解决“黄金分割”有关的数学题
初三数学黄金分割练习题讲解
初三数学黄金分割练习题讲解黄金分割是一个数学概念,指的是将一段线段分割成两部分,使得整段线段与较短部分之比等于较短部分与较长部分之比。
这个比例约等于1:0.618,是一个重要的数值比例。
在数学和美学中,黄金分割被广泛运用,因为人们普遍认为这种比例具有美感和谐的特点。
下面我将为大家讲解一些初三数学黄金分割的练习题。
练习题1:已知一段线段AB的长度为10cm,要求将其分割成两部分,使得整段线段与较短部分之比等于较短部分与较长部分之比,请问较长部分的长度是多少?解答:设较短部分的长度为x,则较长部分的长度为10-x。
根据黄金分割的概念,我们可以建立等式:(10-x)/x = x/(10-x)通过交叉相乘得到:(10-x)^2 = x^2展开得到:100 - 20x + x^2 = x^2化简得到:20x = 100解得:x = 5所以,较长部分的长度为10-5=5cm。
练习题2:已知一段线段CD的长度为15cm,要求将其分割成两部分,使得整段线段与较短部分之比等于较短部分与较长部分之比,请问较长部分的长度是多少?解答:设较短部分的长度为y,则较长部分的长度为15-y。
根据黄金分割的概念,我们可以建立等式:(15-y)/y = y/(15-y)通过交叉相乘得到:(15-y)^2 = y^2展开得到:225 - 30y + y^2 = y^2化简得到:30y = 225解得:y = 7.5所以,较长部分的长度为15-7.5=7.5cm。
通过以上两个练习题的讲解,我们可以看到,无论线段的长度为多少,使用黄金分割的原理进行计算都是相同的。
只需要根据已知条件设定变量,建立等式,通过方程求解,就能得到具体的结果。
黄金分割在数学中的应用不仅仅局限于线段的分割,还可以应用于图形的构造、比例的计算等等。
在几何学和美学中,黄金分割的比例被广泛运用,因为人们普遍认为这种比例具有最为美感和谐的特点。
例如,许多艺术品、建筑设计和摄影作品都遵循黄金分割的比例,以达到更好的视觉效果和审美体验。
中考数学复习难题训练:黄金分割专题训练
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学复习难题训练:黄金分割专题训练一、选择题1.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A. 0.191B. 0.382C. 0.5D.0.6182.上海东方明珠电视塔高468m.其上球体位于塔身的黄金分割点,那么它到塔底部的距离大约是()A. 289.2mB. 178.8mC. 110.4mD. 468m3.如果把一条线段分为两部分,使其中较长的一段与整条线段的长度比是黄金比,那么较短一段与较长一段的长度比也是黄金比.由此,假设整条线段长为1,较长的一段为x,可以列出的方程为()A. 1−xx =x1B. 1−x1=1xC. x1−x=1−x1D. 1−xx=x√54.已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A. 2√5−2B. 6−2√5C. √5−1D. 3−√55.一条线段的黄金分割点有()个A. 1B. 2C. 3D. 无数个6.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至点F,使得EF=BE,以AF为边作正方形AFGH,则H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A. S1>S2B. S1<S2C. S1=S2D. 不能确定7.已知点C把线段AB分成两条线段AC、BC,且AC>BC,下列说法错误的是()A. 如果ACAB =BCAC,那么线段AB被点C黄金分割B. 如果AC2=AB⋅BC,那么线段AB被点C黄金分割C. 如果线段AB被点C黄金分割,那么BC与AB的比叫做黄金比D. 0.618是黄金比的近似值8.如图,在△ABC中,AB=AC,∠BAC=108°,AD、AE将∠BAC三等分交边BC于点D,点E,则下列结论中错误的是()A. 点D是线段BC的黄金分割点B. 点E是线段BC的黄金分割点C. 点E是线段CD的黄金分割点D. EDBE =√5−12二、填空题9.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).10.如果线段AB=10cm,P是线段AB的黄金分割点,那么线段BP=________cm.11.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(BC<AC).已知AB=4cm,则BC的长约为________cm.(结果精确到0.1)12.在自然界中,蝴蝶的身长与双翅展开后的长度的比接近于0.618.若双翅展开后的长度约为5.62cm,则其身长约为_______cm(保留两位小数)13.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为____.14.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则宽约为________(精确到1cm).15.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.三、解答题16.拥有一个完美的身材是很多人的梦想,世界著名的雕像“维纳斯”就被认为是最美的身材。
黄金比例初中数学题型
5、黄金比例的代数问题
例:求解含有黄金比例的代数方程,如求解x与x+1之间的黄金比例,即x/(x+1) = φ(1.618)。
答:求解x与x+1之间的黄金比例,即 x / (x+1) = φ。
解方程得:x ≈ φ / (φ - 1) ≈ 0.618。
黄金比例初中数学题型
1、黄金矩形问题
例:给定一个矩形,其长和宽之比为黄金比例φ(1.618),已知其宽度为6 cm,求矩形的长。
答:设矩形的长为x cm,则根据黄金比例φ(1.618)有:x / 6 = φ。
解方程得:x = 6φ ≈ 9.708 cm。
2、黄金三角形问题
例:一个三角形的三边之比为黄金比例φ(1.618),已知其中一条边长为8 cm,求另外两条边的长度。
答:设AC的长度为x cm,则CB的长度为6 - x cm。根据黄金比例φ(1.618)有:x / (6 ≈ 2.236 cm,CB ≈ 6 - x ≈ 3.764 cm。
4、黄金螺旋问题
例:在一个正方形中,画出一个以正方形边长为半径的四分之一圆,然后不断在新画出的圆弧上画出更小的正方形,并延长边界,形成一个黄金螺旋。已知初始正方形的边长为5 cm,求第n个正方形的边长。
答:设另外两条边的长度为x cm和y cm,根据黄金比例φ(1.618)有:x / 8 = φ,y / x = φ。
解方程得:x = 8φ ≈ 12.944 cm,y ≈ 8φ² ≈ 20.944 cm。
3、黄金分割线段问题
例:已知线段AB的长度为10 cm,点C在AB上,且AC与CB的比为黄金比例φ(1.618),求AC和CB的长度。
6.2 黄金分割提优练习 2022-2023学年苏科版数学九年级下册
九年级数学下册提优练习6.2黄金分割一、选择题1.一条线段的黄金分割点有( )A .1个B .2个C .3个D .无数个2.黄金分割比的准确值是( )3.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC =那么下列说法错误的是( ) A .线段AB 被点C 黄金分割B .点C 叫做线段AB 的黄金分割点C .AB 与AC 的比叫黄金比D .AC 与AB 的比叫黄金比 4.已知P 是线段AB 的黄金分割点,AP >PB ,则下列等式成立的是( )A .AB 2=AP·PBB .AP 2=PB·ABC .BP 2=AP·ABD .AP :AB =AB :PB5.已知线段AB =1,C 是线段AB 的黄金分割点(AC >BC ),则AC 的长度为( )6.已知P 是线段AB 的黄金分割点,且AP PB >,10AB =,则AP 长约为( )A .0.618B .6.18C .3.82D .0.3827.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x 与y 的比通常按黄金比来设计,这样的扇子外形较美观,若取黄金比为0.6,则x 为( )A .216B .135C .120D .1088.已知线段AB =1,C 是线段AB 的黄金分割点,则AC 的长度为( )9.宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图4-1-13所示,作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连结EF ;以F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H.则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH10.如果三条线段的长a ,b ,c 满足b a =c b =5-12,那么a ,b ,c 叫做“黄金线段组”.黄金线段组中的三条线段( )A. 必构成锐角三角形 B .必构成直角三角形 C. 必构成钝角三角形 D .不能构成三角形二、填空题11.已知P 是线段AB 的黄金分割点,且AP>BP ,AB=4,那么AP=________.12.东方明珠塔高468m ,上球体点A 是塔射的黄金分割点,点A 到塔底的距离约是___________米(精确到0.1m );13.据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为____________℃(精确到1℃).14.下列矩形中,哪个比较匀称?若矩形的两条邻边长度的比例约为_____,这种矩形称为黄金矩形.15.已知线段AB =10cm ,C 是线段AB 的黄金分割点,且AC >BC ,则AC 的长约为______.(精确到0.1cm )16.已知C 是线段AB 的黄金分割点(AC >BC ),那么AC 是线段_____与线段_____的比例中项,如果AB =12cm ,那么AC =____cm ,BC =____cm17.如图,在△ABC 中,D 是AB 上一点.若AD =4,BD =5,AC 是AD 与AB 的比例中项,则AC 等于6 .第17题图 第18题图 第19题图 第20题图18.已知顶角为36°的等腰三角形称为黄金三角形(底边与腰的比值为黄金分割比).如图,已知△ABC ,△BDC ,△DEC 都是黄金三角形,AB =1,DE=______.19.如图,一张矩形报纸ABCD 的长AB =a (cm),宽BC =b (cm),E ,F 分别是AB ,CD 的中点.若将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于_____20.如图,在矩形ABCD 中,AB =10,四边形EFCD 是正方形.若BF AB =AB BC,则BC =______. 三、解答题21.如图,点C 是线段AB 的黄金分割点,BC >AC ,D.E 分别是AC.BC 的中点,那么点C 是线段DE 的黄金分割点吗?为什么?22.“黄金分割”在人类历史上有着重要的作用和影响,世界上许多著名的建筑和艺术品都蕴涵着“黄金分割”.下面我们就用黄金分割来设计一把富有美感的纸扇:假设纸扇张开到最大时,扇形的面积与扇形所在圆的剩余部分的比值等于黄金比,请你来求一求纸扇张开的角度.(黄金比取0.6)23.如图,以长为2cm的定线段AB为边,作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD,以AF为边长作正方形AFEM,点M在AD上.(1)试求AM.DM的长;(2)点M是线段AD的黄金分割点吗?请说明理由.24.如图所示,线段AB=6cm,C为线段AB的黄金分割点,且AC>BC,以AC为边的正方形ACDE的面积为S1,以BC为一边,AB长为另一边的矩形BCFG的面积为S2.(1)试求S1与S2的大小;(2)判断点D是线段CF的黄金分割点吗?为什么?25.已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.26.二次根式的除法,要化去分母中的根号,需将分子.分母同乘以一个恰当的二次根式.例如:化简:.解:将分子.分写同乘以得==.类比应用:(1)化简:=.(2)化简:++…+.拓展延伸:宽与长的比是的矩形叫黄金矩形,如图①,已知黄金矩形ABCD的宽AB=1.(1)黄金矩形ABCD的长BC=;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE,则点D到线段AE的距离为.。
初中数学相似三角形之黄金分割专项练习题(附答案详解)
解:由于D为线段AB=2的黄金分割点,
且AD>BD,
则AD= ×2=( )cm
∴BD=AB−AD=2−( )=
故选D.
