02324离散数学2020年08月自考真题及答案
《离散数学》试题及答案详解
一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A — B=________{3}____________;ρ(A) - ρ(B)=_____{{3},{1,3},{2,3},{1,2,3}}_______ 。
2. 2. 设有限集合A, |A|= n,则|ρ(A×A)|= __3.设集合A = {a, b}, B = {1, 2},则从A到B的所有映射是__α1= {(a,1), (b,1)}, α2= {(a,2),(b,2)},α3= {(a,1),(b,2)},α4= {(a,2), (b,1)};_,其中双射的是____α3,α4。
_4。
已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是______(P∧⌝Q∧R)__________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12_______,分枝点数为_______3_________.6设A、B为两个集合, A= {1,2,4}, B = {3,4},则从A⋂B=_______{4}__________________; A⋃B=_____{1, 2, 3, 4}____________;A-B=____{1, 2}_________________ .3.7。
设R是集合A上的等价关系,则R所具有的关系的三个特性是__自反性;对称性;传递性_______________________________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有____(1, 0, 0)________,___ _(1,0, 1)_________,____(1, 1,0)______________________。
9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)},R1 = {(2,1),(3,2),(4,3)},则R1•R2 = _{(1,3),(2,2),(3,1)}__________,R2•R1=___{(2,4),(3,3),(4,2)}_____ __, R12 =_____{(2,2),(3,3)}__________________。
02324离散数学(课后习题解答(详细)
离散数学~习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
《离散数学》考试试卷(试卷库20卷)及答案
《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。
命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。
离散数学练习题(含答案)
离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
2024年4月离散数学真题
2024年4月高等教育自学考试全国统一命题考试离散数学(课程代码 02324)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
3.涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。
第一部分选择题一、单项选择题:本大题共15小题,每小题2分,共30分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.含有3个命题变元的任一命题公式的指派个数是A.6个B.8个C.9个D.10个2.下列命题公式为矛盾式的是A.P→(P ⋁Q ⋁R)B.¬(Q→P) APC.(P→¬P)→¬PD.(P ⋀¬P)→Q3.含有2个命题变元的命题A是重言式的条件是A的主析取范式含有A.4个小项B.1个小项C.4个大项D.1个大项4.设论域元素为a、b,与∀xR(x) ∧(∋y)S(x) 等价的是A.(R(a) ⋀R(b)) ⋀(S(a) ⋀S(b))B.(R(a) ⋀R(b)) ⋀(S(a) ⋁S(b))C.(R(a) ⋁R(b)) ⋀(S(a) ⋀S(b))D.(R(a) ⋁R(b)) ⋀(S(a) ⋁S(b))5.谓词公式 ∀xF(x) ⋀G(x,y) 中变元x 为A.自由出现B.约束出现C.既不是自由出现也不是约束出现D.既是自由出现也是约束出现6.设论域是正整数,下列谓词公式中值为真的是A.)10(22=+∃∀y x y xB.)10(22=+∃∀y x x yC.)10(22=+∀∀y x y xD.)10(22=+∃∃y x y x7.设A ={a,∅},P(A)是A 的幂集,下列选项中正确的是A.{a}∈ P(A),{a}⊆P(A)B.{{A}}∈P(A),{{a}}⊆P(A)C.{a}∈P(A),{∅}∈P(A)D.{a}∈P(A),{∅}⊆P(A)8.一个8阶简单图的边数最大为A.20B.25C.28D.309.下面关于n 阶树的描述,错误..的是 A.连通图 B.连通且有n-1条边C.无回路且有n-1条边D.连通且无回路10.R={<0,1>,<1,2>,<2,3>},S={<2,1>,<1,2>,<3,3>},下列正确的是A.ran(R) ⊂ ran(R ∩S)B.ran(S) = ran(R ∪S)C.dom(R) = dom(S)D.dom(R) ∪ dom(S) = ran(R) ∪ ran(S)11.设A={1,2,3},则下列关系中是反自反关系的为A.R={<1,1>,<1,2>}B.R={<1,2>,<3,3>}C.R={<1,2>,<3,2>}D.R={<3,1>,<1,3>,<2,2>}12.