ,ξj −¯ξ)=Cov(ηi −¯η,ηj −¯η)=Cov(ηi ,ηj )−2Cov(ηi ,¯η)+Cov(¯η,¯η)=0−2Cov(ηi ,1n ηi )+σ2/n =−1n σ2.D (ξi −¯ξ)=D (ηi −¯η)=Cov(ηi −¯η,ηi −¯η)=D (ηi )−2Cov(ηi ,¯η)+D ¯η=σ2−2Cov(ηi ,1n ηi )+σ2/n =n −1nσ2.所以ξi −¯ξ,ξj −¯ξ的相关系数为−σ2/n√︂n −1n σ2n −1nσ2=−1n −1,i =j.方法二:首先由ξ1,ξ2,···,ξn 的独立性可知:D (ξ−¯ξ)=D (n −1n ξi −1n∑︁j =iξj )=(︂n −1n )︂2Dξi +1n2∑︁j =iDξj=σ2(︃(︂n −1n )︂2+n −1n 2)︃=n −1nσ2.由对称性可知对任意的i =j ,Cov(ξi ,ξj )=Cov(ξ1,ξ2) c .同时注意到∑︀n i =1(ξi −¯ξ)=0,所以=D (n ∑︁i =1(ξi −¯ξ))=n ∑︁i =1D (ξi −¯ξ)+∑︁i =jCov(ξi −¯ξ,ξj −¯ξ)=(n −1)σ2+n (n −1)c⇒c =−n −1n (n −1)σ2=−1nσ2.因此Cov(ξi −¯ξ,ξj −¯ξ)=−1n σ2n −1nσ2=−1n −1.5.12设¯ξn ,S 2n 分别是子样(ξ1,ξ2,···,ξn )的子样均值和子样方差,现又获得第n +1个观测值,试证:(1).¯ξ=¯ξn +1n +1(ξn +1−¯ξn );(2).S 2n +1=n n +1[︁S 2n +1n +1(ξn +1−¯ξn )2]︁.解:(1).¯ξn +1=1n +1n +1∑︁i =1ξi =1n +1ξn +1+n n +11n n∑︁i =1ξi=1n +1ξn +1+n n +1¯ξn =1n +1(ξn +1−¯ξn )+¯ξn .S2n+1=1n+1n+1∑︁i=1ξ2i−¯ξ2n+1=nn+1(1nn∑︁i=1ξ2−¯ξ2n)+nn+1¯ξ2n+1n+1ξ2n+1−(︃¯ξ2n+2n+1¯ξn(ξn+1−¯ξn)+(︂1n+1)︂2(ξn+1−¯ξn)2)︃=nn+1S2n+1n+1[︀ξ2n+1−2ξn+1¯ξn+¯ξn]︀−1(n+1)2(ξn+1−¯ξn)2=nn+1[︂S2n+1n+1(ξn+1−¯ξn)2]︂.5.13从装有一个白球、两个黑球的罐子里有放回地取球.令ξ=0表示取到白球,ξ=1表示取到黑球.求容量为5的子样均值和子样方差的期望值.解:实际上,我们知道E¯ξ=Eξ,ES2n =n−1nDξ,所以我们只需计算出总体的期望和方差.由题意可知总体ξ有分布列ξ01P132 3那么Eξ=23,Dξ=1323=29,因此E¯ξ=23,ES2n=2(n−1)9n.习题5.14设母体ξ服从参数为λ的泊松分布,(ξ1,ξ2,···,ξn)是取自此母体的一个子样.求(1).子样的联合概率分布列;(2).子样均值¯ξ的分布列、E¯ξ、D(¯ξ)和ES2n.解:因为ξ1,ξ2,···,ξn是总体ξ∼P(λ)的子样,所以ξ1,ξ2,···,ξn独立同分布,且均服从参数为λ的泊松分布.故(1)子样的联合分布列为P(ξ1=x1,ξ2=x2,···,ξn=x n)=n∏︁i=1P(ξi=x i)=n∏︁i=1λx ix i!e−λ=λ∑︀ni=1x i e−nλ(︃n∏︁i=1x i!)︃−1.x i=0,1,2,···,i=1,2,···,n.(2).回顾78页例2.12,该例题说明两个相互独立的泊松分布P(λ1),P(λ2)的和服从泊松分布P(λ1+λ2),因此在本题中n∑︁i=1ξi∼P(nλ)所以¯ξ的分布列为:P(¯ξ=kn)=P(n∑︁i=1ξi=k)(nλ)kk!e−nλ.因为总体的期望和方差都是λ,因此E¯ξ=Eξ=λ,D¯ξ=Dξn=λn,ES2n=n−1nDξ=(n−1)λn.5.15设ξ1,ξ2,···,ξn是取自正态母体N(μ,σ2)的子样,求u=k∑︀i=1ξi和v=∑︀ni=rξi,0<k<r<n的联合分布列.解:由于k<r,所以u,v相互独立.又因为ξ1,ξ2,···,ξn独立同分布,均服从N(μ,σ2)分布,而u,v都是ξ1,ξ2,···,ξn的线性组合,故u,v也都服从正态分布.又Eu=k∑︁i=1Eξi=kμ,Du=k∑︁i=1Dξi=kσ2,Ev=n∑︁i=rEξi=(n−r+1)μ,Dv=n∑︁i=rDξi=(n−r+1)σ2,所以u,v 的联合分布为二维正态分布N (kμ,(n −r +1)μ,kσ2,(n −r +1)σ2,0).5.16设母体η=(ξ1,ξ2)∼N (μ1,μ2,σ21,σ22,ρ),(η1,η2,···,ηn )是取自此母体的一个子样,求子样均值¯η=(¯ξ1,¯ξ2)=(︂1nn ∑︀i =1ξ1i ,1n n∑︀i =1ξ2i )︂的分布密度函数.