【点睛】
本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的 ,较长的线段=原线段的 .
2.B
【解析】
【分析】
由AP>BP知PA是较长线段,根据黄金分割点的定义,则AP2=BP•AB.
5.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为()
A.2 ﹣2B.6﹣2√5C. D.4﹣2
6.已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()
A. B. C. D.
7.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()
【详解】
解:∵P为线段AB的黄金分割点,且AP>BP,
∴AP2=BP•AB.
故选:B.
【点睛】
本题考查了黄金分割,理解黄金分割点的概念,找出黄金分割中成比例的对应线段即可.
3.D
【解析】
【分析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
【详解】
解:当AC<BC时,BC= AB= ,
当AC>BC时,BC= = ,
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;
(2)请你说明:三角形的中线是否是该三角形的黄金分割线.
21.把宽与长之比为 的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调、匀称的美感,如图,四边形 是黄金矩形,如果在这个黄金矩形里画一个正方形,那么剩下的矩形(矩形: )还是黄金矩形吗?请证明你的结论.
初三数学黄金分割率的应用题
初三数学黄金分割率的应用题初三数学黄金分割率的应用题问题一:某广场的长和宽之比为黄金分割率(约为),广场的长为45米,请计算广场的宽是多少米?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。
2. 根据题意,广场的长和宽之比为黄金分割率,即长/宽=。
3. 已知广场的长为45米,代入比例关系得到45/宽=。
4. 通过求解方程,可以得到宽≈45/≈米。
问题二:一个长方形的宽和高之比为黄金分割率,已知宽为32米,请计算该长方形的高是多少米?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。
2. 根据题意,长方形的宽和高之比为黄金分割率,即宽/高=。
3. 已知宽为32米,代入比例关系得到32/高=。
4. 通过求解方程,可以得到高≈32/≈米。
问题三:小明的身高与他的父母身高之比为黄金分割率,已知他的父亲身高为180厘米,母亲身高为165厘米,请计算小明的身高是多少厘米?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。
2. 根据题意,小明的身高与他的父母身高之比为黄金分割率,即小明身高/父亲身高=、小明身高/母亲身高=。
3. 已知父亲身高为180厘米,代入比例关系得到小明身高/180=;已知母亲身高为165厘米,代入比例关系得到小明身高/165=。
4. 通过求解方程,可以得到小明的身高≈180≈厘米,或者小明的身高≈165≈厘米。
以上是初三数学黄金分割率的应用题,希望对你有帮助!问题四:某物体的长度与宽度之比为黄金分割率,已知宽度为8cm,请计算该物体的长度是多少cm?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。
2. 根据题意,物体的长度与宽度之比为黄金分割率,即长度/宽度=。
3. 已知宽度为8cm,代入比例关系得到长度/8=。
4. 通过求解方程,可以得到长度≈8*≈cm。
问题五:一个线段被分成两部分,较长部分与整个线段的比例等于整个线段与较短部分的比例。
已知较长部分为24cm,请计算整个线段的长度是多少cm?解析: 1. 根据题意,整个线段的较长部分与整个线段的比例等于整个线段与较短部分的比例,即24/整个线段=整个线段/较短部分。
九上数学黄金分割
4.4 第4课时 黄金分割黄金分割:点 C 把线段 AB 分成两条线段 AC 和 BC ,如果AC BCAB AC =,那么称线段 AB 被点 C 黄金分割.点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比称为黄金比.例1 已知点C 是线段AB 的黄金分割点,且AC >BC ,则下列等式中成立的是( )A.AB 2=AC ·CBB.CB 2=AC ·ABC.AC 2=BC ·ABD.AC 2=2BC ·AB例2 如图,点C 是AB 的黄金分割点,那么的值是()A. 215+B. 215- C. 253+ D. 253-例3 如图,点C 是线段AB 的黄金分割点,且AC <BC ,AC=mBC ,则m 的值是______.【针对训练1】下列说法正确的是( )A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C 把线段AB 黄金分割,则AC2=AB ·BCD.以上说法都不对【针对训练2】如图,点C 是线段AB 的黄金分割点,则下列等式不正确的是( )A. AC BC AB AC =B. 618.0≈AB ACC.AB AC 215-= D.AB BC 215-=【针对训练3】已知点C 是AB 的黄金分割点(AC <BC ),若AB=4cm ,则AC 的长为_______cm.【巩固训练】1. 已知线段AB=10cm ,点C 是线段AB 的黄金分割点(AC >BC ),则AC 的长为( ) A.cm )1055(- B. cm )5515(- C.cm )555(- D.cm )5210(-2. 已知点C 是线段AB 上的一个点,且满足AC2=BC ·AB ,则下列式子成立的是( ) A.215-=BC AC B. 215-=AB ACC. 215-=AB BCD. 215+=AC BC3.如图所示,点P是线段AB的黄金分割点,PA>PB,若S1表示以AP为边的正方形的面积,S2表示以AB为长,PB为宽的矩形的面积,则S1,S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.不能确定4.宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF,以点F为圆心,以FD为半径画弧,交BC的延长线于点G,作G作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH5.当气温与人体正常体温(37℃)之比等于黄金分割比0.618时,人体感觉最舒适,这个气温约为______℃.(取整数)6.东方明珠塔高468米,上球体点A是塔身的黄金分割点(如图所示),则点A到塔顶部的距离约是______米.(精确到0.1米)第3题图第4题图第6题图7.已知线段AB=2,点P是线段AB的黄金分割点,则AP=______.8.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:点D是线段AC的黄金分割点.9.如图,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF 为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?3。
黄金分割专项练习题有答案
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC?AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC?AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC?AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD?AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE?AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD?AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.黄金分割专项练习30题参考答案: 1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD?AC,∴AD2=CD?AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD?AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)?10(3﹣)=(400﹣800)cm2.3.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=, ∴AD 2=AC?CD .∴点D 是线段AC 的黄金分割点.(2)∵点D 是线段AC 的黄金分割点,∴AD=AC ,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB 作为三角形底边;②取AB 的一半作AB 的垂线AC ,连接BC ,在BC 上取CD=CA .③分别以A 点和B 点为圆心、以BD 为半径划弧,交点为E ;④分别连接EA 、EB ,则△ABE 即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC ﹣CD=﹣1,=. 5.解:(1)由于P 为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣; (2)如图,点P 是线段AB 的一个黄金分割点.6.解:(1)设AC=x ,则BC=AB ﹣AC=1﹣x ,∵AC 2=BC?AB ,∴x 2=1×(1﹣x ),整理得x 2+x ﹣1=0,解得x 1=,x 2=(舍去),所以线段AC 的长度为; (2)设线段AD 的长度为x ,AC=l ,∵AD 2=CD?AC ,∴x 2=l×(l ﹣x ),∴x 1=,x 2=(舍去),∴线段AD 的长度AC ;(3)同理得到线段AE 的长度AD ; 上面各题的结果反映:若线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),则C 点为AB 的黄金分割点7.解:D 是AC 的黄金分割点.理由如下:∵在△ABC 中,AB=AC ,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC?CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB?HB=2×(3﹣)=6﹣2,∴AH2=AB?HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC?DC,∵BC=AD,∴AD2=AC?DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD?AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB?HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB?HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在Rt△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN 就是平行四边形ABCD的黄金分割线.(9分)。
专题27.13 黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练
