电磁场与电磁波单缝衍射实验报告
单缝衍射分析实验报告
单缝衍射分析实验报告实验目的本实验旨在通过实验观察和测量,研究单缝衍射现象,并了解单缝衍射的特性和衍射方程。
实验原理单缝衍射是指光线通过一个缝隙时发生的衍射现象。
当光波通过一个缝隙时,会发生弯曲扩散,形成一系列衍射波。
这些波会相互干涉并产生明暗相间的衍射图案。
根据惠更斯-菲涅尔原理,缝隙上的每一点可以看作是一个波源,发出的波沿各个方向传播。
当光线经过缝隙后,在屏幕上形成一组明暗相间的衍射条纹。
实验装置和步骤装置- 单缝衍射装置:包括一个狭缝、光源和屏幕。
- 透镜:用于调整光的直径和聚焦。
实验步骤1. 将单缝衍射装置放置在光源前方的适当位置,保证光源能够通过狭缝,并在屏幕上形成明暗相间的衍射条纹。
2. 调整透镜的位置,使得光线通过单缝后能够在屏幕上形成清晰的衍射图案。
3. 使用尺子测量光源、单缝和屏幕的位置,并记录下来。
数据处理和分析1.测量和记录数据根据实验步骤中的操作,我们测量并记录了光源、单缝和屏幕的位置,数据如下表所示:光源位置(cm)单缝位置(cm)屏幕位置(cm):-: :-: :-:80 100 1502.衍射角和衍射级数的计算根据衍射方程,我们可以通过实验数据计算得到衍射角和衍射级数。
根据下式计算衍射角:\[\sin(\theta) = \frac{m \cdot \lambda}{a}\]其中,\(\theta\)为衍射角,\(m\)为衍射级数,\(\lambda\)为入射光的波长,\(a\)为缝隙的宽度。
代入实验数据,我们可以计算出衍射角为:\[\sin(\theta) = \frac{1 \times 600 \times 10^{-9}}{0.001} \approx 0.6\]结果和讨论通过实验观察和计算,我们得到了单缝衍射的衍射角和衍射级数。
衍射角的大小和衍射级数决定了衍射图案的形状和清晰程度。
在实验中,我们观察到在屏幕上形成了明暗相间的衍射条纹。
通过调整透镜的位置,我们成功地调节了光线的直径和聚焦,使得衍射条纹更加清晰可见。
单缝衍射实验实验报告
一、实验目的1. 观察并了解单缝衍射现象及其特点。
2. 学会使用光电元件测量单缝衍射光强分布,并绘制光强分布曲线。
3. 通过单缝衍射的规律计算单缝的宽度。
二、实验原理单缝衍射是指当光波通过一个狭缝时,光波在狭缝后方形成一系列明暗相间的衍射条纹。
这种现象是由于光波在通过狭缝时,波前受到限制,从而发生衍射,形成衍射条纹。
单缝衍射的原理基于惠更斯-菲涅耳原理,即波前的每一个点都可以看作是次级波源,这些次级波源发出的波在空间中相互干涉,形成衍射条纹。
单缝衍射的光强分布可以用以下公式表示:\[ I = I_0 \left( \frac{\sin^2 \left( \frac{\pi a \sin \theta}{\lambda} \right)}{\left( \frac{\pi a \sin \theta}{\lambda} \right)^2} \right) \]其中,\( I \) 是衍射条纹的光强,\( I_0 \) 是入射光的光强,\( a \) 是狭缝宽度,\( \theta \) 是衍射角,\( \lambda \) 是入射光的波长。
三、实验仪器1. 激光器2. 单缝衍射装置3. 光电探头4. 数字式检流计5. 白屏6. 光具座四、实验步骤1. 将激光器、单缝衍射装置、光电探头、白屏和光具座按照实验要求连接好。
2. 打开激光器,调节光路,使激光束垂直照射到单缝上。
3. 将光电探头放置在单缝后方,调整位置,观察并记录不同位置的光强值。
4. 改变狭缝宽度,重复步骤3,记录不同狭缝宽度下的光强分布。
5. 将光强值与位置数据整理成表格,绘制光强分布曲线。
五、实验结果与分析1. 观察到单缝衍射现象,在单缝后方形成了一系列明暗相间的衍射条纹。
2. 通过光电探头测量不同位置的光强值,绘制光强分布曲线。
3. 通过光强分布曲线,可以观察到以下特点:- 中央亮条纹最宽,两侧亮条纹逐渐变窄。
- 亮条纹之间有暗条纹,暗条纹的宽度逐渐减小。
单缝衍射、双缝干涉实验
成绩国际教育学院实验报告(操作性实验)课程名称:电磁场与电磁波实验题目:单缝衍射、双缝干涉实验指导教师:-班级:- 学号:- 学生姓名:-一、实验目的和任务观察单缝衍射的现象。