解:首先可知¯η服从二维正态分布.又ηi ∼N (μ1,μ2,σ21,σ22,ρ),所以Eξ1i =μ1,Eξ2=μ2,Dξ1i =σ21,Dξ2i =σ22,Cov(ξ1i ,ξ2i )=ρσ1σ2.又因为当i =j 时,ηi ,ηj 相互独立,故Cov(ξ1i ,ξ2j )=0.这样我们就有如下结果:E ¯ξ1=1n n∑︁i =1Eξ1i =μ1;E ¯ξ2=1n n∑︁i =1Eξ2i =μ2;D ¯ξ1=1n 2n ∑︁i =1Dξ1i=1n σ21;D ¯ξ2=1n 2n ∑︁i =1Dξ2i=1n σ22;Cov(¯ξ1,¯ξ2)=1n 2Cov(n ∑︁i =1ξ1i ,n ∑︁i =1ξ2i )=1n 2∑︁i,jCov(ξ1i ,ξ2j )=1n 2∑︁i Cov(ξ1i ,ξ2i)=ρσ1σ2n.并且¯ξ1,¯ξ2的相关系数为Cov(¯ξ1,¯ξ2√︀[D ¯ξ1][D ¯ξ2]=ρσ1σ2/n √︀(σ21/n )(σ22/n )=ρ.由以上结论可知¯η∼N (μ1,μ2,σ21/n,σ22/n,ρ),其密度函数为:n2πσ1σ2√︀1−ρ2exp {︂−n 2(1−ρ2)[︂(x −μ1)2σ21−2ρ(x −μ1)(y −μ2)σ1σ2+(y −mu 2)2σ22]︂}︂.5.17设母体的分布列为P (ξ=k )=1N ,k =1,2,···,N .现进行不放回抽样,¯ξ¯ξ为子样(ξ1,ξ2,···,ξn )的均值,试求E ¯ξ和D (¯ξ).解:由题意可知,母体中共有N 个个体,且取到每个个体的概率是一样的.从母体中不放回的抽样,第i 次抽到第k 个个体的概率为1/N .故ξi 也有分布列P (ξi =k )=1N ,k =1,2,···,N ,即和母体有相同的分布列.所以Eξi =1N ∑︀N k =1k =N +12,Eξ2i =1N ∑︀N k =1k 2=(N +1)(2N +1)6,Dξi =N 2−112.由于抽样是不放回抽样,所以ξi ,ξj 不是相互独立的.它们有联合分布列P (ξi =k,ξj =l )={︃1N (N −1),k =l,0,k =l 由此可知:Eξi ξj=1N (N −1)∑︁k =lkl =(N +1)(3N +2)12;Cov(ξi ,ξj )=Eξi Eξj −Eξi Eξj =−N +112.所以D(ξ1+ξ2+···+ξn)=n∑︁k=1Dξk+2∑︁1≤k<l≤nCov(ξk,ξl)=n N2−112−n(n−1)N+112=n(N+1)(N−n)12;D(¯ξ)=1n2D(n∑︁i=1ξi)=(N+1)(N−n)12n;E¯ξ=1nn∑︁i=1Eξi=N+12.5.18设母体ξ∼N(0,1),ξ1,ξ2,ξ3为取自该母体的一个子样,在子样空间中求子样到原点的距离小于1个概率.解:由于ξi,i=1,2,3独立同分布,和母体有相同的分布,故ξ1,ξ2,ξ3的联合密度函数为:p(x,y,z)=1(2π)3/2exp{︂−12(x2+y2+z2)}︂.因此子样到原点的距离小于1的概率为p=P(ξ21+ξ22+ξ23<1)=∫︁∫︁∫︁x2+y2+z2<11(2π)3/2exp{︂−12(x2+y2+z2)}︂dxdydz.做变换⎧⎪⎨⎪⎩x=r cosθ1,y=r sinθ1cosθ2, z=r sinθ1sinθ2.变化的雅克比行列式为ð(x,y,z)ð(r,θ1,θ2)=r sinθ1.所以P=(2π)−3/2∫︁π0sinθ1dθ1∫︁2πdθ2∫︁1r2exp{︂−12r2}︂=√︂2π∫︁1r2exp{−r22}dr=√︂2π[︂−r exp{−r22}⃒⃒1+∫︁1exp{−r22}dr]︂=√︂2π[︂∫︁1exp{−r22}dr−e−12]︂=√︂2π[︂√2π∫︁11√2πexp{−r22}dr−e−12]︂=√︂2π[︁√2π(Φ(1)−Φ(0))−e−12]︁=2Φ(1)−1−√︂2πe−12.其中Φ(x)是标准正态分布的分布函数.或者如下计算P.P=(2π)−3/2∫︁1−1[︂e−x22∫︁y2+z2<1−x2e−12(y2+z2)dydz]︂dx=(2π)−3/2∫︁1−1[︃e−x22∫︁2πdθ∫︁√1−x2re−12r2dr]︃dx=(2π)−1/2∫︁1−1[︂e−x22(︂−e−12r2⃒⃒⃒√1−x2)︂]︂dx=(2π)−1/2∫︁1−1e−12x2[1−e−12(1−x2)]dx=∫︁1−11√2πe−12x2dx−1√2π∫︁1−1e−12dx=2Φ(1)−1−√︂2πe−12≈0.1987.又或者利用χ2分布.注意到ξ21+ξ22+ξ23∼χ2(3),所以P =P (ξ21+ξ22+ξ23<1)=∫︁10123/2Γ(32)x 32−1e −x 2dx =1√2π∫︁10x 12e −x 2dx.