专题27.13 黄金分割(基础篇)(专项练习)一、单选题1.大自然巧夺天工,一片树叶也蕴含着“黄金分割”.如图,P为AB的黄金分割点(AP>PB),如果AB的长度为8cm,那么BP的长度是()A.12-B.9-C.4D.42.已知点C是线段AB的黄金分割点,且2<,则AC长是()AB=,AC BCA B1C.3D3523.把2米的线段进行黄金分割,则分成的较短的线段长为()A.3B1C.1D.34.已知2AB=,点P是线段AB上的黄金分割点,且AP BP>,则AP的长为()A1B C35D.325.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对6.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.6187.下列命题正确的是()A.任意两个等腰三角形一定相似B.任意两个正方形一定相似C .如果C 点是线段AB 的黄金分割点,那么AC AB =D .相似图形就是位似图形8.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .2020⎝⎭B .2021⎝⎭C .2020⎝⎭D .2021⎝⎭9.已知点C 把线段AB 分成两条线段AC 、BC ,且AC BC >,下列说法错误的是( ) A .如果AC BCAB AC=,那么线段AB 被点C 黄金分割 B .如果2AC AB BC =⋅,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么BC 与AB 的比叫做黄金比D .0.618是黄金比的近似值10.等腰△ABC 中,AB=AC ,△A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )△△BCD 是等腰三角形;△点D 是线段AC 的黄金分割点;△△BCD△△ABC ;△BD 平分△ABC . A .1个B .2个C .3个D .4个11.在△ABC 中,△A=36°,AB=AC ,BD 是△ABC 的角平分线,下列结论: △△ABD ,△BCD 都是等腰三角形; △AD=BD=BC ; △BC 2=CD•CA ; △D 是AC 的黄金分割点 其中正确的是( )A .1个B .2个C .3个D .4个二、填空题12.在线段AB 上,点C 把线AB 分成两条线段AC 和BC ,若AC BCAB AC=,则点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点(PM PN >),当1MN =时,PM 的长是__________.13.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).14.把2米长的线段进行黄金分割,则分成的较长的线段长为__________.15.古希腊时期,(称为黄金分割比例),著名的“断臂维纳斯” 2.236≈,则黄金分割比例约为______________.(精确到0.01)16.已知AB=2,点C是线段AB的黄金分割点(AC>BC),则AC= .17.把长度为4cm的线段进行黄金分割,则较长线段的长是__________cm.18.已知线段4AB=,点P是线段AB的黄金分割点(AP BP>),那么线段AP=______.(结果保留根号)19.已知线段AB长为2cm,P是AB的黄金分割点,则较长线段PA=___;PB=______.200.61803398=…,将这个分割比保留4个有效数字的近似数是.21.若点C为线段AB的黄金分割点,且AC<BC,若AB=10,则BC=_____.22.若点P是线段AB的黄金分割点,AB=10cm,则较长线段AP的长是_____cm.三、解答题23.已知C、D是线段AB上的点,CD=(√5﹣2)AB,AC=BD,则C、D是黄金分割点吗?为什么?24.已知线段MN = 1,在MN 上有一点A ,如果AN =,求证:点A 是MN 的黄金分割点.25.(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求: 2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.26.(1)我们知道,将一条线段AB 分割成大小两条线段AP 、PB ,使AP >PB ,点P 把线段AB 分成两条线段AP 和BP ,且=AP BP AB AP ,点P 就是线段AB 的黄金分割点,此时PAAB的值为 (填一个实数):(2)如图,Rt△ABC 中,△B=90°,AB=2BC ,现以C 为圆心、CB 长为半径画弧交边AC 于D ,再以A 为圆心、AD 长为半径画弧交边AB 于E . 求证:点E 是线段AB 的黄金分割点.27.某校要设计一座2m 高的雕像(如图),使雕像的点C (肚脐)为线段AB (全身)的黄金分割点,上部AC (肚脐以上)与下部BC (肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到0.001)米. 2. 236=,结果精确到0.001).28.在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE△ΔCAD.(2)若CE=CP,求证△CPD=△PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.参考答案1.A【分析】根据黄金分割的定义得到AP AB,然后把AP的长度代入可求出AB的长.【详解】解:△P为AB的黄金分割点(AP>PB),△AP AB,△AB的长度为8cm,△AP×8=4(cm),△BP=AB-AP=8-(4)=12-故选:A.【点拨】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB.2.C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知BC AB===21△21)3=-=-=AC AB BC故选C【点拨】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.3.A【分析】根据黄金分割的定义列式进行计算即可得解.【详解】解: 较短的线段长=2⨯(1=2故选A.【点拨】本题考查了黄金分割的概念, 熟记黄金分割的比值是解题的关键.4.A【分析】根据黄金分割点的定义和AP BP=,代入数据即可得出AP的长度.>得出AP AB【详解】解:由于P为线段AB=2的黄金分割点,且AP BP>,则21==.ABAP=故选:A.35,2.5.B【分析】根据黄金分割的定义分别进行解答即可.【详解】A.每条线段有两个黄金分割点,故本选项错误;B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C.若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC.故选B.【点拨】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.6.D【分析】根据比例中项和黄金分割的概念分析各个说法.【详解】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,错误;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,正确;故选D.【点拨】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键. 7.B 【分析】根据相似多边形的概念、黄金分割点及位似可直接进行排除选项. 【详解】解:A 、任意两个等腰三角形的底角或顶角相等,则这两个等腰三角形相似,故原命题错误; B 、任意两个正方形一定相似,故原命题正确;C 、如果C 点是线段AB 的黄金分割点(AC >BC ),那么AC AB =D 、相似图形不一定是位似图形,故原命题错误; 故选B .【点拨】本题主要考查相似多边形的概念、黄金分割点及位似,熟练掌握相似多边形的概念、黄金分割点及位似是解题的关键. 8.C 【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则11AP ==2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点拨】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键. 9.C 【解析】【分析】根据黄金分割的定义判断即可.【详解】根据黄金分割的定义可知A、B、D正确;C.如果线段AB被点C黄金分割(AC>BC),那么AC与AB的比叫做黄金比,所以C错误.所以C选项是正确的.【点拨】本题考查了黄金分割的概念:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.注意线段AB的黄金分割点有两个.10.D【详解】△AB=AC,△△ABC=△C=12(180°-△A)=12(180°-36°)=72°,△AD=BD,△△DBA=△A=36°,△△BDC=2△A=72°,△△BDC=△C,△△BCD为等腰三角形,所以△正确;△△DBC=△ABC-△ABD=36°,△△ABD=△DBC,△BD平分△ABC,所以△正确;△△DBC=△A,△BCD=△ACB,△△BCD△△ABC,所以△正确;△BD:AC=CD:BD,而AD=BD,△AD:AC=CD:AD,△点D是线段AC的黄金分割点,所以△正确.故选D.11.D【解析】试题分析:在△ABC,AB=AC,△A=36°,BD平分△ABC交AC于点D,可推出△BCD,△ABD 为等腰三角形,可得AD=BD=BC,利用三角形相似解题.解:如图,△AB=AC,△A=36°,△△ABC=△C=72°,△BD平分△ABC交AC于点D,△△ABD=△CBD=△ABC=36°=△A,△AD=BD,△BDC=△ABD+△A=72°=△C , △BC=BD ,△△ABD ,△BCD 都是等腰三角形,故△正确; △BC=BD=AD ,故△正确; △△A=△CBD ,△C=△C , △△BCD△△ACB , △,即BC 2=CD•AC ,故△正确; △AD=BD=BC ,△AD 2=AC•CD=(AD+CD )•CD , △AD=CD ,△D 是AC 的黄金分割点.故△正确, 故选D .考点:相似三角形的判定与性质;黄金分割.12 【分析】根据若点P 是线段MN 的黄金分割点(PM PN >),则PM MN 计算即可. 【详解】当PM >PN 时,,.是解题的关键. 13.6.2 【分析】黄金分割又称黄金率,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618,0.618被公认为最具有审美意义的比例数字.上述比例是最能引起人的美感的比例,因此被称为黄金分割.【详解】由题意知AC:AB=BC:AC,△AC:AB≈0.618,△AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为6.2.【点拨】本题考查黄金分割,解题关键是掌握黄金分割定理.14.米【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分叫做黄金比.【详解】解:△将长度为2米的线段进行黄金分割,△较长的线段=2⨯米.是解的关键.15.0.62【分析】把黄金分割比例按要求进行计算即可.【详解】解: 2.236≈,≈2.23612-≈0.62,故答案为:0.62.【点拨】本题考查了求一个数的近似值,有理数的除法,正确计算是解题的关键.161【解析】21AC==17.()2cm.【解析】根据黄金分割的定义得到较长线段的长=×4,然后进行二次根式的运算即可.解:较长线段的长=×4=(2)cm.故答案为(2)cm.18.2【分析】计算即可.【详解】解:△点P是线段AB的黄金分割点(AP>BP)△AP2AB==故答案为:2.【点拨】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.)1cm (3cm【分析】根据黄金分割的概念得到较长线段AB,则PB=AB-352AB,然后把AB=2cm代入计算即可.【详解】解:△P是AB的黄金分割点,△较长线段AB,△PB=AB-352AB,而AB=2cm,△PA=)1cm,PB=(3cm.故答案为:)1cm;(3cm.【点拨】本题考查了黄金分割的概念:一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分倍.20.0.6180【解析】根据有效数字的定义,运用四舍五入法保留4个有效数字,需观察第五位有效数字,由于第五位有效数字是,不需往前面进一位.所以0.61803398…≈0.618021.5【分析】根据黄金分割点的定义,知BC为较长线段;则BC AB,代入数据即可得出AC的值.【详解】解:由于C为线段AB=10的黄金分割点,且AC<BC,BC为较长线段;则BC==5.故答案为:5.【点拨】本题考查黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB≈0.618AB,并且线段AB的黄金分割点有两个.22.5【解析】△P是线段AB的黄金分割点,AP>BP,AB,△AB=10cm,△AP=105=.故答案为5.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即AB. 23.C 、D 是黄金分割点.【解析】【分析】 根据题意求出AC 与AB 的关系,计算出AD 与AB 的关系,根据黄金比值进行判断即可.【详解】解:C 、D 是黄金分割点,△AC+CD+BD =AB ,CD =(√5﹣2)AB ,AC =BD ,△AC =3−√52AB , AD =AC+CD =3−√52AB+(√5﹣2)AB =√5−12AB , △D 是AB 的黄金分割点,同理C 也是AB 的黄金分割点.【点拨】本题考查黄金分割,关键是掌握黄金分割的概念和黄金比.24.见解析【解析】试题分析:先求得AM=√5−12,即可得到AM MN =AN AM =√5−12,结论得证。
有关黄金分割比的试题(精改)