观察双缝干涉的现象。
二、实验仪器及器件分度转台1台,喇叭天线1对,三厘米固态信号发生器1台,晶体检波器1个,可变衰减器1个,读数机构1个,微安表1个,单缝板和双缝板各一块。
三、实验内容及原理1)单缝衍射实验的原理实验的原理见图1:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时的衍射角为,其中λ是波长,a是狭缝宽度。
两者取同一单位长度,然后,随着衍射角增大,衍射波宽度又逐渐增大,直至一级极大值,角度为。
2)双缝干涉实验的原理见图2:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源。
由于两缝发出的次级波是相干波,因此在金属板背后面的空间中,将产生干涉现象。
当然,电磁波通过每个缝也有狭缝现象。
因此实验将是衍射和干涉两者结合的结果。
为了研究主要是由于来自双缝的两束中央衍射相互干涉的结果,令双缝的缝宽a 接近λ,例如:λ=32 mm,a=40 mm,这时单缝的一级极小接近53∘。
因此,取较大的b则干涉强度受单缝衍射影响大。
干涉加强的角度为, k=1,2,…干涉减弱的角度为, k=1,2,…图1 单缝衍射实验图2 双缝衍射实验四、实验步骤单缝衍射实验步骤1:根据图3,连接仪器。
调整单缝衍射板的缝宽。
步骤2:把单缝板放在支座上,应使狭缝平面与支座下面的小圆盘上的某一对刻度线相一致,此刻线应与工作平台上的90∘刻度的一对刻线对齐。
步骤3:转动小平台,使固定臂的指针指在小平台的180∘线处,此时小平台的0∘线就是狭缝平面的法线方向。
步骤4:调整信号电平,使活动臂上的微安表示数接近满度。
电磁波的单缝衍射实验
一.实验名称电磁波的单缝衍射实验二.实验目的1、通过实验了解电磁波的衍射(绕射)现象,掌握衍射规律。
2、掌握电磁波的单缝衍射时衍射角对衍射波强度的影响。
三.实验所用仪器设备DH926B 型微波分光仪、三厘米固态振荡器、喇叭天线、可变衰减器、晶体检波器、单缝板三.实验基本框图连接好仪器,按实验步骤仔细完成,认真读数。
五.实验基本原理如图2.1 所示,电磁波入射到缝隙上,在缝隙上产生等效磁流,该等效磁流与入射场的幅度成正比,金属板背面的电磁场可以等效为该等效磁流的辐射,辐射幅度的大小与角度的关系为E=sin[(ka sinθ)/2] 当sin[(ka sinθ)/2]=0即(ka sinθ)=2nπ,a sinθ=2nπ时衍射场出现一级极小值。
k当sin[(ka sinθ)/2]=1,即(ka sinθ)=(2n+1)π2时衍射出现一级极大值.a sinθ=(2n+1)π2k根据微波波长和缝宽可计算出出现一级极小值时的衍射角为θ=sin−1λa而出现一级极大值时的衍射角为θ=sin−1(3λ2a )其中λ是波长,a是狭缝宽度,两者取同一长度单位。
六.实验具体步骤1、如图2.2 连接仪器。
2、调节单缝衍射板的缝宽,选取缝宽为一适当值。
3、将衍射板安装到支座上,使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻度线应与工作平台上的90°刻度的一对线一致。
4、转动小平台使固定臂的指针在小平台的180°处,此时小平台的0°就是狭缝平面的法线方向。
5、按信号源操作规程接通电源,调节衰减器使信号电平读数指示接近满度。
6、从衍射角0°始,在单缝的两侧使衍射角每改变1°取一次表头读数,并记录下来。
7、实验结束,关闭电源,将衰减器的衰减调至最大。
七.实验原始数据记录八.实验数据处理理论的一级极小值的衍射角为27.3度,极大的衍射角为43.3度。
实验中的一级极小值的衍射角为28度,极大的衍射角为43度。
北邮电磁场与电磁波测量实验报告1反射折射单缝
北京邮电大学电磁场与电磁波测量实验实验报告实验内容:电磁波反射和折射实验单缝衍射实验学院:电子工程学院班级:2010211203 班组员:崔宇鹏张俊鹏章翀郑春辉孔繁强2013年4月9日实验一电磁波反射和折射实验一、实验目的1•熟悉S426型分光仪的使用方法2•掌握分光仪验证电磁波反射定律的方法3•掌握分光仪验证电磁波折射定律的方法二、实验设备与仪器S426型分光仪,金属板,玻璃板三、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