在上述积分中做变换x =t 2,可以得到和前面相同的结果.5.19设(ξ1,ξ2,···,ξn )为取自正态母体N (μ,σ2)的子样,S 2n 为子样方差,分别求满足下列各式的最小n 值.(1).P (︂S 2nσ2≤1.5)︂≥0.95.(2).P (︂|S 2n −σ2|≤12Σ)︂≥0.8.解:注意到nS2n σ2∼χ2(n −1).(1).P (︂S 2n σ2≤1.5)︂=P (︂nS 2n σ2≤1.5n )︂≥0.95,故1.5n ≥χ20.95(n −1).1.5×20<χ20.95(19),而1.5×21>χ20.95(20),所以最小的n 是21.(2).P (︂|S 2n −σ2|≤12σ2)︂=P (︁⃒⃒⃒nS 2n σ2−n ⃒⃒⃒≤n 2)︁=P (︁n 2≤ns 2nσ2≤3n 2)︁.所以我们要找的n 为使得P (︂n 2≤ns 2n σ2≤3n 2)︂≥0.8的最小的n .用软件计算可知此最小的n 为13.5.20子样(ξ1,ξ2,ξ3)来自正态母体N (0,1),又η1=0.8ξ1+0.6ξ2,η2=√2(0.3ξ1−0.4ξ2−0.5ξ3),η3=√2(0.3ξ1−0.4ξ2+0.5ξ3),求(η1,η2,η3)的联合分布密度及η1,η2,η3的边际密度.解:ξ1,ξ2,ξ3相互独立,且都服从分布N (0,1),所以(ξ1,ξ2,ξ3)的联合分布是三维正态分布.其期望为(0,0,0),协方差矩阵为三阶单位矩阵I 3.记A =⎛⎜⎝0.80.600.3√2−0.4√2−0.5√20.3√2−0.4√20.5√2⎞⎟⎠,那么可知(η1,η2,η3)′=A (ξ1,ξ2,ξ3)′,即(η1,η2,η3)′是(ξ1,ξ2,ξ3)的线性变换,所以(η1,η2,η3)′也服从正态分布,其期望,协方差矩阵分别为:E ⎛⎜⎝η1η2η3⎞⎟⎠=A ⎛⎜⎝000⎞⎟⎠=0,Cov ⎛⎜⎝η1η2η3⎞⎟⎠AI 3A ′=I 3.由于η1,η2,η3的协方差矩阵是单位矩阵,故可知ηi ,ηj 的相关系数为0,所以η1,η2,η3相互独立.又Eηi =0,Dηi =1,所以ηi sin N (0,1).5.21若ξ1,ξ2,···,ξn 相互独立且服从正态分布,它们的数学期望相等,方差各为σ21,σ22,···,σ2n ,证明:u =∑︀n i =1ξiσ2i∑︀ni =11σ2i与v =n ∑︁i =1(︂ξi −u σi)︂2是相互独立的,且u 服从正态分布,v 服从自由度为n 的χ2分布.解:因为ξi ,i =1,2,···,n 有相同的数学期望,不妨用μ表示其共同的数学期望.令ηi =ξiσi,i =1,2,···,n ,那么η1,η2,···,ηn 相互独立,都服从正态分布,且Dηi =1,Eηi =a/σi ,i =1,···,n ,这样可知η=(η1,η2,···,ηn )′的协方差矩阵为n 阶单位矩阵I n .记C=√︃n∑︀i=11σ2i,令矩阵A是正交矩阵,且其第一行为(1σ1,1σ2,···,1σn)/C.设ζ=⎛⎜⎜⎜⎜⎝ζ1ζ2...ζn⎞⎟⎟⎟⎟⎠=Aη=A⎛⎜⎜⎜⎜⎝η1η2...ηn⎞⎟⎟⎟⎟⎠那么(ζ1,ζ2,···,ζn)′服从多元正态分布,且其协方差矩阵为Cov(ζ)=A Cov(η)A′=AI n A′=AA′=I n.ζ的数学期望为Eζ=AEη=A ⎛⎜⎜⎜⎜⎝aσ1aσ2...aσn⎞⎟⎟⎟⎟⎠=a⎛⎜⎜⎜⎜⎜⎜⎝n∑︀i=11σ2i...⎞⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎝aC2...⎞⎟⎟⎟⎟⎠.这意味着ζ1,ζ2,···,ζn相互独立,且ζ1∼N(aC2,1),ζ2∼N(0,1),i=2,3,···,n.由于矩阵A的第一行为(1σ1,1σ2,···,1σn)/C,所以ζ1=1C(η1/σ1+η2/σ2+···+ηn/σn)=1C(ξ1/σ21+ξ2/σ22+···+ξn/σ2n)=Cu.由此可知u=1C ζ1∼N(a,1C2),即N(a,(︀∑︀ni=1σ2i)︀.又v=n∑︁i=1(︂ξi−uσi)︂2=n∑︁i=1(ηi−uσi)2=n∑︁i=1η2i−2un∑︁i=1ηi/σi+u2n∑︁i=11σ2i=η′η−2u(C2u)+C2u2=η′η−C2u2 =η′η−ζ21.其中利用了∑︀ni=1ηi/σi=∑︀ni=1ξiσ2i=C2u,ζ1=Cu.因为A是正交矩阵,且ζ=Aη,所以ζ′ζ=η′A′Aη=η′η.这样可知v=ζ′ζ−ζ21=ζ22+ζ23+···+ζ2n.综合以上所述,我们已经知道ζ1,ζ2,···,ζn,相互独立,且ζi∼N(0,1),i=2,3,···,n,u∼N(a,1/C2).所以u=Cζ1与v=ζ22+ζ23+···+ζ2n相互独立,且v∼χ2(n−1).