设A={a,b,c} ,下列选项中既不是对称也不是反对称的是A.R={<a,a>,<a,b>,<b,a>,<c,b>,<b,c>}B.R={<a,a>,<b,b>}C.R={<a,c>,<a,b>}D.R={<a,c>,<b,b>}13. 设f: R →R,f(x) =⎩⎨⎧<-≥3232x x x ,,;g:R →R,g(x)=x+2,则g ∘f:R →R 是A.单射不满射B.满射不单射C.不单射不满射D.双射14.一个5阶简单图G,保证G 为连通图的最少边数为A.4B.5C.6D.715.下列各集合对于整除关系构成偏序集,不能..构成格的集合是 A.L 1={1,2,3,4} B.L 2={1,2,3,6}C. L 3={1,3,5,15}D.L 4={1,3,9,81}第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。
最新自考离散数学02324真题含答案(.4-2016.4年整理版)
全国2009年4月自学考试离散数学试题(附答案)课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列为两个命题变元P,Q的小项是()A.P∧Q∧⎤ P B.⎤ P∨QC.⎤ P∧Q D.⎤ P∨P∨Q2.下列语句中是真命题的是()A.我正在说谎B.严禁吸烟C.如果1+2=3,那么雪是黑的D.如果1+2=5,那么雪是黑的3.设P:我们划船,Q:我们跑步。
命题“我们不能既划船又跑步”符号化为()A.⎤ P∧⎤ Q B.⎤ P∨⎤ QC.⎤(P↔Q)D.⎤(⎤ P∨⎤ Q)4.命题公式(P∧(P→Q))→Q是()A.矛盾式B.蕴含式C.重言式D.等价式5.命题公式⎤(P∧Q)→R的成真指派是()A.000,001,110,B.001,011,101,110,111C.全体指派D.无6.在公式(x∀)F(x,y)→(∃y)G(x,y)中变元x是()A.自由变元B.约束变元C.既是自由变元,又是约束变元D.既不是自由变元,又不是约束变元7.集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x∈A,y∈A},则R的性质是()A.自反的B.对称的C.传递的、对称的D.反自反的、传递的8.若R和S是集合A上的两个关系,则下述结论正确的是()A.若R和S是自反的,则R∩S是自反的B.若R和S是对称的,则R S是对称的C.若R和S是反对称的,则R S是反对称的D.若R和S是传递的,则R∪S是传递的9.R={<1,4>,<2,3>,<3,1>,<4,3>},则下列不是..t(R)中元素的是()A.<1,1> B.<1,2>C.<1,3> D.<1,4>10.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是()A.1∈A B.{1,2,3}⊆AC.{{4,5}}⊂A D.∅∈A11.在自然数集N上,下列运算是可结合的是()A.a*b=a-2b B.a*b=min{a,b}C.a*b=-a-b D.a*b=|a-b|12.在代数系统中,整环和域的关系是()A.整环一定是域B.域不一定是整环C.域一定是整环D.域一定不是整环13.下列所示的哈斯图所对应的偏序集中能构成格的是()A.B.C.D.14.设G为有n个结点的简单图,则有()A.Δ(G)<n B.Δ(G)≤nC.Δ(G)>n D.Δ(G)≥n15.具有4个结点的非同构的无向树的数目是()A.2 B.3C.4 D.5二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
离散考试试题及答案
离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。
答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。
答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。
答案:连通的4. 在命题逻辑中,一个命题的否定是________。
答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。
答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。
2. 描述一下什么是二元关系,并给出一个例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是数字集合上的一个二元关系。
3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。
四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。
答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。
自考02324离散数学习题1.8
自考02324离散数学习题1.81.用全真值表或部分真值表证明下列各题的有效结论。
⑴(p→(q→r)),p∧q⇒r((p→(q→r))∧(p∧q))→r的全真值表如表1.56所示。
表1.56由真值表可知,((p→(q→r))∧(p∧q))→r是永真式,所以(p→(q→r)),p∧q⇒r。
⑵⌝p∨q,⌝(q∧⌝r),⌝r⇒⌝p((⌝p∨q)∧(⌝(q∧⌝r))∧⌝r)→⌝p的全真值表如表1.57所示。
表1.57由真值表可知:((⌝p∨q)∧(⌝(q∧⌝r))∧⌝r)→⌝p是永真式,所以⌝p∨q,⌝(q∧⌝r),⌝r⇒⌝p。
⑶⌝p∨q,r→⌝q⇒p→⌝r((⌝p∨q)∧(r→⌝q))→(p→⌝r)的真值表如表1.58所示。
表1.58→⌝r。
⑷p→q,q→r⇒p→r((p→q)∧(q→r))→(p→r)的真值表如表1.59所示。