1.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A.AM ∶BM =AB ∶AMB.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 2、如图所示,顶角为36°的等腰三角形,其底边与腰之比等于k ,这样的三角形叫黄金三角形,已知腰长AB=1,△ABC 为第一个黄金三角形,△BCD 为第二个黄金三角形,△CDE 为第三个黄金三角形,以此类推,第2007个黄金三角形的周长为( )A .k2006B .k2007C .kk +22006D .k2006(2+k )3、顶角为36°的等腰三角形称为黄金三角形,如图,五边形ABCDE 的5条边相等,5个内角相等,则图中共有黄金三角形的个数是( )A .25B .10C .15D .204、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2cm ,则其宽为________________cm .5、黄金比的近似值为_________________,准确值为______________________.6、顶角为36°的等腰三角形称为黄金三角形.如图,△ABC 、△BDC 、△DEC 都是黄金三角形,已知AB=1,则DE=____________________.7.如图,扇子的圆心角为x °,余下的扇形的圆心角为y °,x 与y 的比通常按黄金比为设计,这样的扇子外形较美观,若取黄金比为0.6,则x 为( ) A .216 B .135 C .120 D .1088、如图1,已知线段AB ,点C 在AB 上,且有AC BCAB AC=,则AC AB的数值为______;若AB 的长度与中央电视台演播厅舞台的宽度一样长,那么节目主持人应站在_____位置最好.9、如果三条线段的长a 、b 、c 满足215-==b c a b ,那么(a ,b ,c )叫做“黄金线段组”.黄金线段组中的三条线段( )A .必构成锐角三角形B .必构成直角三角形C .必构成钝角三角形D .不能构成三角形10、若一个矩形的短边与长边的比值为512-(黄金分割数),我们把这样的矩形叫做黄金矩形. (1)操作:请你在如图2所示的黄金矩形()ABCD AB AD >中,以短边AD 为一边作正方形AEFD ;(2)探究:在(1)中的四边形EBCF 是不是黄金矩形?若是,请予以证明;若不是,请说明理由; (3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).11、如图,在△ABC 中,点D 在边AB 上,且DB=DC=AC ,已知∠ACE=108°,BC=2. (1)求∠B 的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比215-. ①写出图中所有的黄金三角形,选一个说明理由; ②求AD 的长;③在直线AB 或BC 上是否存在点P (点A 、B 除外),使△PDC 是黄金三角形?若存在,在备用图中画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.12.宽与长的比是215-的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示): 第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过E 作EF ⊥AD ,交AD 的延长线于F . 请你根据以上作法,证明矩形DCEF 为黄金矩形.13(如图1),点P 将线段AB 分成一条较小线段AP 和一条较大线段BP ,如果ABBPBP AP =,那么称点P 为线段AB 的黄金分割点,设ABBPBP AP ==k ,则k 就是黄金比,并且k ≈0.618. (1)以图1中的AP 为底,BP 为腰得到等腰△APB (如图2),等腰△APB 即为黄金三角形,黄金三角形的定义为:满足腰底腰=腰底+≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:__________________________________________________; (2)如图1,设AB=1,请你说明为什么k 约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成面积为S 1和面积为S 2的两部分(设S 1<S 2),如果SS S S 221=,那么称直线l 为该图形的黄金分割线.(如图3),点P 是线段AB 的黄金分割点,那么直线CP 是△ABC 的黄金分割线吗?请说明理由;(4)图3中的△ABC 的黄金分割线有几条?14、如图1,点C 将线段AB 分成两部分,如果ACBCAB AC =,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果121S S S S =,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是△ABC 的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线EF 也是△ABC 的黄金分割线.请你说明理由.(4)如图4,点E 是平行四边形ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD ,交DC 于点F ,显然直线EF 是平行四边形ABCD 的黄金分割线.请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.15.如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点。
初中数学相似三角形之黄金分割专项练习题(附答案详解)
第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)
18.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.
【详解】
解:设MP=x,则PN=1﹣x,根据题意得 ,
解得,x= >1(不合题意,舍去),
又因为题中没强调MP是长的一段还是短的一段,所以MP的长也可以为1﹣ = .
故选:C.
【点睛】
本题考查黄金分割,解题的关键是掌握黄金分割点的概念.
9.B
【解析】
【分析】
根据黄金分割的概念表示出比例式,再结合正方形的面积进行分析计算.
5.A
【解析】
【分析】
利用黄金分割的定义得到PA= AB,然后把AB=4代入计算即可.
【详解】
∵点P是线段AB的黄金分割点(AP>BP),
∴PA= AB= ×4=2 -2.
故选:A.
【点睛】
本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC= AB≈0.618AB,并且线段AB的黄金分割点有两个.
6.B
【解析】
【分析】
把AB当作已知数求出AC,求出BC,再分别求出各个比值,根据结果判断即可.
【详解】
∵AC2=BC•AB,
∴AC2﹣BC•AB=0,
∵AB=AC+BC
初中数学《6、2黄金分割》知识点+教案课件+习题
知识点:数学定义把一条线段分成两段,使其中较长的一段是原线段与较小一段的比例中项,叫做把这条线段黄金分割。
如图,C为线段AB上一点,如果有则点C叫做线段AB的黄金分割点。
设AB=1, AC=x,则解得,称之为黄金比,也叫中末比、中外比、黄金率。
我国古代称为弦分割。
黄金比的数值后人还称为黄金数。
视频教学:练习:1.(1)如图,若点C是AB的黄金分割点,AB=1,则AC≈_______,BC≈_______.(2)-条线段的黄金分割点有_______个.2.据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为_______℃(精确到1℃).3.我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于_______.(精确到0.1)4.已知P为线段AB的黄金分割点,且AP<pb,则 </pb,则( )A.AP2=AB·PB B.AB2=AP·PBC.PB2=AP·AB D.AP2+BP2=AB25.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为 ( ) A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm课件:教案:一、教学目标1.了解黄金分割的概念,求作任意线段的黄金分割点;2.进一步理解线段的比,增强知识的综合运用能力.二、教学过程1.自主先学,温故知新蕾舞演员身体各部分之间适当的比例给人以匀称、协调的美感.请你量出图中线段AB、BC、AC的长度,并计算线段AB与AC的比值和线段BC与AB 的比值.上海东方明珠电视塔设计巧妙,整个塔体挺拔秀丽,现请你度量出图中线段AB、BC、AC的长度,并计算线段AB与AC的比值和线段BC与AB的比值.通过计算,你有何发现?观察习题6.1第5题“你最喜欢的矩形”的调查结果,看看多数同学喜欢哪一个矩形?你能说明喜欢的理由吗?2.组织互学,巩固提高例1.如图,点B在线段AC上,且.设AC=1,求AB的长.说一说像上图那样,点B把线段AC分成两部分,如果,那么称线段AC被点B黄金分割(golden section),点B为线段AC的黄金分割点.AB与AC(或BC 与AB)的比值称为黄金比.在计算中,通常取它的近似值0.618.3.提升研学,适度强化议一议(1).如图:点B是线段AC的黄金分割点,线段AC还有黄金分割点吗?若有,你能找出它吗?这两个黄金分割点有何特点?注:一条线段有两个黄金分割点,它们是对称存在的.(2).如果把化为乘积式是怎么样的?结合图形你怎么理解它?(3).你对多数同学选择喜欢这个矩形找到原因了吗?长与宽的比为黄金比的矩形称为黄金矩形,这种矩形给人以美感.你能举例说一说生活中有哪些黄金矩形吗?做一做1.如果点C是线段AB的黄金分割点,AC>BC,AB=100cm,则BC=_______________cm.2.如图,点B在线段AC上(AB>BC)若AB=2,BC=a-1,则当a为何值时,点B是线段AC的黄金分割点?4.迁移再学,拓展延申例2. (1) 如图①,在Rt△ABC中,∠B=90°,AB=2BC,现以点C为圆心、CB长为半径画弧交边AC于点D,再以点A为圆心、AD长为半径画弧交边AB于点E.求证:= (比值叫做AE与AB的黄金比).(2) 如果一个等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图②中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC(不写作法,但要求保留作图痕迹,并对作图中涉及的点用字母进行标注).5.当堂训练,及时反馈(1). 已知P为线段AB的黄金分割点,且AP<PB,则()A. AP2=AB·PBB. AB2=AP·PBC. PB2=AP·ABD. AP2+BP2=AB2(2). 如图,C是线段AB的黄金分割点,且BC>AC,AB=AE.若矩形EACD的面积为8,则正方形GCBF的周长为()A. 8B. 2C. 4D. 8(3). ①一条线段的黄金分割点有个;②如图,若B是线段AC的黄金分割点(AB>BC),AC=20 cm,则AB的长为cm.(4). 据有关实验测定,当气温与人体正常体温(37 ℃)的比为黄金比时,人体感到最舒适,这个气温约为℃(精确到1 ℃).(5). 美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士的身高为165 cm,下半身长x cm与身高l cm的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为cm(精确到1 cm).(6).如图,在△ABC中,已知AB=AC=3,BC=4,若D、E是边BC的两个黄金分割点,求△ADE的面积.6.归纳小结,颗粒归仓(1)知识层面:(2)方法层面:。
初二数学黄金分割练习题
初二数学黄金分割练习题黄金分割是数学中一个重要的概念,它与美学、建筑、自然界等领域有着广泛的应用。
本文将为初二数学学习者提供一些有关黄金分割的练习题,以帮助学生更好地理解和应用这一概念。
1. 用黄金分割比例求解问题:a) 一根长为12厘米的线段被黄金分割点分成两部分,短部分的长度是多少?b) 如果一个长方形的长和宽的比例是黄金分割比例,已知长方形的宽是8厘米,求长方形的长。
2. 用黄金分割比例求解线段问题:a) 已知线段AB的长度是8厘米,点C刚好将线段AB分成黄金分割比例的两部分,求线段AC的长度。
b) 线段EF和线段FG的长度之比是黄金分割比例,已知线段EF 的长度是6厘米,求线段FG的长度。
3. 用黄金分割比例求解长方形问题:a) 一个长方形的长和宽的比例是黄金分割比例,已知长方形的长是10厘米,求长方形的宽。
b) 长方形PQRS的长比宽是黄金分割比例,已知长方形的宽是5厘米,求长方形的长。
4. 应用黄金分割比例解决实际问题:a) 一幅画的宽和高的比例是黄金分割比例,已知画的宽是40厘米,求画的高。