注:v的自由度是n−1,不是n.5.22设母体ξ服从正态分布N(μ,σ2),¯ξ,S2n分别为容量为n的子样均值和子样方差,又设ξn+1∼N(μ,σ2)且与ξ1,ξ2,···,ξn相互独立.试求统计量ξn+1−¯ξS n √︂n−1n+1的抽样分布.解:由定理5.4知¯ξ与S2n相互独立,¯ξ∼N(μ,σ2/n),nS2nσ2∼χ2(n−1).ξn+1与ξ1,ξ2,···,ξn相互独立,故¯ξ与¯ξ,S2n独立.且ξn+1−¯ξ∼N(0,σ2+σ2n),即ξn+1−¯ξ∼N(0,n+1nσ2).ξn+1,¯ξ都与S2n相互独立,那么ξn+1−¯ξ与S2n独立,因此ξn+1−¯ξ√n+1n σ2√︂nS2nσ2⧸︁(n−1)∼t(n−1),即ξn+1−¯ξS n√︂n−1n+1∼t(n−1).5.23(ξi,ηi),i=1,2,···,n是取自二元正态分布N(μ1,μ2,σ21,σ22,ρ)的子样.设¯ξ=1nn∑︀i=1ξi,¯η=1nn∑︀i=1ηi,S2ξ=1n∑︀ni=1(ξi−¯ξ)2,S2η=1n∑︀ni=1(ηi−¯η)2和r=∑︀ni=1(ξi−¯ξ)(ηi−¯η)√︁∑︀ni=1(ξi−¯ξ)2∑︀ni=1(ηi−¯η)2.试求统计量¯ξ−¯η−(μ1−μ2)√︁S2ξ+S2η−2rSξSη√n−1.的分布.解:一般的我们称1nn∑︁i=1(ξi−¯ξ)(ηi−¯η)为样本协方差.而把r=∑︀ni=1(ξi−¯ξ)(ηi−¯η)√︁∑︀ni=1(ξi−¯ξ)2∑︀ni=1(ηi−¯η)2=样本协方差√︁S2ξS2η为样本相关系数.设[ξ1,η1]′,[ξ2,η2]′,···,[ξn,ηn]′是从总体[ξ,η]′∼N(μ1,μ2,σ21,σ22,ρ)取到的子样.S2ξ+S2η−2rSξSη=1n(︃n∑︁i=1(ξi−¯ξ)2+n∑︁i=1(ηi−¯η)2−2n∑︁i=1(ξi−¯ξ)(ηi−¯η))︃=1nn∑︁i=1[︀(ξi−ηi)−(¯ξ−¯η)]︀2.令ζi=ξi−ηi,i=1,2,···,n.那么ζ1,ζ2,···,ζn就可以看做是从总体ξ−η∼N(μ1−μ2,σ21+σ22−2ρσ1σ2)的子样.并且这个新子样的子样均值和子样方差分别为:¯ζ=1nn∑︁i=1(ξi−ηi)=¯ξ−¯ηS2=1nn∑︁i=1(ζi−¯ζ)2=1nn∑︁i=1[︀(ξi−ηi)−(¯ξ−¯η)]︀2=S2ξ+S2η−2rSξSη.因此√n−1(¯ξ−¯η)−(μ1−μ2)√︁S2ξ+S2η−2rSξSη∼t(n−1).5.23-2解:(1)因为函数y=√x的反函数为x=y2,且dxdy=2y,所以η=√ξ的密度函数为pξ(y)=2pη(y2)|y|=⎧⎨⎩22n/2Γ(n/2)y×(y2)n2−1e−12y2=12n2−1Γ(n2)y n−1e−y22,y>0 0,y≤0(2).因为z=y√n的反函数为y=√nz,且dydz√n,所以ζ=ξ√n的密度为: pζ(z)=√npξ(√nz)=⎧⎨⎩n n22n/2−1Γ(n/2)z n−1e−nz22,z>00,z≤0(3)Eξ=E √η=∫︁∞√x12n/2Γ(n/2)x n2−1e−12x dx=2n+12Γ(n+12)2n2Γ(n2)=√2Γ(n+12)Γ(n2).Eξ2=Eη=nDξ=Eξ2−(Eξ)2=n−2(︂Γ(n+12Γ(n2))︂25.24设母体ξ以等概率取四个值0,1,2,3,现从中获得一个容量为3的子样,试分别求ξ(1)与ξ(3)的分布.解:(i).先求ξ(1)的分布(分布列).P(ξ(1)≥k)=P(min{ξ1,ξ2,ξ3}≥k)=P(ξi≥k,i=1,2,3)=3∏︁i=1P(ξi≥k)=3∏︁i=14−k4=(︂4−k4)︂3,k=0,1,2,3.P(ξ(1)=k)=P(ξ(1)≥k)−P(ξ(1)≥k+1)=(︂4−k4)︂3−(︂3−k4)︂3,k=0,1,2P(ξ(1)=3)=P(ξ(1)≥3)=(︂14)︂3=164.因此ξ(1)有如下分布列:ξ(1)0123P37641964764164(ii).再考虑ξ(3)的分布列.P(ξ(3)≤k)=P(max{ξ1,ξ2,ξ3}≤k)=P(ξi≤k,i=1,2,3)=3∏︁i=1P(ξi≤k)=3∏︁i=1k+14=(︂k+14)︂3,k=0,1,2,3P(ξ(3)=k)=P(ξ(3)≤k)−P(ξ(3)≤k−1)=(︂k+14)︂3−(︂k4)︂3,k=1,2,3P(ξ(3)=0)=P(ξ(3)≤0)=(︂14)︂3=164.因此ξ(3)有如下分布列:ξ(3)0123P164764196437645.25设母体ξ的密度函数为f(x)=3x2,0≤x≤1从中获得一个容量为5的子样ξ1,ξ2,···,ξ5,其次序统计量为ξ(1),ξ(2),···,ξ(5).(1).试分别求ξ(1)与ξ(5)的概率密度函数;(2).试证ξ(2)ξ(4)与ξ(4)相互独立.解:(1).