表1.59⑸p∨⌝p,p→q,⌝p→q⇒q((p∨⌝p)∧(p→q)∧(⌝p→q))→q的真值表如表1.60所示。
表1.60由真值表可知:((∨⌝)∧(→)∧(⌝→))→是永真式,所以∨⌝,→,⌝→⇒q。
⑹p↔q,q↔r⇒p↔r((p↔q)∧(q↔r))→(p↔r)的真值表如表1.61所示。
表1.61由真值表可知:((p↔q)∧(q↔r))→(p↔r)是永真式,所以p↔q,q↔r⇒p↔r。
2.用等价演算法,主析取范式法或蕴含演算法证明上题中的各有效结论。
⑴(p→(q→r)),p∧q⇒r((p→(q→r))∧(p∧q))→r⇔⌝((p→(q→r))∧(p∧q))∨r⇔⌝((⌝p∨⌝q∨r)∧(p∧q))∨r⇔(p∧q∧⌝r)∨⌝(p∧q)∨r⇔(p∧q∧⌝r)∨⌝(p∧q∧⌝r)⇔1所以(p→(q→r)),p∧q⇒r⑵⌝p∨q,⌝(q∧⌝r),⌝r⇒⌝p((⌝p∨q)∧(⌝(q∧⌝r))∧⌝r)→⌝p⇔⌝((⌝p∨q)∧(⌝(q∧⌝r))∧⌝r)∨⌝p⇔((p∧⌝q)∨(q∧⌝r)∨r)∨⌝p⇔(p∧⌝q)∨(q∧⌝r)∨r∨⌝p⇔((p∧⌝q)∨⌝p)∨((q∧⌝r)∨r)⇔(⌝p∨⌝q)∨(q∨r)⇔1所以⌝p∨q,⌝(q∧⌝r),⌝r⇒⌝p⑶⌝p∨q,r→⌝q⇒p→⌝r((⌝p∨q)∧(r→⌝q))→(p→⌝r)⇔((⌝p∨q)∧(⌝r∨⌝q))→(⌝p∨⌝r)⇔⌝((⌝p∨q)∧(⌝r∨⌝q))∨(⌝p∨⌝r)⇔((p∧⌝q)∨(r∧q))∨(⌝p∨⌝r)⇔((p∧⌝q)∨⌝p)∨((r∧q)∨⌝r)⇔(⌝p∨⌝q)∨(q∨⌝r)⇔1所以⌝p∨q,r→⌝q⇒p→⌝r⑷p→q,q→r⇒p→r((p→q)∧(q→r))→(p→r)⇔((⌝p∨q)∧(⌝q∨r))→(⌝p∨r)⇔⌝((⌝p∨q)∧(⌝q∨r))∨(⌝p∨r)⇔(p∧⌝q)∨(⌝r∧q)∨⌝p∨r⇔((p∧⌝q)∨⌝p)∨((⌝r∧q)∨r)⇔(⌝p∨⌝q)∨(q∨r)⇔1所以p→q,q→r⇒p→r⑸p∨⌝p,p→q,⌝p→q⇒q((p∨⌝p)∧(p→q)∧(⌝p→q))→q⇔(1∧(⌝p∨q)∧(p∨q))→q⇔⌝((⌝p∨q)∧(p∨q))∨q⇔(p∧⌝q)∨(⌝p∧⌝q)∨q⇔⌝q∨q⇔1所以p∨⌝p,p→q,⌝p→q⇒q⑹p↔q,q↔r⇒p↔r((p↔q)∧(q↔r))→(p↔r)⇔((⌝p∨q)∧(⌝q∨p)∧(⌝q∨r)∧(⌝r∨q))→(p↔r)⇔⌝((⌝p∨q)∧(⌝q∨p)∧(⌝q∨r)∧(⌝r∨q))∨(p∧r)∨(⌝p∧⌝r)⇔(p∧⌝q)∨(p∧r)∨(r∧⌝q)∨(q∧⌝r)∨(q∧⌝p)∨(⌝p∧⌝r)⇔((p∧(⌝q∨r))∨⌝(⌝q∨r))∨(r∧⌝q)∨(q∧⌝p)∨(⌝p∧⌝r)⇔((⌝(⌝q∨r)∨(⌝q∨r))∧(p∨⌝(⌝q∨r)))∨(r∧⌝q)∨(q∧⌝p)∨(⌝p∧⌝r)⇔(T∧(p∨⌝(⌝q∨r)))∨(r∧⌝q)∨(q∧⌝p)∨(⌝p∧⌝r)⇔p∨(q∧⌝r)∨(r∧⌝q)∨(q∧⌝p)∨(⌝p∧⌝r)⇔p∨(q∧⌝r)∨((q∧⌝p)∨(⌝p∧⌝r))∨(r∧⌝q)⇔p∨(q∧⌝r)∨((⌝p∧(q∨⌝r))∨⌝(q∨⌝r))⇔p∨(q∧⌝r)∨⌝p∨(⌝q∧r)⇔T所以p↔q,q↔r⇒p↔r3.推理证明下列各题的有效结论。
最新 2020年离散数学试卷及答案(4)
1、 填空 10% (每小题 2分)2、 若P,Q,为二命题,Q P →真值为0 当且仅当 .3、 命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x 为实数,y x y x L >:),(则命题的逻辑谓词公式为 . 4、 谓词合式公式)()(x xQ x xP ∃→∀的前束范式为 . 5、 将量词辖域中出现的 和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为换名规则.6、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D,A(x)关于y 是自由的,则被称为存在量词消去规则,记为ES.二、 选择 25% (每小题 2.5分)1、 下列语句是命题的有( ).A 、 明年中秋节的晚上是晴天;B 、0>+y x ;C 、0>xy 当且仅当x 和y 都大于0;D 、我正在说谎.2、 下列各命题中真值为真的命题有( ).A 、 2+2=4当且仅当3是奇数;B 、2+2=4当且仅当3不是奇数;C 、2+2≠4当且仅当3是奇数;D 、2+2≠4当且仅当3不是奇数;3、 下列符号串是合式公式的有( )A 、Q P ⇔ ;B 、Q P P ∨⇒ ;C 、)()(Q P Q P ⌝∨∧∨⌝;D 、)(Q P ↔⌝. 4、 下列等价式成立的有( ).A 、P Q Q P ⌝→⌝⇔→ ;B 、R R P P ⇔∧∨)( ;C 、 Q Q P P ⇔→∧)(;D 、R Q P R Q P →∧⇔→→)()(. 5、 若n A A A 21,和B 为wff,且B A A A n ⇒∧∧∧ 21则( ). A 、称n A A A ∧∧∧ 21为B 的前件; B 、称B 为n A A A 21,的有效结论C 、当且仅当F B A A A n ⇔∧∧∧∧ 21;D 、当且仅当F B A A A n ⇔⌝∧∧∧∧ 21. 6、 A,B 为二合式公式,且B A ⇔,则( ).A 、B A →为重言式; B 、**B A ⇒;C 、B A ⇒;D 、**B A ⇔; E 、B A ↔为重言式. 7、 “人总是要死的”谓词公式表示为( ). (论域为全总个体域)M(x):x 是人;Mortal(x):x 是要死的. A 、)()(x Mortal x M →; B 、)()(x Mortal x M ∧C 、))()((x Mortal x M x →∀;D 、))()((x Mortal x M x ∧∃8、 公式))()((x Q x P x A →∃=的解释I 为:个体域D={2},P(x):x>3, Q(x):x=4则A 的真值为( ).A 、1;B 、0;C 、可满足式;D 、无法判定. 9、 下列等价关系正确的是( ). A 、)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀; B 、)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃; C 、Q x xP Q x P x →∀⇔→∀)())((; D 、Q x xP Q x P x →∃⇔→∃)())((. 