四、实验内容与步骤1•熟悉分光仪的结构和调整方法。
2•连接仪器,调整系统。
图1反射实验仪器的布置如图1所示,仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。
3.测量入射角和反射角反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。
而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。
这是小平台上的0刻度就与金属板的法线方向一致。
转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。
如果此时表头指示太大或太小,应调整衰减器或晶体检波器,使表头指示接近满量程。
做此项实验,入射角最好取30°至65 °之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。
做这项实验时应注意系统的调整和周围环境的影响。
五、实验数据与处理1•金属板全反射实验实验数据及处理如下表1所示表1金属板全反射实验数据表2•玻璃板上的反射和折射实验实验数据及处理如下表2所示表2玻璃板上的反射和折射实验数据表六、实验误差分析根据电磁波在金属板与玻璃板反射实验结果可以看到,反射与折射大体上遵循反射和折射定律,但与理论值存在一定偏差,主要表现在:各个角度的反射实验中反射角与入射角有一定差异;玻璃板的反射与折射实验中反射、透射系数相加并不为1,且均比1大,我们认为这些差异主要由于以下实验误差引起。
电磁场与微波实验二报告——电磁波通过单缝时的衍射现象
电磁波通过单缝时的衍射现象1. 实验原理如图1,当一平面波入射到一宽度和波长可比拟的狭缝时,就发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,此时衍射角为1s i n a λϕ-=,其中λ是波长,a 是狭缝宽度。
随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为13sin 2aλϕ-=。
2. 实验步骤(1) 系统构建如图2(2) 开启DH1121B 型三厘米固态信号源,调整DH926B 型微波分光仪单缝衍射板的缝宽,将该板放到支座上,应使狭缝平面与支座下面的小圆盘上的90~90刻度线保持一致。
转动小平台使固定臂的指针在小平台的180度刻度处,此时小平台的0刻度就是狭缝平面的法线方向,这是调整信号电平使DH926AD 型数据采集仪表头指示接近满刻度。
(3) 根据微波波长以及缝宽,可以计算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。
(4) 将DH926AD 型数据采集仪配备的USB 电缆线的两端根据具体尺寸连接到数据采集仪的USB 口和计算机的USB 口,此时DH926AD 型数据采集仪的USB 指示灯亮(蓝色),表示已连接好。
然后打开DH926AD 型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到DH926B 型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上。
(5)最后察看DH1121B型三厘米固态信号源的“等幅”和“方波”档的设置,将DH926AD型数据采集仪的“等幅/方波”设置按钮设为等同于DH1121B 型三厘米固态信号源的设置(工作状态:“等幅”档)(6)获得的实验曲线中央可能较平,甚至还有稍许的凹陷,这可能是由于衍射板不够大等原因所造成的。
(7)点击“单缝衍射实验”,会出现“建议”提示框,这是软件建议选择的“采集点数”和“脉冲通道”,单击“OK”按钮,进入“输入采集参数”界面。
单缝衍射测定实验报告(3篇)
第1篇一、实验目的1. 观察并理解单缝衍射现象及其特点。
2. 通过实验测量单缝衍射的光强分布,绘制光强分布曲线。
3. 利用单缝衍射的规律计算单缝的缝宽。