母体有分布函数F(x)=⎧⎪⎨⎪⎩0,x≤0x3,0<x≤1,1,x>1.所以ξ(1)的概率密度函数f(1)(x),ξ(5)的概率密度函数f5(x)分别为:f(1)(x)={︃5[1−x3]4(3x2),0≤x≤1,0,else={︃15x2(1−x3)4,0≤x≤1,0,else.f(5)(x)={︃5(x3)4(3x2),0≤x≤10,else={︃15x14,0≤x≤1,0,else.(2).母体有分布函数F(x)=⎧⎪⎨⎪⎩0,x≤0x3,0<x≤1,1,x>1.因此ξ(2),ξ(4)的联合密度函数为g2,4(y,z)={︃5!9(2−1)!(4−2−1)!(5−4)!(y3)[z3−y3]4−2−1[1−z3]y2z2,0<y<z≤1.0,else={︃1080y5(z3−y3)(1−z3)z2,0<y<z≤1 0,else.令{︃U=ξ(2)/ξ(4)V=ξ(4)其对应的函数为:{︃u=y/z,v=z.其反函数为y=uv,z=v,其雅克比行列式为J=⃒⃒⃒⃒⃒v u01⃒⃒⃒⃒⃒=v.所以U,V的联合密度为pU,V (u,v)={︃1080(uv)5(v3−(uv)3)(1−v3)v2v,0<u<1,0<v<1,0,else.={︃1080v11(1−v3)u5(1−u3),0<u<1,0<v<1,0,else.U,V的联合密度函数是变量可分离的,故U,V相互独立.且U=ξ(2)/ξ(4)的密度函数为PU (u)={︃ku5(1−u3),0<u<10,else计算可知k=18.5.26设母体ξ服从韦布尔分布,其分布函数为F(x)=1−e−(xη)m,x>0,其中m>0为形状参数,η>0为尺度参数.从中获得子样ξ1,ξ2,···,ξn,证明μ=min(ξ1,ξ2,···,ξn)任服从韦布尔分布,并指出其形状参数和尺度参数.解:母体ξ的密度函数p(x)=F′(x)={︃mηmx m−1e−(xη)m,x>0 0,else.所以最小次序统计量μ=ξ(1)=min(ξ1,ξ2,···,ξn)的密度函数为:f(x)=n(1−F(x)]n−1p(x)=nmηmx m−1(︁e−(xη)m)︁n−1e−(xη)m=nmηmx m−1(︁e−n(xη)m)︁=m(cη)mx m−1(︁e−(x cη)m)︁其中c=n−1m.比较f(x)和母体的密度函数p(x)可知μ也服从韦布尔分布,其形状参数仍为m,尺度参数为ηm√n.5.27设某电子元件寿命服从参数为λ=0.0015的指数分布,其分布函数为:F(x)=1−e−λx,x>0.今从中随机抽取6个元件,测得其寿命分别为ξ1,ξ2,···,ξ6,试求下列事件的概率.(1).到800小时没有一个元件失效;(2).到300小时所有元件都失效.解:ξ1,ξ2,···,ξ6是子样,所以ξ1,ξ2,···,ξ6相互独立,且每个ξi都服从参数为λ的指数分布,所以(1).到800小时没有一个元件失效的概率为p1=P(ξ1>800,ξ2>800,···,ξ6>800)=6∏︁i=1P(ξi>800)=6∏︁i=1P(ξ<800)=6∏︁i=1[1−(1−e−800λ)]=[e−800λ]6=e−4800λ=e−7.2≈0.00075.(2).到300小时所有元件都失效的概率p2=P(ξ1<3000,ξ2<3000,···,ξ6<3000)=6∏︁i=1P(ξi<3000)=6∏︁i=1P(ξ<3000)=6∏︁i=1[1−e−3000λ)]=[1−e−3000λ]6=[1−e−4.5]6≈0.93517.5.28设母体ξ的密度函数为f(x)={︃6x(1−x),0<x<10,else由此母体中抽取一个子样(ξ1,ξ2,ξ3,ξ4,ξ5),又ξ(1)<ξ(2)<ξ(3)<ξ(4)<ξ(5)是子样的顺序统计量,求ξ(3)的密度函数.解:ξ的分布函数为F(x)=∫︁x6t(1−t)dt=x2(3−2x),(0<x<1),所以ξ(3)的密度函数为:g3(x)=5!2!2![F(x)]2[1−F(x)]2f(x)=5!2!2![x2(3−2x)]2[1−x2(3−2x)]2[6x(1−x)]=180x5(1−x)(3−2x)2(1−3x2+2x3)2,0<x<1.5.29母体ξ服从[0,1]上的均匀分布,(ξ1,ξ2,···,ξn)为取自该母体的子样,ηi=ξ(i)为次序统计量,求P(ηi> 12),i=1,2,3,4,5.解:ξ服从[,1]上的均匀分布R[0,1],所以ξ的分布函数为:F(x)=⎧⎪⎨⎪⎩x,0<x≤10,x≤01,x>1.因此第i个次序统计量ηi的概率密度函数为:g i(y)=⎧⎨⎩5!(i−1)!