10、下列推理步骤错在( ).①))()((x G x F x →∀ P ②)()(y G y F → US ① ③)(x xF ∃ P ④)(y F ES ③ ⑤)(y G T ②④I ⑥)(x xG ∃EG ⑤A 、②;B 、④;C 、⑤;D 、⑥三、 逻辑判断30%1、 用等值演算法和真值表法判断公式)())()((Q P P Q Q P A ↔↔→∧→=的类型.(10分)2、 下列问题,若成立请证明,若不成立请举出反例:(10分)(1) 已知C B C A ∨⇔∨,问B A ⇔成立吗? (2) 已知B A ⌝⇔⌝,问B A ⇔成立吗?3、 如果厂方拒绝增加工资,那么罢工就不会停止,除非罢工超过一年并且工厂撤换了厂长.问:若厂方拒绝增加工资,面罢工刚开始,罢工是否能够停止.(10分)四、计算10%1、 设命题A 1,A 2的真值为1,A 3,A 4真值为0,求命题)()))(((421321A A A A A A ⌝∨↔⌝∧→∨的真值.(5分)2、 利用主析取范式,求公式R Q Q P ∧∧→⌝)(的类型.(5分)五、谓词逻辑推理 15%符号化语句:“有些人喜欢所有的花,但是人们不喜欢杂草,那么花不是杂草”.并推证其结论.六、证明:(10%)设论域D={a , b , c},求证:))()(()()(x B x A x x xB x xA ∨∀⇒∀∨∀.一、 填空 10%(每小题2分)1、P 真值为1,Q 的真值为0;2、)),()(()0,()((x y L y F y x L x F x ∧∃→∧∀;3、))()((x Q x P x ∨⌝∃;4、约束变元;5、)()(y A x xA ⇒∃,y 为D 的某些元素.二、 选择 25%(每小题2.5分)三、 逻辑判断 30%1、(1)等值演算法T Q P Q P Q P P Q Q P A ⇔↔↔↔⇔↔↔→∧→=)()()())()(((2)真值表法所以A 为重言式. 2、(1)不成立.若取T C B C A T T B T T A TC ⇔∨⇔∨⇔∨⇔∨=有则但A 与B 不一定等价,可为任意不等价的公式. (2)成立. 证明:T B A BA ⇔⌝↔⌝⌝⇔⌝充要条件即:BA AB B A B A A B A B B A A B B A T ↔⇔→∧→⇔∨⌝∧∨⌝⇔⌝∨∧⌝∨⇔⌝→⌝∧⌝→⌝⇔)()()()()()()()(所以T B A ⇔↔ 故 B A ⇔.3、解:设P :厂方拒绝增加工资;Q :罢工停止;R 罢工超壶过一年;R :撤换厂长前提:R P Q S R P ⌝⌝→∧⌝→,,))(( 结论:Q ⌝①))((Q S R P ⌝→∧⌝→ P ②PP ③Q S R ⌝→∧⌝)( T ①②I ④R ⌝ P ⑤S R ⌝∨⌝ T ④I ⑥)(S R ∧⌝ T ⑤E ⑦Q ⌝T ③⑥I罢工不会停止是有效结论. 四、计算 10%1、 解:1111)01(1)01(1()11()))001(1(=↔=↔∨=↔→∨=∨↔∧→∨2、FR Q Q P R Q Q P R Q Q P R Q Q P ⇔∧∧⌝∧⇔∧∧⌝∧⇔∧∧∨⌝⌝⇔∧∧→⌝)()()()()(它无成真赋值,所以为矛盾式.五、谓词逻辑推理 15%解:y x y x H x x G x x F x x M 喜欢是杂草是花是人:),(;:)(;:)(;:)())),()(()((y x H y F y x M x →∀∧∃ ))),()(()((y x H y G y x M x ⌝→∀→∀ ))()((x G x F x ⌝→∀⇒证明:⑴))),()(()((y x H y F y x M x →∀∧∃ P ⑵)),()(()(y a H y F y a M →∀∧ ES ⑴ ⑶)(a MT ⑵I ⑷)),()((y a H y F y →∀T ⑵I⑸))),()(()((y x H y G y x M x ⌝→∀→∀ P ⑹)),()(()(y a H y G y a M ⌝→∀→ US ⑸ ⑺)),()((y a H y G y ⌝→∀ T ⑶⑹I ⑻))(),((y G y a H y ⌝→∀ T ⑺E ⑼),()(z a H z F → US ⑷ ⑽)(),(z G z a H ⌝→ US ⑻ ⑾)()(z G z F ⌝→ T ⑼⑽I ⑿))()((x G x F x ⌝→∀ UG ⑾四、 证明10%))()(()()(())()(())()(())()(())()(())()(())()(())()(())()(())()(())()(())()(()()()(()()()(()()(x B x A x c B c A b B b A a B a A c B c A b B c A a B c A c B b A b B b A a B b A c B a A b B a A a B a A c B b B a B c A b A a A x xB x xA ∨∀⇔∨∧∨∧∨⇒∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨⇔∧∧∨∧∧⇔∀∨∀。
自考02324离散数习题4.4
自考02324离散数习题4.41.设A =⎨1,2,3,4⎬,A 上二元关系R 定义为:R =⎨<1,2>,<2,1>,<2,3>,<3,4>⎬⑴ 求R 的自反闭包、对称闭包和传递闭包。