二、实验原理光在传播过程中遇到障碍物时,会发生衍射现象,即光线偏离直线传播,进入障碍物后方的阴影区。
单缝衍射是光通过一个狭缝时发生的衍射现象。
当狭缝的宽度与入射光的波长相当或更小时,衍射现象尤为明显。
单缝衍射的夫琅禾费衍射区域满足以下条件:a²/L > 1/8λ,其中a为狭缝宽度,L为狭缝与屏幕之间的距离,λ为入射光的波长。
在夫琅禾费衍射区域,衍射光束近似为平行光。
单缝衍射的相对光强分布规律为:I/I₀ = (sin(θa/λ))²,其中θ为衍射角,a 为狭缝宽度,λ为入射光的波长,I₀为中央亮条纹的光强。
三、实验仪器1. 激光器:提供单色光。
2. 单缝衍射装置:包括狭缝、衍射屏和接收屏。
3. 光强测量装置:包括数字式检流计和光电传感器。
4. 光具座:用于固定实验仪器。
5. 秒表:用于测量时间。
四、实验步骤1. 将激光器、单缝衍射装置、光强测量装置和光具座依次安装在光具座上,调整仪器,保证等高共轴。
2. 调节狭缝宽度,记录缝宽a。
3. 调节衍射屏与狭缝之间的距离L,确保满足夫琅禾费衍射条件。
4. 观察衍射条纹,记录中央亮条纹和各级暗条纹的位置。
5. 使用光电传感器测量各级暗条纹的光强,记录数据。
6. 计算各级暗条纹的相对光强I/I₀。
7. 以衍射角θ为横坐标,I/I₀为纵坐标,绘制光强分布曲线。
8. 利用单缝衍射的规律计算狭缝宽度a。
五、实验数据及结果1. 狭缝宽度a:1.5mm2. 衍射屏与狭缝之间的距离L:50cm3. 各级暗条纹位置(以衍射角θ表示):- 第一级暗条纹:θ₁ = 3.0°- 第二级暗条纹:θ₂ = 6.0°- 第三级暗条纹:θ₃ = 9.0°4. 各级暗条纹的相对光强I/I₀:- 第一级暗条纹:I₁/I₀ = 0.04- 第二级暗条纹:I₂/I₀ = 0.008- 第三级暗条纹:I₃/I₀ = 0.0025. 光强分布曲线:根据实验数据绘制光强分布曲线。
单缝衍射双缝干涉实验
成绩国际教育学院实验报告(操作性实验)课程名称:电磁场与电磁波实验题目:单缝衍射、双缝干涉实验指导教师:-班级:- 学号:- 学生姓名:-、实验目的和任务观察单缝衍射的现象。
观察双缝干涉的现象。
、实验仪器及器件分度转台1台,喇叭天线1对,三厘米固态信号发生器1台,晶体检波器1个,可变衰减器1个,读数机构1个,微安表1个,单缝板和双缝板各一块。
三、实验内容及原理1)单缝衍射实验的原理实验的原理见图1:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时的衍射角为= “入/时,其中?是波长,?是狭缝宽度。
两者取同一单位长度,然后,随着衍射角增大,衍射波宽度又逐渐增大,直至一级极大值,角度为W = sin 1[〔3/2)("酊]。
2)双缝干涉实验的原理见图2:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源。
由于两缝发出的次级波是相干波,因此在金属板背后面的空间中,将产生干涉现象。
当然,电磁波通过每个缝也有狭缝现象。
因此实验将是衍射和干涉两者结合的结果。
为了研究主要是由于来自双缝的两束中央衍射相互干涉的结果,令双缝的缝宽??接近??例如:??32 mm,?=40 mm,这时单缝的一级极小接近53°因此,取较大的?则干涉强度受单缝衍射影响大。
干涉加强的角度为= sin-- , ??1,2,…!2* + ]丿 C- : ,?=1,2,…图1单缝衍射实验四、实验步骤单缝衍射实验步骤1:根据图3,连接仪器。
调整单缝衍射板的缝宽。
步骤2:把单缝板放在支座上,应使狭缝平面与支座下面的小圆盘上的某一对刻度线相一 致,此刻线应与工作平台上的 90°刻度的一对刻线对齐。
步骤3:转动小平台,使固定臂的指针指在小平台的 180°线处,此时小平台的0°线就是狭缝平面的法线方向。
单缝衍射实验实验报告
单缝衍射实验实验报告一、实验目的1、观察单缝衍射现象,了解其特点和规律。
2、测量单缝衍射的光强分布,计算缝宽。
3、加深对光的波动性的理解。
二、实验原理当一束平行光通过宽度与波长相当的狭缝时,会发生衍射现象。
在屏幕上,不再是简单的直线传播形成的亮斑,而是出现一系列明暗相间的条纹。
单缝衍射的光强分布可以用菲涅耳半波带法来解释。