(5−i)!x i−1(1−x)5−i,0<y≤1 0,y≤0或者y>1故P(η1>1/2)=∫︁11/25(1−y)4dy=∫︁1/25t4dt=132P(η2>1/2)=∫︁11/220y(1−y)3dy=316P(η3>1/2)=∫︁11/230y2(1−y)2dy=12P(η4>1/2)=∫︁11/220y3(1−y)dy=1316=1−P(η2>1/2)P(η5>1/2)=∫︁11/25y4dy=3132=1−P(η1>1/2).5.30设(ξ1,ξ2)是取自具有指数分布母体的子样,其密度函数为:f(x)={︃e−x,x>00,else(ξ(1)<ξ(2)是次序统计量,求ξ(1)与η=ξ(1)+ξ(2)的联合密度函数.解:母体ξ服从参数为1的指数分布,其分布函数为F(x)=(1−e−x),x>0.因此ξ(1),ξ(2)的联合密度函数为:g1,2(x,y)=2e−x e−y,0<x<y.令U=ξ(1),V=ξ(1)+ξ(2).它对应的函数为u=x,v=x+y,其反函数为x=u,y=v−u,且雅克比行列式J=⃒⃒⃒⃒⃒ðxðuðxðvðyðuðyðv⃒⃒⃒⃒⃒=⃒⃒⃒⃒⃒10−11⃒⃒⃒⃒⃒=1.所以U,V的联合密度函数为pU,V(u,v)=2e−u e−(v−u),0<u<(v−u)=e−v,0<2u<v.5.31设母体ξ的分布函数F(x)是连续的,ξ(1),ξ(2),···,ξ(n)为取自此母体的子样的次序统计量,设ηi= F(ξ(i)),试证(1).η1≤η2≤···≤ηn,且ηi是来自均匀分布U(0,1)母体的次序统计量;(2).Eηi=in+1,D(ηi)=i(n+1−i)(n+1)2(n+2),1≤i≤n.(3).ηi和ηj的协方差矩阵为⎛⎜⎝a1(1−a1)n+2a1(1−a2)n+2a1(1−a2)n+2a2(1−a2)n+2⎞⎟⎠其中a i=in+1,a j=jn+1.证明:因为ξ(1),ξ(2),···,ξ(n)是取自母体ξ的子样的次序统计量,所以ξ(1)≤ξ(2)≤···≤ξ(n).又因为分布函数F(x)是单调不降的,所以F(ξ(1))≤F(ξ(2))≤···≤F(ξ(n))并且可看做是取自母体F(ξ)的子样的次序统计量.令C x=sup{t|F(t)≤t},0<x<1.由于F(x)是连续函数,其闭集的原像仍为闭集.而且F(x)单调不降,故可知F(C x)=x.这样可知:P(F(ξ)≤x)=P(ξ≤C x)=F(C x)=x,0<x<1.所以η=F(ξ)服从(0,1)上的均匀分布,所以η1,···,ηn可看做从(0,1)分布的母体上子样的次序统计量.(2).由(1)可知ηi有密度函数p(i)=⎧⎨⎩n!(i−1)!(n−i)![F(x)]i−1[1−F(x)]n−i,0<x<1, 0,else=⎧⎨⎩n!(i−1)!(n−i)!x i−1(1−x)n−i,0<x<1, 0,else即ηi服从beta分布Beta(i,n−i+1).注意到ηi的密度函数的形式,Eηi=∫︁1n!(i−1)!(n−i)!x i(1−x)n−i dx=n!(i−1)!(n−i)!i!(n−i)!(n+1)!∫︁1(n+1)![(i+1)−1]![(n+1)−(i+1)]!x(i+1)−1(1−x)(n+1)−(i+1)dx=n!(i−1)!(n−i)!i!(n−i)!(n+1)!=in+1.其中我们利用了(n+1)![(i+1)−1]![(n+1)−(i+1)]!x(i+1)−1(1−x)(n+1)−(i+1),0<x<1是子样容量为n+1时ηi+1的密度函数.用同样的方法可得:Eη2i=∫︁1n!(i−1)!(n−i)!x i+1(1−x)n−i dx=n!(i−1)!(n−i)!(i+1)!(n−i)!(n+2)!∫︁1(n+2)![(i+2)−1]![(n+2)−(i+2)]!x(i+2)−1(1−x)(n+2)−(i+2)dx=n!(i−1)!(n−i)!(i+1)!(n−i)!(n+2)!=i(i+1)(n+2)(n+1).其中我们利用了(n+2)![(i+2)−1]![(n+2)−(i+2)]!x(i+1)−1(1−x)(n+1)−(i+1),0<x<1是子样容量为n+2时ηi+2的密度函数.那么Dηi=Eη2i−(Eηi)2=i(n+1−i) (n+1)2(n+2).(3).不妨假定i<j.因为η1,···,ηn可看做(0,1)上均匀分布母体的子样的次序统计量.故ηi,ηj的联合密度函数为:g i,j(x,y)=n!(i−1)!(j−i−1)!(n−j)!x i−1(y−x)j−i−1(1−y)n−j,0<x<y<1.注意到E(ηiηj)=Eηi(ηj−ηi)+Eη2i.Eηi(ηj−ηi)=∫︁10∫︁1xn!(i−1)!(j−i−1)!(n−j)!x i(y−x)j−i(1−y)n−j dxdy=i(j−i)(n+2)(n+1)∫︁1∫︁1x(n+2)![(i+1)−1]![(j+2)−(i+1)−1]![(n+2)−(j+2)]!·x(i+1)−1(y−x)(j+2)−(i+1)−1(1−y)(n+2)−(j+2)dxdy=i(j−i)(n+2)(n+1),其中利用了(n+2)![(i+1)−1]![(j+2)−(i+1)−1]![(n+2)−(j+2)]!x(i+1)−1(y−x)(j+2)−(i+1)−1(1−y)(n+2)−(j+2),0<x<y<1是子样容量为n+2时,ηi+1和ηj+2的联合密度函数.