⑵ 用R 的关系矩阵和四阶单位阵求R 的自反闭包、对称闭包和传递闭包的关系矩阵。
再由关系矩阵写出它们的集合表达式。
⑶ 根据R 的关系图,画出R 的自反闭包,对称闭包和传递闭包的关系图,再由关系图写出它们的集合表达式。
总结出用R 的关系图求出R 的自反闭包,对称闭包和传递闭包关系图的一般方法。
解:⑴r(R )=⎨<1,2>,<2,1>,<2,3>,<3,4>,<1,1>,<2,2>,<3,3>,<4,4>⎬s(R )=⎨<1,2>,<2,1>,<2,3>,<3,4>,<3,2>,<4,3>⎬R 2=R R =⎨<1,1>,<1,3>,<2,2>,<2,4>⎬ R 3=R 2 R =⎨<1,2>,<1,4>,<2,1>,<2,3>⎬ R 4=R 2 R =⎨<1,1>,<1,3>,<2,2>,<2,4>⎬=R 2t(R )=R ∪R 2∪R 3∪R 4= ⎨<1,1>,<1,2>,<1,3>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<3,4>⎬ ⑵解:M R =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000100001010010 M r(R )= M R ∨AI M =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001010010∨⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001=⎪⎪⎪⎪⎪⎭⎫⎝⎛1000110001110011r(R )=⎨<1,2>,<2,1>,<2,3>,<3,4>,<1,1>,<2,2>,<3,3>,<4,4>⎬M s(R )= M R ∨TR M =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001010010∨⎪⎪⎪⎪⎪⎭⎫⎝⎛0100001000010010=⎪⎪⎪⎪⎪⎭⎫⎝⎛0100101001010010s(R )= ⎨<1,2>,<2,1>,<2,3>,<3,4>,<3,2>,<4,3>⎬=2R M M R M R =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001010010⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000100001010010=⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000101001013R M =2R M M R =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000000010100101 ⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001010010=⎪⎪⎪⎪⎪⎭⎫⎝⎛0000000001011010 4R M =3R M M R =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000000001011010 ⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001010010=⎪⎪⎪⎪⎪⎭⎫⎝⎛0000000010100101M t(R )= M R ∨2R M ∨3R M ∨⎪⎪⎪⎪⎪⎭⎫⎝⎛=00001000111111114R Mt(R )= ⎨<1,1>,<1,2>,<1,3>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<3,4>⎬⑶R 的关系图如图4.30所示,R 的自反闭包、对称闭包和传递闭包的关系图如图4.31、图4.32和图4.33所示。
自考2324离散数学第四章课后答案
自考2324离散数学课后答案4.1习题参考答案--------------------------------------------------------------------------------1、在自然数集N中,下列哪种运算是可结合的( )。
a)、a*b=a-b b) a*b=max(a,b)c)、a*b=a+2b d) a*b=|a-b|根据结合律的定义在自然数集N中任取a,b,c 三数,察看(a。
b)。
c=a。
(b。
c) 是否成立?可以发现只有b、c 满足结合律。
晓津观点:b)满足结合律,分析如下:a) 若有a,b,c∈N,则(a*b)*c =(a-b)-ca*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。
b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。
a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。
此运算是可结合的。
c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。
d)运用同样的分析可知其不是可结合的。
--------------------------------------------------------------------------------2、设集合A={1,2,3,4,...,10},下面定义的哪种运算,关于集合A是不封闭的?a) x*y=max(x,y)b) x*y=min(x,y);c) x*y=GCD(x,y),即x,y最大公约数;d) x*y=LCM(x,y) 即x,y最小公倍数;d)是不封闭的。