将狭缝处的波阵面分成奇数个或偶数个半波带,当波阵面被分成偶数个半波带时,对应点的光振动相互抵消,形成暗纹;当波阵面被分成奇数个半波带时,对应点的光振动相互叠加,形成明纹。
单缝衍射的中央明纹宽度为:$2x_1 =\frac{2λf}{a}$(其中$λ$ 为入射光波长,$f$ 为透镜焦距,$a$ 为单缝宽度)三、实验仪器1、氦氖激光器2、单缝装置3、光学平台4、光屏5、光强测量仪四、实验步骤1、搭建实验装置将氦氖激光器放置在光学平台的一端,使其发射的激光束水平。
在激光束的路径上依次放置单缝装置和光屏,调整它们的高度和位置,使激光束能够通过单缝并在光屏上形成清晰的衍射条纹。
2、调整光路微调单缝装置的角度,使衍射条纹垂直于光屏。
移动光屏,使衍射条纹处于光屏的中心位置。
3、测量光强分布打开光强测量仪,将其探头对准光屏上的衍射条纹。
从中央明纹开始,沿水平方向逐点测量光强,并记录数据。
4、改变单缝宽度,重复实验更换不同宽度的单缝,重复上述步骤,观察并记录衍射条纹的变化。
五、实验数据及处理1、实验数据记录对于不同宽度的单缝,分别记录中央明纹的位置$x_1$ 以及各级明纹和暗纹的位置。
2、数据处理根据测量数据,绘制光强分布曲线。
利用中央明纹宽度的公式$2x_1 =\frac{2λf}{a}$,已知激光波长$λ$ 和透镜焦距$f$ ,计算单缝宽度$a$ 。
六、实验结果与分析1、实验结果观察到了清晰的单缝衍射条纹,中央明纹最亮最宽,两侧对称分布着各级明暗相间的条纹。
随着单缝宽度的减小,中央明纹宽度增大,条纹间距变宽。
单缝衍射现象实验报告(3篇)
第1篇一、实验目的1. 观察并理解单缝衍射现象及其特点。
2. 测量单缝衍射的光强分布。
3. 应用单缝衍射的规律计算单缝宽度。
4. 探讨光的波动性。
二、实验原理光的衍射是指光波遇到障碍物或孔径时,波前发生弯曲并传播到几何阴影区的现象。
当障碍物或孔径的尺寸与光波的波长相当或更小时,衍射现象尤为明显。
单缝衍射是光的衍射现象之一,当光波通过一个狭缝时,光波会在狭缝后形成一系列明暗相间的条纹,称为衍射条纹。
衍射条纹的位置和间距与狭缝宽度、光波长以及狭缝与屏幕之间的距离有关。
根据惠更斯-菲涅耳原理,单缝衍射的光强分布可以表示为:\[ I = I_0 \left( \frac{\sin^2(\theta)}{\theta^2} \right) \]其中,\( I \) 为衍射条纹的光强,\( I_0 \) 为中央亮条纹的光强,\( \theta \) 为衍射角度。
三、实验仪器1. He-Ne激光器:提供单色光源。
2. 单缝狭缝:提供衍射狭缝。
3. 光具座:固定实验装置。
4. 白屏:观察衍射条纹。
5. 刻度尺:测量衍射条纹间距。
6. 计算器:计算数据。
四、实验步骤1. 将He-Ne激光器、单缝狭缝、光具座和白屏依次放置在实验台上,确保各部分稳固。
2. 调整激光器,使激光束垂直照射到单缝狭缝上。
3. 观察并记录中央亮条纹的位置和间距。
4. 调整单缝狭缝的宽度,观察并记录不同宽度下的衍射条纹。
5. 测量不同衍射条纹的间距,并计算相对光强。
6. 利用公式 \( I = I_0 \left( \frac{\sin^2(\theta)}{\theta^2} \right) \) 计算单缝宽度。
五、实验结果与分析1. 观察单缝衍射现象:实验中观察到,当激光束通过单缝狭缝时,在白屏上形成了一系列明暗相间的条纹,即衍射条纹。
其中,中央亮条纹最为明亮,两侧的暗条纹逐渐变暗。
2. 测量单缝衍射的光强分布:通过测量不同衍射条纹的间距,可以计算出相对光强。
单缝衍射实验报告数据
单缝衍射实验报告数据单缝衍射实验是物理学中经典的实验之一,它通过一道狭缝上的入射光束的衍射现象来展示光波性质的重要性。
本文将详细介绍单缝衍射实验的背景知识、实验装置、实验步骤以及实验数据的分析和讨论。
一、实验背景知识1. 光的波粒二象性光既可以被看作是一种粒子(光子),又可以被看作是一种波动的电磁波。
这种既有波动性又有粒子性的特性被称为光的波粒二象性。
2. 衍射现象衍射是光传播时,遇到障碍物边缘或缝隙时发生的现象。
它是光的波动性质的表现,能够解释光的直线传播以及光的干涉现象。