所以进一步的可得Cov(ηi,ηj)=Eηiηj−(Eηi)(Eηj)=Eηi(ηj−ηi)+Eη2i−(Eηi)(Eηj)=i(j−i)(n+2)(n+1)+i(i+1)(n+2)(n+1)−ij(n+1)2=i(n+1−j)(n+2)(n+1)2=a1(1−a2n+2.从而可得ηi,ηj的协方差矩阵为Cov(ηi,ηj)=(︃Dηi Cov(ηi,ηj)Cov(ηj,ηi)Dηj)︃=⎛⎜⎝a1(1−a1)n+2a1(1−a2)n+2a1(1−a2)n+2a2(1−a2)n+2⎞⎟⎠.5.32设母体ξ∼N(0,1),从此母体获得一组子样观测值x1=0,x2=0.2,x3=0.25,x4=−0.3, x5=−0.1,x6=2,x7=0.15,x8=1,x9=−0.7,x10=−1.(1).求子样的经验分布函数F n(x).(2).计算x=0.15(即ξ(6))处E(F(ξ(6))),D(F(ξ(6)))解:(1).子样的经验分布函数为:F n(x)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩0,x≤−10.1,−1<x≤−0.70.2,−0.7<x≤−0.30.3,−0.3<x≤−0.10.4,−0.1<x≤00.5,0<x≤0.150.6,0.15<x≤0.20.7,0.2<x≤0.250.8,0.25<x≤10.9,1<x≤21,x>2(2).记F(x)为标准正态分布的分布函数,p(x)为标准正态分布的密度函数,那么ξ(6)的密度函数为:g6(x)=10!5!4!F5(x)[1−F(x)]4p(x),。
理学 概率论与数理统计_第三版龙永红完整答案

概率论与数理统计龙永红,第三版,高等教育出版社课后习题详细答案厦门大学 经济学院08经济 周玉龙08金融 王骁 李政宵09金融 孙士慧 许彩灵 唐艺烨联合编写2011年2月16日 第一版注意:若要打印,请不要打印34页之后的内容!只有34页之前的内容才是校对过的!2010年的时候半期考试考到3.1,即34页之前的内容。
目录前言 (3)编写任务记录 (4)练习1‐1 (5)练习1‐2 (6)练习1‐3 (7)练习1‐4 (9)练习1‐5 (12)习题一 (13)练习2‐1 (15)练习2‐2 (17)练习2‐3 (18)练习2‐4 (20)练习2‐5 (23)习题二 (26)练习3‐1 (29)练习3‐2 (35)练习3‐3 (40)练习3‐4 (43)练习3‐5 (48)练习4‐1 (49)练习4‐2 (50)练习4‐3 (51)练习4‐4 (53)练习5‐2 (54)练习5‐3 (55)练习5‐4 (56)练习5‐5 (56)练习5‐6 (58)前言各位学弟学妹们,大家好。
这份答案是我在2010年学习概率统计的时候,和几个好朋友一起编写的。
我在大二上学线性代数的时候,当时找不到习题答案,于是很多不会做的题目,我就直接放弃了,期末线性代数成绩很不理想。
大二下在学概率统计的时候,我决定要把书上的题目都做会,但当时找不到一本参考答案,于是便想到了自己来编写一本答案书。
这样我不仅可以强迫自己把书上的题目都做了,更重要的是,我还可以帮助今后很多的学弟学妹学习概率统计。
于是找到08经济系的周玉龙同学,由他撰写手写初稿答案;我又找了几个愿意加入的朋友,我们一起将手写初稿录入进电脑,他们是09金融的孙士慧、许彩灵、唐艺烨和08金融的李政宵;我再将电子版初稿打印下来,并在上面进行打印错误的校正,再由我将这些错误在电脑中改过来。
最后整理排版,这就是你眼前的这本电子书。
撰写初版答案是辛苦的,将初版手写答案录入电脑更是非常辛苦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题与解答5.2
1. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数 149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解 此样本容量为10,经排序可得有序样本:
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)138,149,153,156,160,169x x x x x x x x x x ==========
其经验分布函数及其图形分别如下
()01380.11490.31530.51560.81600.91691n x F <⎧⎪≤<⎪
⎪≤<⎪=≤<⎨⎪≤<⎪
≤<⎪⎪
≥⎩,x ,
, 138x ,, 149x ,, 153x ,, 156x ,, 160x ,, x 169.