--------------------------------------------------------------------------------3、设S是非空有限集,代数系统<(s),∪,∩>中,(s)上,对∪的幺元为___φ___,零元为___S____,(s)上对∩的幺元为___S_____零元___φ____。
(完整版)《离散数学》试题及答案解析,推荐文档
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
离散数学自学考试真题附答案打印版
离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G 是连通简单平面图,G 中有11个顶点5个面,则G 中的边是( )3.在布尔代数L 中,表达式(a ∧b)∨(a∧b ∧c)∨(b ∧c)的等价式是( )∧(a ∨c)B.(a ∧b)∨(a ’∧b)C.(a ∨b)∧(a ∨b ∨c)∧(b ∨c)D.(b ∨c)∧(a ∨c)4.设i 是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z 为整数集,A 为集合,A 的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z ,+,/〉B.〈Z ,/〉C.〈Z ,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q ,*〉Q 是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n 阶实矩阵集合,*是矩阵乘法运算C.〈Z ,ο〉,Z 是整数集,ο定义为x οxy=xy,∀x,y ∈ZD.〈Z ,+〉,Z 是整数集,+是数的加法运算 7.设A={1,2,3},A 上二元关系R 的关系图如下: R 具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( ) ∪I A ∪{〈c,a 〉} ∩I A 9.设X={a,b,c},Ix 是X 上恒等关系,要使Ix ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等价关系,R 应取( ) A.{〈c,a 〉,〈a,c 〉} B.{〈c,b 〉,〈b,a 〉} C.{〈c,a 〉,〈b,a 〉} D.{〈a,c 〉,〈c,b 〉} 10.下列式子正确的是( ) A. ∅∈∅ B.∅⊆∅ C.{∅}⊆∅ D.{∅}∈∅11.设解释R 如下:论域D 为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R 下为真的是( ) A.( ∀ x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z)) B.( ∀x)A(f(a,x),a) C.(∀x)(∀y)(A(f(x,y),x)) D.(∀x)(∀y)(A(x,y)→A(f(x,a),a)) 12.设B 是不含变元x 的公式,谓词公式(∀x)(A(x)→B)等价于( ) A.(∃x)A(x)→B B.(∀x)A(x)→B (x)→B D.(∀x)A(x)→(∀x)B 13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P :他聪明;Q :他用功;则“他虽聪明,但不用功”,可符号化为( )∨Q ∧┐Q →┐Q ∨┐Q15.以下命题公式中,为永假式的是( )→(p ∨q ∨r)B.(p →┐p)→┐pC.┐(q →q)∧pD.┐(q ∨┐p)→(p ∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
自考2324离散数学第三章课后答案
自考2324离散数学课后答案3.1 习题参考答案1、写出下列集合的的表示式。
a)所有一元一次方程的解组成的集合。
A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。
B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。
C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。
D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π } e)能被5整除的整数集E={ x| x mod 5=0}2、判定下列各题的正确与错误。
a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。
理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。
c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。
a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。
理由:a式中,{2}是一个集合,而在A中并无这样的元素。
因此不能说{2}属于A,当然如果说2∈A则是正确的。
对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。
空集包含于任何集合中,但空集不一定属于任一集合。
----------------------------------------------------------------4、设A= {} , B=(A),问下列各题是否正确。
自考离散数学02324课后答案:[3]1.4章节
(答案及点评) a)证明如下:P→(Q→P) <=P→(|Q∨P)(等值公式) <=|P∨(|Q∨P)(等值公式)
路遥文学好看的书推荐 /路遥文学()只提供小说搜索服务,推荐路遥文学好看的小说!
c)已知|A<=|B,问 a<=B 吗?