b) 一段电线的长度和宽度的比例是黄金分割比例,已知电线的宽度是1.5厘米,求电线的长度。
通过完成以上练习题,初二数学学习者可以加深对黄金分割的理解,并熟练运用该概念解决实际问题。
黄金分割作为数学中一个重要的比例关系,不仅有助于数学学习者培养逻辑思维能力,还与美学、建筑等领域有着紧密的联系。
掌握黄金分割的原理及应用,对于学习和欣赏艺术作品、设计建筑等都有很大帮助。
请读者利用所学的知识和运算方法,独立解答以上练习题。
在解题过程中,可以灵活运用黄金分割的性质和比例关系,正确推导出最终答案。
在解答完成后,可以对照参考答案进行自我验算,寻找不足之处,并及时纠正。
黄金分割是数学世界中一个神奇而有趣的概念,通过不断地练习和应用,我们可以更好地理解和掌握它,并将其运用到更多的实际问题中。
希望初二数学学习者能够通过本文所提供的练习题,加深对黄金分割的认识和理解,提高解题能力,为今后的学习打下坚实的数学基础。
《黄金分割》专题练习
黄金分割专题练习一、选择题1.已知C 是线段AB 的一个黄金分割点,则AC ∶AB 为A .215-B .253-C .215+D .215-或253-A .55B .21C .25 D 3.把2米的线段进行黄金分割,则分成的较短的线段长为A .53-B .15-C .51+D .3+4.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割;在人体躯干由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉;如果某女士身高为1.60m,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为A .2.5cmB .5.1cmC .7.5cmD .8.2cm 5.如图,在正五边形ABCDE 中,对角线AD 、AC 与EB 分别相交于点M 、N .下列命题:①四边形EDCN 是菱形;②四边形MNCD 是等腰梯形;③△AEN 与△EDM 全等; ④△AEM 与△CBN 相似;⑤点M 是线段AD 、BE 、NE 的黄金分割点,其中假命题有A .0个B .1个C .2个D .4个二、填空题1.C 是AB 的黄金分割点,则=BCAC ; 2.P 为线段AB =10cm 的黄金分割点,则AP = cm 保留两个有效数字;3.当人的肚脐到脚底的距离与身高的比等于黄金分割比0.618时,身材是最完美的;一位身高为165cm,肚脐到头顶高度为65cm 的女性,应穿鞋跟为 cm 的高跟鞋才能使身材最完美精确到1cm;4.如图,节目主持人现站在舞台AB 的一端A 点,在主持节目时,站在舞台的黄金分割点处可获得最佳美学效果,若舞台AB 长20米,主持人要想站在舞台的黄金分割点处,她应走到距A 点至少 米处,如果向B 点再走 米,也处在舞台的黄金分割点处结果精确到0.1米5.如图,在平行四边形ABCD 中,点E 是边BC 上的黄金分割点,且BE >CE,AE 与BD 相交于点F .那么BF :FD 的值为 ;6.如图,在△ABC 中,点D 是AB 的黄金分割点AD >BD,BC =AD,如果∠ACD =90°, 那么tanA = ;三、 解答下列各题1.在人体躯干脚底到肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感;张女士的身高为1.68米,身体躯干脚底到肚脐的高度为1.02米,那么她应选择约多大的高跟鞋看起来更美;精确到十分位2.一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看;如图,是一个参加空姐选拔的选手的身高情况,那么她应穿多高的鞋子才能好看 精确到1cm参考数据:黄金分割比为215-,5=2.236; 3.要设计一座2m 高的维纳斯女神雕像如图,使雕像的上部AC 肚脐以上与下部BC 肚脐以下的高度比,等于下部与全部的高度比,即点C 肚脐就叫做线段AB 的黄金分割点,这个比值叫做黄金分割比;试求出雕像下部设计的高度以及这个黄金分割比 结果精确到0.0014.如图,在△ABC 中,AB =AC,∠A =36°,∠1=∠2,请问点D 是不是线段AC 的黄金分割点;请说明理由;5.如图,△ABC 中,AB =AC,∠BAC =108°,在BC 边上取一点D,使BD =BA,连接AD;求证: 1△ADC ∽△BAC ;2点D 是BC 的黄金分割点;6.如图1,点C 将线段AB 分成两.部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点;某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线; 1研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点如图2,则直线CD 是ABC △的黄金分割线;你认为对吗 为什么2请你说明:三角形的中线是否也是该三角形的黄金分割线3研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC于点F ,连接EF 如图3,则直线EF 也是ABC △的黄金分割线;请你说明理由;4如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD,交DC 于点F,显然直线EF 是ABCD的黄金分割线;请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点;7.2013 黄石如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点 ;某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1、S 2,如果121S S S S =,那么称直线l 为该 图形的黄金分割线;1如图2,在△ABC 中,∠A =36°,AB =AC,∠C 的平分线交AB 于点D,请问点D 是否是AB 边上的黄金分割点,并证明你的结论;2若△ABC 在1的条件下,如图3,请问直线CD 是不是△ABC 的黄金分割线,并证明你的结论; 3如图4,在直角梯形ABCD 中,∠D =∠C =90°,对角线AC 、BD 交于点F,延长AB 、DC 交于点E,连接EF交梯形上、下底于G 、H 两点,请问直线GH 是不是直角梯形ABCD 的黄金分割线,并证明你的结论;8.已知线段AB,求作线段AB 的黄金分割点C,使AC >BC;相似形专题练习答案一、选择题1.D2.D3.A4.C5.B二、填空题1.215-或215+; 2.6.2或3.8;3618.0= 456.解:∵点D 是AB 的黄金分割点AD >BD,====AB AD AB BC 在△ACD 中,∠ACD =90°,=三、 解答下列各题1.设张女士应该选择xcm 高的高跟鞋,则618.0168102=++xx ,解得x =4.8cm; 2.解:设应穿xcm 高的鞋子,=3答:维纳斯女神雕像下部的高度为1.236m;618.0≈; 456.1直线是的黄金分割线;理由如下:设ABC △的边AB 上的高为h ;12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△, 所以,ADC ABC S AD S AB =△△,BDC ADC S BD S AD=△△;又因为点D 为边AB 的黄金分割点,所以有AD BD AB AD =.因此ADC BDC ABC ADC S S S S =△△△△; 所以,直线CD 是ABC △的黄金分割线; 2因为三角形的中线将三角形分成面积相等的两部分,此时1212s s s ==,即 121s s s s ≠,所以三角形的中线不可能是该三角形的黄金分割线; 3因为DF CE ∥,所以DEC △和FCE △的公共边CE 上的高也相等,所以有DEC FCE S S =△△;设直线EF 与CD 交于点G .所以DGE FGC S S =△△.所以ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形;又因为ADC BDC ABC ADCS S S S =△△△△,所以BEFC AEF ABC AEF S S S S =四边形△△△; 因此,直线EF 也是ABC △的黄金分割线;4画法不惟一,现提供两种画法;画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD 的黄金分割线;7.解:1点D 是AB 边上的黄金分割点.理由如下:∵AB =AC,∠A =36°,∴∠B =∠ACB =72°;∵CD 是角平分线,∴∠ACD =∠BCD =36°,∴∠A =∠ACD,∴AD =CD;∵∠CDB =180°-∠B -∠BCD =72°,∴∠CDB =∠B,∴BC =CD; FB D E N M G第6题答图1F B D E N M 第6题答图2另一种作法:⑴经过点B作BD⊥AB,使BD=错误!AB;⑵连接AD,在AD上截取DE=DB;⑶在线段AB上截取AC=AE;如图,点C就是线段AB的黄金分割点;A EB CD。
分割黄金智力测试题(3篇)
第1篇一、选择题1. 下列关于黄金分割的描述,正确的是:A. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例。
B. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为1:1。
C. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为2:1。
D. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为3:2。
2. 黄金分割的比值约为:A. 1.618B. 2.618C. 0.618D. 1.4143. 黄金分割在以下哪个领域有广泛的应用?A. 数学B. 物理C. 建筑D. 以上都是4. 下列哪个不是黄金分割的应用实例?A. 斐波那契数列B. 古希腊建筑C. 印度教神像D. 荷兰风车5. 黄金分割在音乐中的运用体现在:A. 旋律B. 和弦C. 节奏D. 以上都是6. 黄金分割在艺术创作中的运用体现在:A. 形状B. 色彩C. 线条D. 以上都是7. 下列哪个不是黄金分割的特点?A. 比例关系B. 美学价值C. 经济效益D. 生物学意义8. 黄金分割在建筑设计中的运用体现在:A. 室内布局B. 外观造型C. 结构设计D. 以上都是9. 黄金分割在植物生长中的运用体现在:A. 叶片排列B. 花朵形态C. 果实分布D. 以上都是10. 下列哪个不是黄金分割的应用领域?A. 设计B. 科学研究C. 农业种植D. 医学治疗二、填空题1. 黄金分割的比值是__________。
2. 黄金分割在数学中被称为__________。
3. 黄金分割在自然界中普遍存在,如__________、__________等。
4. 黄金分割在艺术创作中的应用实例有__________、__________等。
5. 黄金分割在建筑设计中的应用实例有__________、__________等。
数学黄金分割练习题
数学黄金分割练习题数学黄金分割是一项非常有趣和有用的概念。
黄金分割出现在几乎所有自然界的事物中,从花朵的排列方式到大海中的海浪。
而在数学中,黄金分割对于美学和几何学也具有重要意义。
在本文中,我将给出一些关于黄金分割的练习题,帮助您更好地理解和应用这个概念。
练习题1:将一条线段分成两部分,比例为1:1.618。
已知整个线段长度为100,求较长的部分长度是多少?解答:设较长部分长度为x,则较短部分长度为100-x。
根据黄金分割的定义,x/(100-x) = 1.618。
解这个方程可得x约为61.8,所以较长部分长度约为61.8。
练习题2:一个矩形的长和宽之比为黄金分割的比例1:1.618,已知矩形的宽度为10,求矩形的长度是多少?解答:设矩形的长度为x,则x/10 = 1.618。
解这个方程可得x约为16.18,所以矩形的长度约为16.18。
练习题3:在一个等边三角形ABC中,点D是边BC上的一点,使得BD/DC= 1.618。
求角ADC的大小。
解答:设角ADC的大小为x度。
根据三角形的内角和为180度,可以得到角BDC的大小为(180-x)度。
根据BD/DC = 1.618,可得BD = 1.618 * DC。
根据正弦定理,有sin(x) = BD/AD = 1.618/AC。
根据正弦函数的性质,我们可以得到x约为134.39度。
通过以上练习题,我们可以看到黄金分割与各种数学形状和几何问题之间的关系。
黄金分割不仅仅是一个简单的比例,更是美学和几何之间的奇妙联系。
在实际应用中,黄金分割也具有广泛的用途。
例如,在设计中,黄金分割经常被用来确定界面元素的位置和比例,以达到更好的视觉效果。
在艺术作品中,黄金分割常常被用来构图,使作品更加和谐和美观。
此外,黄金分割还在金融领域有一定应用,用于研究股票价格和市场趋势等。
总之,黄金分割是一个深受数学家们喜爱和研究的概念。
通过练习题的解答,我们可以更好地理解和应用黄金分割。