3. 单缝衍射单缝衍射是一种光波通过一个狭缝时发生的衍射现象。
当光通过狭缝时,会在狭缝后面形成一系列光亮和暗淡的交替条纹,这一现象被称为单缝衍射。
二、实验装置1. 光源:使用一支强度稳定的激光作为光源。
激光的单色性和相干性使得实验结果更加明确可靠。
2. 狭缝装置:使用一片细狭缝作为狭缝装置。
要求狭缝宽度较窄,且狭缝边缘较平滑,以确保实验结果的准确性。
3. 屏幕:在光源和狭缝装置之间设置一块屏幕,可以用来观察和记录实验结果。
屏幕上设有一个刻度尺,用以测量亮度。
三、实验步骤1. 准备实验装置,将光源、狭缝装置和屏幕按照一定的距离间隔放置在实验台上。
2. 打开光源,调整光源的位置和角度,使得光线经过狭缝后能够均匀地照射到屏幕上。
3. 观察屏幕上形成的光带,记录并测量亮度的变化。
可以将屏幕按照刻度尺的单位进行划分,以便后续的数据分析。
4. 重复以上步骤,改变狭缝的宽度或调整光源的强度,观察实验结果的变化。
四、实验数据的分析和讨论根据实验记录的亮度数据,我们可以得到一系列光强随位置的变化曲线。
通过分析这些曲线,我们可以得到以下结论:1. 存在中央亮斑:在实验结果中,我们可以观察到中央位置上的一条明亮的光斑。
这是由于光波在通过狭缝后向前衍射,形成的直线传播的结果。
2. 出现暗纹和亮纹间隔规律:除了中央亮斑外,我们还可以看到一系列亮暗交替的条纹。
单缝衍射实验报告小结(3篇)
第1篇一、实验目的本次实验旨在通过观察和测量单缝衍射现象,了解单缝衍射的基本原理,掌握单缝衍射光强分布的特点,并应用相关规律计算单缝的缝宽。
二、实验原理当光波遇到障碍物时,会发生衍射现象,即光波绕过障碍物传播。
当障碍物的大小与光的波长相当时,衍射现象尤为明显。
单缝衍射是光波通过一个狭缝后,在屏幕上形成的光强分布图样。
本实验采用夫琅和费衍射原理,即光源与接收屏距离衍射物相当于无限远时所产生的衍射。
单缝衍射的光强分布可以用以下公式描述:\[ I(\theta) = I_0 \left(\frac{\sin(\beta)}{\beta}\right)^2 \]其中,\( I(\theta) \) 是衍射角为 \( \theta \) 处的光强,\( I_0 \) 是中心亮条纹的光强,\( \beta \) 是衍射角。
三、实验仪器1. 激光器:提供单色平行光束。
2. 单缝二维调节架:用于调节狭缝的宽度。
3. 小孔屏:用于放置单缝。
4. 一维光强测量装置:用于测量不同位置的光强。
5. WJH型数字式检流计:用于测量光强。
四、实验步骤1. 将激光器、单缝二维调节架、小孔屏、一维光强测量装置和WJH型数字式检流计依次放置在光学导轨上,确保等高共轴。
2. 调节单缝的宽度,记录不同宽度下的衍射光强分布。
3. 改变单缝与屏幕之间的距离,观察衍射光强分布的变化。
4. 测量不同衍射级次的光强,记录数据。
5. 利用实验数据绘制光强分布曲线,并与理论曲线进行比较。
五、实验结果与分析1. 单缝宽度对衍射光强分布的影响:实验结果显示,随着单缝宽度的减小,衍射光强分布的中央亮条纹变窄,两侧的暗条纹间距变大。
这与理论公式相符。
2. 单缝与屏幕距离对衍射光强分布的影响:实验结果显示,随着单缝与屏幕距离的增加,衍射光强分布的中央亮条纹变宽,两侧的暗条纹间距变小。
这也与理论公式相符。
3. 光强分布曲线:实验测得的光强分布曲线与理论曲线基本一致,说明单缝衍射实验结果符合夫琅和费衍射原理。
电磁场与电磁波实验报告
电磁场与电磁波实验报告班级:学号:姓名:实验一:验证电磁波的反射和折射定律1学时1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律;1研究电磁波在良好导体表面上的全反射;2研究电磁波在良好介质表面上的反射和折射;3研究电磁波全反射和全折射的条件;2、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角;3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验;1、实验目的1研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面出现的衍射波强度不是均匀的,中央最