答:
a)A<=B 等价式不成立。假定有一组指派, A 为 T、B 为 F,这对于已知条件来说是成立的,而 对于结论是不成立的。b)A<=B 也不成立。假定
路遥文学好看的书推荐 /路遥文学()只提供小说搜索服务,推荐路遥文学好看的小说!
f)由 P∨|P<=T, (Q∧|Q)<=F(否定律),F ∧|R<=F(同一律)可将原式化为:T→F<=F, 即原命题是一永假式。
g)(P∧|P)←→Q<=F←→Q,当 Q 为 T 时,
命题为 F,当 Q 为 F 时,命题为 T,因此本命题是 可满足式。
h)可列真值表如下: PQP←→Q|(P∨Q)P←→Q)→|(P∨Q)
<=(|P∨R)∨(|Q∨R)(等值公式)
<=(|P∨|Q)∨R∨R(交换、结合律)
<=|(P∧Q)∨R(德摩根律)<=(P∧Q)→ R(等值公式)注意:证到这里,我们发现这个结果 与题目所提供的右边公式不相同,那么就是说,原
路遥文学好看的书推荐 /路遥文学()只提供小说搜索服务,推荐路遥文学好看的小说!
<=P∨(|P∨|Q)(交换律) <=P→(P→|Q)(等值公式) b)证明如下: (P←→Q)
<=|((P∧Q)∨(|P∧|Q))(等值公式) <=|(P∧Q)∧|(|P∧|Q)(德摩根律) <=|(P∧Q)∧(P∨Q)(德摩根律)<=(P∨ Q)∧|(P∧Q)(交换律)
自考离散数学02324课后答案:[1]1.2章节
c)我既不看电视,也不去看电影,我准备做作
/show_21.html
业。 d)四边形 ABCD 是平行四边形,当且仅当它的 对边平行。
答案:
a)原子命题为:今天天气炎热;今天有雷阵雨 b)原子命题为:你去比赛;我去比赛; c)原子命题为:我看电视;我看电影;我做作
/show_21.html
k)火星上有生物。 答案: a)的真值为 T;
b)的真值为 T;
c)不是命题; d)的真值为 F; e)F;
f)不是命题;
/show_21.html
g)F; h)不是命题; i)T;
j)不是命题;
/show_21.html
c)设 P:天下大雨;Q:他在体育馆内锻炼则本
/show_21.html
例符号化为:P→Q d)设 P:天下大雨;Q:他在室内运动则本例符 号化为:|P→|Q
e)设 P:经一事;Q:长一智则本例符号化为: |P→|Q
4.将下列复合命题分成若干原子命 a)今天天气炎热,且有雷阵雨。 b)如果你不去比赛,那么我也不去比赛。
业;
/show_21.html
d)原子命题为:四边形 ABCD 是平行四边形; 四边形的对边平行; 另外要注意的是,一些悖论因为是无法辨别真 假的,所以不是命题,如
P:我在说谎。
看上去像是一个命题,但这是个愽论(如果 P 为 T,则我就不是在说谎了,如果 P 为 F 则我就是 在说谎了。所以无法辨别真假。) 自考需要坚持,为自己加油!自考离散数学 02324 课后答案(共 5 篇)下一篇:1.3 章节
k)F。 3.将下列命题符号化 a)小李不但聪明而且用功。
b)昨天晚自习时小赵做了二三十道数学题。
/show_21.html
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2020年8月高等教育自学考试全国统一命题考试
离散数学试题答案及评分参考
(课程代码 02324)
一、单项选择题:本大题共15小题,每小题1分,共15分。
1. D
2. B
3. D
4. A
5. B
6. C
7. B
8. D
9. A 10. C
11.B 12.A 13.D 14.C 15.D
二、填空题:本大题共10小题,每小题2分,共20分。
16. 3
17.{1,5,9}
18.T
19.11
20.{〈1,2〉}
21.∀x∀y∃z�F(x)∨¬G(y)∨H(z)�
22.11
23.∅
24.8
25.{〈3,1〉,〈9,2〉,〈6,3〉}
三、简答题:本大题共7小题,第26~30小题,每小题6分;第31~32小题,每小题
7分,共44分。
26.解:命题公式(P∧Q)∨(¬Q→R)的真值表如下
P Q R P∧Q¬Q→R(P∧Q)∨(¬Q→R)(1分)
F F F F F F
F F T F T T (1分)
F T F F T T
F T T F T T (1分)
T F F F F F
T F T F T T (1分)
T T F T T T
T T T T T T (1分) 由上表可知,命题公式为非重言式的可满足式。
(1分)
离散数学试题答案及评分参考第1页(共4页)