11.黄金分割九年级数学下册培优训练含答案
黄金分割九年级数学下册 培优训练一、选择题1、已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .B .C .D .2、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB =1,那么AC 的长度为( )A .B .C .D .3、“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使面画整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( )A .①B .②C .③D .④4、有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1.其中正确的判断有( )A .1个B .2个C .3个D .4个5、一本书的宽与长之比为黄金比,书的宽为14cm ,则它的长为( ) A .(757+)cm B .(2175-)cm C .(757-)cm D .(7521-)cm6、若点C 是线段AB 的黄金分割点()AC BC >,且AB 的长8cm ,则AC 的长为( )A .51cm -B .()251cm -C .()451cm -D .()651cm - 7、如果一个矩形的宽(即短边)与长(即长边)之比是215-,那么这个矩形称为黄金矩形.如图,矩形ABCD 是黄金矩形,点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,则图中黄金矩形的个数是( )A .5个B .4个C .3个D .2个8、如图,扇子的圆心角为x °,余下扇形的圆心角为y °,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm10、如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD =AM ,FB =BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论:①N 是GM 的黄金分割点,②S 1=S 4,③23S S =512-, 正确的有( )A .①②③B .①③C .③D .①②二、填空题11、据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为___ ____℃(精确到1℃).12、已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = .13、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 的长为20 m ,则主持人应走到离A 点至少_______m 处最合适.(结果精确到0.1 m)14、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于_______.(精确到0.1)15、已知点C 是线段AB 的黄金分割点,若AB =4,则AC =16、如图,已知P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,则S 1 S 2.(填“>”“=”或“<”) 17、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B ,若AM 2=BM▪AB ,BN 2=AN▪AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =4时,m ﹣n = .三、解答题18、如图,C 是线段AB 的黄金分割点,BC >AC ,D ,E 分别是AC ,BC 的中点.(1)C 是线段DE 的黄金分割点吗?请说明理由;(2)若线段AB 的长为100cm ,请你求出线段DC 的长.19、如图所示,矩形ABCD 是黄金矩形(即BC AB =215 ≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?20、在△ABC 中,AB=AC ,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC 分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF 平分∠ABC 交AC 于F ,取AB 的中点E ,连接 EF 并延长交 BC 的延长线于M .试判断CM 与AB 之间的数量关系?只需说明结果,不用证明.答:CM 与AB 之间的数量关系是 .黄金分割九年级数学下册 培优训练(答案)一、选择题1、已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .B .C .D .解:设AB 为1,AP 为x ,则BP 为1﹣x ,∵AP 2=BP •AB ,∴x 2=(1﹣x )×1解得x 1=,x 2=(舍去).∴AP :AB =. 故选:A .2、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB =1,那么AC 的长度为( )A .B .C .D .解:∵C 是线段AB 的黄金分割点C ,AC >CB ,∴AC =AB =,故选:C .3、“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使面画整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( B )A .①B .②C .③D .④4、有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有; ②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1.其中正确的判断有( )A .1个B .2个C .3个D .4个【解答】①如果线段d 是线段a ,b ,c 的第四比例项,则有;说法正确; ②如果点C 是线段AB 的中点,≠,故AC 不是AB 、BC 的比例中项;说法错误;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;说法正确;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1;说法正确;综上可得:①③④正确,共3个.故选:C .5、一本书的宽与长之比为黄金比,书的宽为14cm ,则它的长为( A )A .(757)cmB .(215-C .(757)cmD .(521)cm6、若点C 是线段AB 的黄金分割点()AC BC >,且AB 的长8cm ,则AC 的长为( C )A .512cmB .)251cmC .()451cmD .)651cm7、如果一个矩形的宽(即短边)与长(即长边)之比是215-,那么这个矩形称为黄金矩形.如图,矩形ABCD 是黄金矩形,点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,则图中黄金矩形的个数是( )A .5个B .4个C .3个D .2个【解析】∵矩形ABCD 是黄金矩形.点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,∴图中黄金矩形有矩形AEGH ,矩形GHFB ,故选:C .8、如图,扇子的圆心角为x °,余下扇形的圆心角为y °,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【解析】由扇子的圆心角为x °,余下扇形的圆心角为y °,黄金比为0.6,根据题意得:x :y=0.6=3:5,又∵x+y=360,则x=360×=135,故选:B.9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为( C )A .4cmB .6cmC .8cmD .10cm10、如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD =AM ,FB =BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论:①N 是GM 的黄金分割点,②S 1=S 4,③23S S =512-, 正确的有( D )A .①②③B .①③C .③D .①②二、填空题11、据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为___23 ____℃(精确到1℃).12、已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = .【解答】解:根据黄金分割定义,得AP 2=AB •BP4=(BP +2)•BPBP 2+2BP ﹣4=0解得BP =﹣1±(﹣1﹣舍去)∴BP =﹣1 故答案为﹣1.13、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 的长为20 m ,则主持人应走到离A 点至少__7.6 _____m 处最合适.(结果精确到0.1 m)14、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于___3.7 ____.(精确到0.1)15、已知点C 是线段AB 的黄金分割点,若AB =4,则AC = 252-或625-16、如图,已知P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,则S 1 S 2.(填“>”“=”或“<”)【解答】解:∵P 是线段AB 的黄金分割点,且PA >PB ,∴PA 2=PB •AB , 又∵S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,∴S 1=PA 2,S 2=PB •AB ,∴S 1=S 2.故答案为:=.17、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B ,若AM 2=BM▪AB ,BN 2=AN▪AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =4时,m ﹣n = 458- .三、解答题18、如图,C 是线段AB 的黄金分割点,BC >AC ,D ,E 分别是AC ,BC 的中点.(1)C 是线段DE 的黄金分割点吗?请说明理由;(2)若线段AB 的长为100cm ,请你求出线段DC 的长.解:(1)∵C 是线段AB 的黄金分割点∴BC 2=AC •AB,∵D,E 分别是AC,BC 的中点,∴CD=21AC,CE=21BC,DE=21AB, ∴CE 2=DC •DE, ∴C 是线段DE 的黄金分割点 (2)∵BC=215-AB=50(5-1),∴AC=100-50(5-1)=150-505, ∵D 是AC 的中点, ∴DC=(75-255)cm19、如图所示,矩形ABCD 是黄金矩形(即BCAB =215-≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【解析】矩形ABFE 是黄金矩形.理由如下:因为AB AE =ABED AB AD AB ED AD -=- =21512151)15)(15()15(21152-=-+=-+-+=-- 所以矩形ABFE 也是黄金矩形.20、在△ABC 中,AB=AC ,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC 分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF 平分∠ABC 交AC 于F ,取AB 的中点E ,连接 EF 并延长交 BC 的延长线于M .试判断CM 与AB 之间的数量关系?只需说明结果,不用证明.答:CM 与AB 之间的数量关系是 .解:(1)(2)CM=AB。
黄金分割专项练习题有答案