2. 下表是经过整理后得到的分组样本:
试写出此分组样本的经验分布函数. 解 样本的经验分布函数为
()037.50.1547.50.3557.50.7567.50.977.51n x x F <⎧⎪≤<⎪
⎪≤<=⎨≤<⎪
⎪≤<⎪
≥⎩,,
, 37.5x ,, 47.5x ,
, 57.5x ,
, 67.5x ,, x 77.5.
3.假若某地区30名2000年某专业毕业生实习满后的月薪数据如下: 909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738 (1)构造该批数据的频率分布表(分6组); (2)画出直方图.
解 此处数据最大观测值为1572,最小观测值为738,故组距近似为
1572736
140,6
d -=
= 确定每组区间端点为 ,此处可取 ,于是分组区间为
(](](](](](]735.875875101510151155115512951295143514351575
.,,,,,,,,,, 其频数频率分布表如下:
其直方图如图5.2.
4.某公司对其250名职工上班所需时间进行了调查,下面是其不完整的频率分布表:
(1)试将频率分布表补充完整;
(2)该公司上班所需时间在半小时以内有多少人?
解(1)由于频率和为1,故空缺的频率为1-0.1-0.24-0.18-0.14=0.34. (2)该公司上班所需的时间在半小时以内的人所占频率为0.1+0.24+0.34=0.68,该公司有职工250人,故该公司上班所需时间在半
⨯=人.
小时以内的人有2500.68170
5. 40种刊物的月发行量如下(单位:百册):
(1)建立该批数据的频数分布表,取组距为1700百册;
5954 5022 14667 6582 6870 1840 2662 4508
1208 3852 618 3008 1268 1978 7963 2048
3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (2)画出直方图.
解 此处数据最大观测值为14667,最小观测值为353,由于组距为1700,故组数为14667353
8.421700
K -≥
=,
所以分9组.接下来确定每组区间端点,要求
03539170014667a
a <+⨯>,
此处可取0300a =,于是可列出其频数频率分布表.
其直方图为
6.对下列数据构造茎叶图
452 425 447 377 341 369 412 399
400 382 366 425 399 398 423 384
418 392 372 418 374 385 439 408
409 428 430 413 405 381 403 469
381 443 441 433 399 379 386 387
解取百位数与十位数组成茎,个位数为叶,这组数据的茎叶图如下:
34 1
35
36 6 9
37 2 4 7 9
38 1 1 2 4 5 6 7
39 2 8 9 9 9
40 0 3 5 8 9
41 2 3 8 8
42 3 5 5 8
43 0 3 9
44 1 3 7
45 2
46 9
7. 根据调查,某集团公司的中层管理人员的年薪数据如下(单位:千元):
40.6 39.6 37.8 36.2 38.8
38.6 39.6 40.0 34.7 41.7 38.9 37.9 37.0 35.1 36.7 37.1 37.7 39.2 36.9 39.3 试画出茎叶图.
解 取整数部分为茎,小数部分为叶,这组数据的茎叶图如下: 34 7 35 1 36 2 7 9 37 0 1 7 8 9 38 3 6 8 9 39 2 6 6 40 0 6 41 7
8. 设总体X 的分布函数为()F x ,经验分布函数为()n F x ,试证
()()()()()1
1.n n E x F x Var x F x F x n
F F ⎡⎤⎡⎤==
-⎡⎤⎣⎦⎣⎦⎣⎦, 证 设1,...,n x x 是取自总体分布函数为()F x 的样本,则经验分布函数为
()()()110/12,..., 1.1.
k n
n x x x k n x x x k n x F +⎧<⎪⎪
=≤<=-⎨⎪>=⎪⎩()(k ),当,
当,,,当x 若令{}12,...,i x x i i n y I ≤==,,
,则1,...,n y y 是独立同分布的随机变量,且 ()()()()()21111()E y P x x F x E y P x x F x =≤==≤=,, 于是()()()()2
()[[1].]i Var F x F x F x F
x y =-=-
又()n x F 可写为()n x F =1
1n
i i n y =∑,故有
()()
()()()()1
111
,()1.n n E x E
F x Var x Var F x F x n
n y y F F ⎡⎤⎡⎤====-⎡⎤⎣⎦⎣⎦⎣⎦。