离散数学试题答案及评分参考第2页(共4页) 27. 解:(P ∨¬Q )∧(¬R →Q )
⇔(P ∨¬Q )∧(R ∨Q ) (2分) ⇔(P ∨¬Q ∨R )∧(P ∨¬Q ∨¬R )∧(P ∨Q ∨R )∧(¬P ∨Q ∨R )
(1分) 主合取范式为 (P ∨Q ∨R )∧(P ∨¬Q ∨R )∧(P ∨¬Q ∨¬R )∧(¬P ∨Q ∨R ), (1分)
成假赋值为000,010,011和100。
(2分) 28. 解:集合A ={a ,b ,c ,d }的二元关系
R ={〈a ,b 〉,〈b ,d 〉,〈c ,a 〉,〈c ,c 〉,〈d ,c 〉},
(2分) R 的关系矩阵M R =�0100000110001010�,
(2分) 对称闭包的关系矩阵M s (R )=M R ∨M R −1=�011010
0110011110�。
(2分) 29. 解:利用Kruskal 算法,避圈法过程如下, 添加权值为2的边(v 1
,v 2); 添加权值为2的边(v 1,v 4); (1分) 添加权值为3的边(v 3,v 4); 添加权值为3的边(v 5,v 6); (1分) 添加权值为4的边(v 5,v 7);添加权值为9的边(v 4,v 5); (1分) 得到的最小生成树如答29图所示。
(2分)
该最小生成树的权为23。
(1分) 30. 解:
(1) 图G 的邻接矩阵为M =�0010
101101
00011�。
(2分) (2) 由于 M 2=�01010
2110
011
111�,
(1分) M 3=�1012112201112
122�,
(1分) 答29
图
v 1v 2v 4
6
3
9 3 4
v 7
2
离散数学试题答案及评分参考第3页(共4页) 可知,图G 中长度为3的通路数为20条。
(1分)
(3) 由M ,M 2及M 3可知,图G 中长度小于或等于3的回路数为11。
(1分) 31. 解:算术表达式(a −b )∗c �(d +e )∗f�⁄的二叉树如答31图所示, (1分)
先序遍历序列为/(∗(−ab )c )(∗(+de )f ),即/∗−abc ∗+def ; (2分) 中序遍历序列为�(a −b )∗c�/�(d +e )∗f�,即a −b ∗c /d +e ∗f ; (2分) 后序遍历序列为�(ab −)c ∗��(de +)f ∗�/,即ab −c ∗de +f ∗/。
(2分)
32. 解:集合A ={1,2,3,6,9,18},
(1) 〈A ,≼〉的哈斯图如答32图所示。
(2分)
(2) 子集B ={3,6,9}的极大元为6和9,
(1分) 极小元为3,
(1分) 最大元不存在,
(1分) 最小元为3。
(1分) (3) 该偏序集A 是格,因为每对元素都有最小上界和最大下界。
(1分) 四、证明题:本大题共3小题,每小题7分,共21分。
33. 证明:
(1) 满足封闭性:∀a ,b ∈Z ,有a ∘b =a +b −1∈Z ;
(1分) (2) 满足结合律:∀a ,b ,c ∈Z ,有
(a ∘b )∘c =a +b +c −2=a ∘(b ∘c ); (1分) (3) 存在幺元1:∀a ∈Z ,有a ∘1=a +1−1=a =1+a −1=1∘a ;
(1分) (4) 每个元素存在逆元:∀a ∈Z ,a ∘(2−a )=(2−a )∘a =1,
答31图 b +
a
*
− / * c f
e
d 6 3
2
答32图
故a的逆元为2−a; (2分)
(5)满足交换律:a∘b=a+b−1=b∘a; (1分)
综上,〈Z,∘〉构成交换群。
(1分) 34.证明:
(1)R CP规则(附加前提) (1分)
(2)R→Q P规则 (1分)
(3)Q T (1) (2) (1分)
(4)Q→P P规则 (1分)
(5)P T (3) (4) (1分)
(6)¬P∨S P规则 (1分)
(7)S T (5) (6) (1分)
由此得到推理是正确的。
35.证明:反证法。
假设G中7度顶点个数n7<6且8度顶点个数n8<5。
(1分)
已知无向简单图G=〈V,E〉,|V|=9,∆(G)=8,δ(G)=7。
所以图G中顶点的度数或者为7或者为8,故
n7+n8=|V|=9。
(1分) 再由假设,有n7≤5 且n8≤4,故必得
n7=5,n8=4, (2分) 从而,度数总和等于n7×7+n8×8=5×7+4×8=67, (2分) 显然,度数总和67为奇数与握手定理矛盾,故结论得证。
(1分)
离散数学试题答案及评分参考第4页(共4页)。