黄金分割专项练习30题(有答案)1.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC 中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)3.定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.4.作一个等腰三角形,使得腰与底之比为黄金比.(1)尺规作图并保留作图痕迹;(2)写出你的作法;(3)证明:腰与底之比为黄金比.5.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.6.如图,线段AB的长度为1.(1)线段AB上的点C满足系式AC2=BC•AB,求线段AC的长度;(选做)(2)线段AC上的点D满足关系式AD2=CD•AC,求线段AD的长度;(选做)(3)线段AD上的点E满足关系式AE2=DE•AD,求线段AE的长度;上面各题的结果反映了什么规律?(提示:在每一小题中设x和l)7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形ABCD中,当时,称矩形ABCD 为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD•AB,求的值.13.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD 的长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长.19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:;(2)如图1,设AB=1,请你说明为什么k约为0.618;(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△AB C的黄金分割线吗?请说明理由;(4)图3中的△ABC的黄金分割线有几条?21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分位)22.已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.23.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.24.如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则M是AB的黄金分割点吗?若是请你证明,若不是请说明理由.25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.26.宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM 与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是.28.折纸与证明﹣﹣﹣用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3)设,试求k的值;(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF 是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.黄金分割专项练习30题参考答案:1.(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为2.解:(1)设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=99,整理得x2﹣20x+99=0,解得x1=9,x2=11,当x=9时,20﹣x=11;当x=11时,20﹣11=9,而AB>AD,所以x=11,即AB的长为11cm;(2)不能.理由如下:设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,整理得x2﹣20x+101=0,因为△=202﹣4×101=﹣4<0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3)设AB=xcm,则AD=(20﹣x)cm,根据题意得20﹣x=x,解得x=10(﹣1),则20﹣x=10(3﹣),所以矩形的面积=10(﹣1)•10(3﹣)=(400﹣800)cm2.∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=,∴AD2=AC•CD.∴点D是线段AC的黄金分割点.(2)∵点D是线段AC的黄金分割点,∴AD=AC,∵AC=2,∴AD=﹣14.解:(1)腰与底之比为黄金比为黄金比如图,(2)作法:①画线段AB作为三角形底边;②取AB的一半作AB的垂线AC,连接BC,在BC上取CD=CA.③分别以A点和B点为圆心、以BD为半径划弧,交点为E;④分别连接EA、EB,则△ABE即是所求的三角形.(3)证明:设AB=2,则AC=1,BC=,AE=BE=BD=BC﹣CD=﹣1,=.5.解:(1)由于P为线段AB=2的黄金分割点,则AP=2×=﹣1,或AP=2﹣(﹣1)=3﹣;(2)如图,点P是线段AB的一个黄金分割点.6.解:(1)设AC=x,则BC=AB﹣AC=1﹣x,∵AC2=BC•AB,∴x2=1×(1﹣x),整理得x2+x﹣1=0,解得x1=,x2=(舍去),所以线段AC的长度为;(2)设线段AD的长度为x,AC=l,∵AD2=CD•AC,∴x2=l×(l﹣x),∴x1=,x2=(舍去),∴线段AD的长度AC;(3)同理得到线段AE的长度AD;上面各题的结果反映:若线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),则C点为AB的黄金分割点7.解:D是AC的黄金分割点.理由如下:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°.∵∠1=∠2,∴∠1=∠2=∠ABC=36°.∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.∵∠A=∠1,∴AD=BC.∵△ABC和△BDC中,∠2=∠A,∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,AD=BC=BD,∴,∴AD2=AC•CD,即D是AC的黄金分割点8.证明:∵AB=AC,∠A=36°,∴∠ABC=(180°﹣36°)=72°,∵BD平分∠ABC,交于AC于D,∴∠DBC=×∠ABC=×72°=36°,∴∠A=∠DBC,又∵∠C=∠C,∴△BCD∽△ABC,∴∵AB=AC,∴=,∵AB=AC=2,BC=﹣1,∴(﹣1)2=2×(2﹣AD),解得AD=,AD:AC=():2.∴点D是线段AC的黄金分割点.9.证明:在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.BE=,∴,∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.10.解:设正方形ABCD的边长为2,在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,∴AH=AF=EF﹣AE=EB﹣AE=﹣1,HB=AB﹣AH=3﹣;∴AH2=()2=6﹣2,AB•HB=2×(3﹣)=6﹣2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.11.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=180°﹣36°﹣72°=72°,∵∠ADB=108°,∴∠ABD=180°﹣36°﹣108°=36°,∴△ADB是等腰三角形,∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,∴△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=AC•DC,∵BC=AD,∴AD2=AC•DC,∴点D是线段AC的黄金分割点.12.解:∵D在AB上,且AD2=BD•AB,∴点D是AB的黄金分割点而点C是AB的黄金分割点,∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,∴CD=﹣1﹣(3﹣)=2﹣4,∴==或==.13.解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.14.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:设他的肚脐到脚底的长度为xm时才是黄金身段,根据题意得x:1.70=0.618,即x=1.70×0.618≈1.1(m).答:他的肚脐到脚底的长度为1.1m时才是黄金身段.16.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.17.解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,又∵S1=AP2,S2=PB×AB,∴S1=S2.18.解:∵四边形ABCD为平行四边形,∴∠CBF=∠AEB,∠BCF=∠BAE,∴△BCF∽△EAB,∴,即,把AD=,AB=+1代入得,=,解得:CF=2.故答案为:2.19.解:矩形EFDC是黄金矩形,证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵,∴,即点F是线段AD的黄金分割点.∴,∴,∴矩形CDFE是黄金矩形.20.解:(1)满足≈0.618的矩形是黄金矩形;(2)由=k得,BP=1×k=k,从而AP=1﹣k,由得,BP2=AP×AB,即k2=(1﹣k)×1,解得k=,∵k>0,∴k=≈0.618;(3)因为点P是线段AB的黄金分割点,所以,设△ABC的AB上的高为h,则,∴∴直线CP是△ABC的黄金分割线.(4)由(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.21.解:根据已知条件得下半身长是160×0.6=96cm,设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:=0.618,解得:x≈7.5cm.故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,HB=AB﹣AH=(3﹣)a;∴AH2=(6﹣2)a2,AB•HB=2a×(3﹣)a=(6﹣2)a2,∴AH2=AB•HB,所以点H是线段AB的黄金分割点.23.证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,又∵B′E=BE=1,∴AB′=AE﹣B′E=﹣1,∴AB″∴点B″是线段AB的黄金分割点.24.证明:∵正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE==,∵EF=BE=1,∴AF=AE﹣EF=﹣1,∴AM=AF=﹣1,∴AM:AB=(﹣1):2,∴点M是线段AB的黄金分割点.25.解:(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°,∴∠B+∠A=108°.∴x+2x=108,x=36°.∴∠B=36°;(2)①有三个:△BDC,△ADC,△BAC.∵DB=DC,∠B=36°,∴△DBC是黄金三角形,(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.∴△CDA是黄金三角形.或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°,∴∠A=∠ACB.∴BA=BC.∴△BAC是黄金三角形.②△BAC是黄金三角形,∴,∵BC=2,∴AC=﹣1.∵BA=BC=2,BD=AC=﹣1,∴AD=BA﹣BD=2﹣(﹣1)=3﹣,③存在,有三个符合条件的点P1、P2、P3.ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点P3.26.证明:在正方形ABCD中,取AB=2a,∵N为BC的中点,∴NC=BC=a.在Rt△DNC中,.又∵NE=ND,∴CE=NE﹣NC=(﹣1)a.∴.故矩形DCEF为黄金矩形.27.解:(1)(2)CM=AB(4分)28.证明:如图,连接GF,设正方形ABCD的边长为1,则DF=.在R t△BCF中,BF==,则A′F=BF﹣BA′=﹣1.设AG=A′G=x,则GD=1﹣x,在Rt△A′GF和Rt△DGF中,有A'F2+A'G2=DF2+DG2,即,解得x=,即点G是AD的黄金分割点(AG>GD).29.解:(1)如图所示;(2)△BCD是黄金三角形.证明如下:∵点D在AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠ABD=∠DBC=36°.又∵∠BDC=∠A+∠ABD=72°,∴∠BDC=∠C,∴BD=BC,∴△BCD是黄金三角形.(3)设BC=x,AC=y,由(2)知,AD=BD=BC=x.∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC,∴,即,整理,得x2+xy﹣y2=0,解得.因为x、y均为正数,所以.(4).理由:延长BC到E,使CE=AC,连接AE.∵∠A=36°,AB=AC,∴∠ACB=∠B=72°,∴∠ACE=180°﹣72°=108°,∴∠ACE=∠B1A1C1.∵A1B1=AB,∴AC=CE=A1B1=A1C1,∴△ACE≌△B1A1C1,∴AE=B1C1.由(3)知,∴,,∴.30.解:(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB上的高为h.则,,,∴,.又∵点D为边AB的黄金分割点,∴,∴.故直线CD是△ABC的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF∥CE,∴△DFC和△DFE的公共边DF上的高也相等,∴S△DFC=S△DFE,∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC.又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.(9分)。
高一数学三 黄金分割法——0.618法试题
高一数学三黄金分割法——0.618法试题1.用0.618法选取试点,实验区间为[2,4],若第一个试点x1处的结果比x2处好,x1>x2,则第三个试点应选取在()A.2.236B.3.764C.3.528D.3.925【答案】C【解析】先由已知试验范围为[2,4],可得区间长度为2,再利用0.618法选取试点:x1和x2由于x1处的结果比x2处好,从而得出x3为4﹣0.618×(4﹣3.236)=3.528即可.解:由已知试验范围为[2,4],可得区间长度为2,利用0.618法选取试点:x1=2+0.618×(4﹣2)=3.236,x2=2+4﹣3.236=2.764,∵x1处的结果比x2处好,则x3为4﹣0.618×(4﹣3.236)=3.528故选C.点评:本题考查的是黄金分割法﹣0.618法的简单应用.解答的关键是要了解黄金分割法﹣0.618法.2.(2013•永州一模)已知一种材料的最佳加入量在100g到1100g之间,若用0.618法安排试验,且第一、二试点分别为x1,x2(x1>x2),则当x2为好点时,第三次试点x3是 g(用数字作答)【答案】336.【解析】确定区间长度,利用0.618法选取试点,即可求得结论.解:由已知试验范围为[100,1100],可得区间长度为1000,利用0.618法选取试点:x1=100+0.618×(1100﹣100)=718,x2=100+1100﹣718=482,∵当x2为好点时,∴x3=100+0.618×(482﹣100)=336.故答案为:336.点评:本题考查的是黄金分割法﹣0.618法的简单应用.解答的关键是要了解黄金分割法﹣0.618法.3.(2012•怀化二模)用0.618法进行优选时,若某次存优范围[2,b]上的一个好点是2.382,则b= .【答案】2.618或3【解析】由题知试验范围为[2,b],区间长度为b﹣2,利用0.618法:2+(b﹣2)×0.618或b﹣(b﹣2)×0.618选取试点进行计算.解:根据0.618法,第一次试点加入量为2+(b﹣2)×0.618或b﹣(b﹣2)×0.618∵某次存优范围[2,b]上的一个好点是2.382,∴b=2.618或3故答案为:2.618或3点评:本题考查优先法的0.618法,解答的关键是对黄金分割法﹣0.618法的了解,属容易题.4.(2012•衡阳模拟)用0.618法选取试点过程中,如果实验区间为[1000,2000],x1为第一个试点,且x1处的结果比x2处好,则第三个试点x3= .【答案】1764.【解析】确定区间长度,利用0.618法选取试点,即可求得结论.解:由已知试验范围为[1000,2000],可得区间长度为1000,利用0.618法选取试点:x1=1000+0.618×(2000﹣1000)=1618,x2=1000+2000﹣1618=1382,∵x1处的结果比x2处好,∴x3=1382+2000﹣1618=1764故答案为:1764.点评:本题考查的是黄金分割法﹣0.618法的简单应用.解答的关键是要了解黄金分割法﹣0.618法.5.(2011•湖南模拟)选做题:(优选法与试验设计初步)已知一种材料的最佳加入量在500g到1500g之间,若按照0.618法优选,则第2次试点的加入量可以为 g.【答案】882或1118.【解析】由题知试验范围为[500,1500],区间长度为1000,故可利用0.618法选取试点进行计算.解:根据0.618法,第一次试点加入量为500+(1500﹣500)×0.618=1118或1500﹣(1500﹣500)×0.618=882故答案为:882或1118.点评:本题考查优先法的0.618法,属容易题,解答的关键是对黄金分割法﹣0.618法的了解.6.(2010•湖南)已知一种材料的最佳加入量在110g到210g之间,若用0.618法安排试验,则第一次试点的加入量可以是 g.【答案】171.8或148.2.【解析】由题知试验范围为[100,200],区间长度为100,故可利用0.618法:110+(210﹣110)×0.618或210﹣(210﹣110)×0.618选取试点进行计算.解:根据0.618法,第一次试点加入量为110+(210﹣110)×0.618=171.8或210﹣(210﹣110)×0.618=148.2故答案为:171.8或148.2.点评:本题考查优先法的0.618法,属容易题,解答的关键是对黄金分割法﹣0.618法的了解.7.(2011•湖南模拟)炼钢时,通过加入有特定化学元素的材料,使炼出的钢满足一定的指标要求,假设为了炼出某特定用途的钢,每吨需要加入某元素的量在500g到1000g之间,用0.618法安排实验,则第二次试点加入量可以是 g.【答案】691.【解析】由题知试验范围为[500,1000],区间长度为500,故可利用黄金分割法﹣0.618法选取试点进行计算.解:由已知试验范围为[500,1000],可得区间长度为500,=1000﹣0.618(1000﹣500)=691,用0.618法安排实验,则第二次试点加入量可以是:x2故答案为:691.点评:本题考查的是分数法的简单应用.解答的关键是要了解黄金分割法﹣0.618法.8.为了调制一种饮料,在每10kg半成品饮料中加入柠檬汁进行试验,加入量为500g到1500g之间,现用0.618法选取试点找到最优加入量,则第二个试点应选取在 g.【答案】882.【解析】由题知试验范围为[500,1500],区间长度为500,利用0.618法选取试点找到最优加入量进行计算.解:由已知试验范围为[500,1000],区间长度为1000,利用0.618法选取试点:x=500+0.618×(1500﹣500)=1118,1=1500+500﹣1118=882,x2则第二个试点应选取在882g.故答案为:882.点评:本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:﹣1).(2)所有可能的试点总数大于某一(Fn﹣1),(1)可能的试点总数正好是某一个(Fn﹣1).而小于(Fn+19.(二)选做题A 在极坐标系中,o是极点,设点,则点O到直线AB的距离是;B 用0.618法对某一试验进行优选,因素范围是[2000,8000],则第二个试点x是.2【答案】2;4292.【解析】A:先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换将直线ρcosθ+ρsinθ=2的化成直角坐标,再在直角坐标系中算出极点到直线的距离即可.B:由题知试验范围为[2000,8000],区间长度为6000,故可利用0.618法选取试点进行计算.A解:点,的极坐标为:A(2,2).B(﹣2,2),直线AB的方程为:x+y﹣4=0则点O到直线AB的距离是:.故答案为:2B:解:根据0.618法,第一次试点加入量为或8000﹣(8000﹣2000)×0.618=4292故答案为:4292.点评:A本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.B本题考查优先法的0.618法,属容易题,解答的关键是对黄金分割法﹣0.618法的了解.10.用0.618法选取试点的过程中,如果试验区间为[2,4],且第一个试点x1的结果比第二个试点x 2处好,其中x1>x2,则第三个试点x3为.【答案】3.528.【解析】先由已知试验范围为[2,4],可得区间长度为2,再利用0.618法选取试点:x1和x2由于x1处的结果比x2处好,从而得出x3即可.解:由已知试验范围为[2,4],可得区间长度为2,利用0.618法选取试点:x1=2+0.618×(4﹣2)=3.236,x2=2+4﹣3.236=2.764,∵x1处的结果比x2处好,则x3为4﹣0.618×(4﹣3.236)=3.528故答案为:3.528.点评:本题考查的是黄金分割法﹣0.618法的简单应用.解答的关键是要了解黄金分割法﹣0.618法.。
初中数学九年级上册黄金分割
A
D E
CB
思考:点C是线段AB的黄金分割点吗?
BD 1 ; AD
12
1
2
5 , AC AE
51
2
2 2
22
5 1, BC 1 AC 1 5 1 3 5 ;
2
2
2
5 1
3 5
AC 2 5 1, BC 2 3 5 2
【解析】本题考查黄金分割的有关知识,由题
意知 AC2 BCgAB,
∴AC2=(10-AC)×10,解得AC≈6.2 cm.
3.如图所示,乐器上的一根弦AB=80 cm,两个端 点A、B固定在乐器板面上,支撑点C是靠近点B的 黄金分割点,支撑点D是靠近点A的黄金分割点, 则AC=______cm,DC=_______cm.
D
因此 AH BH ,点H就是HB的黄金分割点. AB AH
G H
B
C
课堂小结
黄金 分割
定义
点C把线段AB分成两条线段AC和
BC,如果
AC AB
BC AC
, 那么称线段AB被
点C黄金分割.点C叫做线段AB的黄
金分割点,AC与AB的比称为黄金比.
一条线段有两个黄金分割点
黄金比:较长线段:原线段 = 5 1 :1
4. 如图:在△ABC中,AB=AC, ∠BAC=36°, BD平 分∠ABC交AC于点D, 求证:D是AC的黄金分割点. 证明:在等腰△ABC中,顶角∠A=36°, 所以∠ABC=∠C=72°, ∵BD为∠ABC的平分线, ∴∠ABD=∠DBC=36°, 在△ACB和△BCD中,∠BDC=72° ∵∠C=∠C,∠A=∠CBD=36°, ∴△ACB∽△BCD, ∴AC:BC=BC:DC;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熟记巧用速解法
——快速解决“黄金分割”有关的考题
锐才数学明星老师 卢志康教授
“黄金分割”是自然界中一种重要现象。
不但在诸如绘画、雕塑、音乐、建筑等艺术领域有很多体现,而且在管理、工程设计等方面也有着不可忽视的作用。
“黄金分割”虽是初中数学教学的一个知识点与考点,但这一知识内容的掌握与学生进一步的数学技能发展却又关联不大。
因此长期以来只限于要求概念的掌握和知识的记忆,考题的难度也不是很大,花尽量少的时间去快速准确的解决这类问题成为解题的关键。
在2010年的中考中,我们见到了下面两题:
1.(2010 嵊州市)如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D ,若CD =CF ,则
=AD
AE
2.(2010四川内江)如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .
这是两道难度较大的中考填空题,难度系数均相当于中考填空题最后一题。
不熟悉“黄金分割”理论的同学在遇到这两道题的时候可能会感觉无从下手,因为虽然可以不断将要求的比转化成新的比,但题中并不存在可以直接利用的明确的比值。
这就需要学生敏感的意识到这是有关黄金分割的问题。
我们先来看黄金分割比例理论:在线段AB 上有一点C ,若AC:AB=BC:AC ,则C 点就是线段AB 的黄金分割点。
有两个重要的数需要我们熟记巧用,短:长=2
15-(黄金分割比);长:短=5+12
(黄金分割比的倒数)。
在遇到关于黄金分割点知识点的情况不妨直接填上相应的答案或选项。
下面我们来解这两道题。
第一题:先将AE:AD 转化成AE:AD=AE:BC,然后利用三角形相似关系得到
E D M A B
F C N A B D E F C
AE:BC=AF:CF=AF:CD=AF:AB,再利用AC⊥BE得到AF:AB=EF:AE.又可推出EF=ED,所以最后能
得到AE:AD=ED:AE=
21
5-
第二题:利用中线倍长的有关思想将CE延长到G使得CE=EG.于是BG//CF.利用△
BGE:△ACE可得AE:AF=AE:BE=AC:BG=AC:CF=AB:AE=5+1 2
而熟悉了黄金分割比例之后,学生可以直接从以下思路进行解答:第一题 AE:AD是求线段一部分与线段的比,第二题AE=CF,所以AE:AF也是线段两部分之比。
所以在考试中,
这两道填空题学生可以直接填上答案
21
5-
(黄金分割比)和5+1
2(黄金比的倒数)
这两道题的完整解答相当复杂,对学生的要求挺高。
不过这是两道填空题,在没有明显可用于计算的比值存在的条件下,如果利用通常的方法无法得到解答,便可以大胆猜测这一类型的题目和黄金分割有关。
这样,在学生虽然并不完全明白的情况下,还是可以依靠直觉很快得到它们的正确答案。
纳思博士小贴士:
熟记:记住黄金分割比例问题应该满足的条件,具体比例。
巧用:通过转换思想将不在一条直线上的线段比例转换到一条直线上。
速解:确定好长线段和短线段怎样的比,迅速得出正确答案。