强;2研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源;由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度;两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;当然电磁波通过每个缝也有狭缝现象;因此实验将是衍射和干涉两者结合的结果;为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°;因此取较大的b,则干涉强受单缝衍射影响大;干涉加强的角度为:干涉减弱的角度为:3、实验结果图2.1 单缝衍射的I-α曲线图2.2双缝干涉的I-α曲线实验三:布朗格衍射的实验1、实验目的本实验是仿造X射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替X射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件;这个条件就是布拉格方程;1掌握100面,110面点阵的反射波产生干涉的条件,得出布拉格方程;2了解直线极化和圆极化波特性参数的测试方法;2、实验原理任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关;晶体内的离子、原子或分子占据着点阵的结构, 两相邻结点的距离叫晶体的晶格常数;真实晶体的晶格常数约在10−8厘米的数量级,X 射线的波长与晶体的常数属于同一数量级,实际上晶体是起着衍射光栅的作用,因此可以利用 X 射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构得了解;本实验是仿造 X 射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替 X 射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件,这个条件就是布拉格方程;它是这样说的,当波长为入的平面波射到间距为α的晶面上,入射角为Θ°,当满足条件时n为整数发生衍射;衍射线在所考虑的晶面反射线方向;在布拉格衍射实验中采用入射线与晶面的夹角即通称的入射角,是为了在实验时方便,因为当被研究晶面的法线与分光仪上度盘的 0 度刻度一致时,入射线与反射线的方向在度盘上有相同的示数,不容易搞错,操作方便;3、实验结果图3.1 布拉格衍射I-θ关系曲线由实验数据可得,两侧发生衍射的角度大约在34°和65°附近;根据布拉格方程nλ=2aCOSθ,将λ=32mm,a=40mm代入得:当n=1时,θ=66.42°;当n=2时,θ=36.87°.实验测得数据与理论计算值比较接近,可验证布拉格方程;69°附近产生的峰值可能是由其他实验组影响造成的,不计入考虑;实验四:均匀无损耗媒质参量的测量2学时1、实验目的了解电磁波在真空中传播特性和相干原理;1在学习均匀平面电磁波的基础上,观察电磁波传播特性,E、H、S互相垂直;2推导相干波理论数学模型,自行调节测量仪器,测量基本参量;3测定自由空间内电磁波波长λ、频率f,并确定电磁波的相位常数β和波速υη的测量;4了解电磁波的其他参量,如波阻抗5利用相干波接点位移法推导测量均匀无损耗媒质参量的ε和μ的数学模型6了解均匀无损耗媒质参量λ、β、的差别7熟悉均匀无损耗媒质分界面对电磁波的反射和折射的特性;2、实验原理迈克尔逊干涉试验的基本原理见下图 13 所示:在平面波前进的方向上放置一个成45°的半透射板,由于该板的作用,将入射波分成两束波:一束由于反射向 A 方向传播;另一束透过半透射板向B 方向传播;由于A﹑B 处全反射板的作用,两列波就再次回到半透射板并到达接收喇叭处,于是接收喇叭收到两束同频率且振动方向一致的两个波;如果这两个波的位相差为2π的整数倍,则干涉加强;当相位差为π的奇数倍则干涉减弱;因此在 A 处放一固定板,让 B 处的反射板移动,当表头指示从一次极小变到又一次极小时,则 B 处的反射板就移动λ⁄2的距离,因此有这个距离就可求得平面波的波长;3、实验结果()()mm 32.341-443.5-91.5621n 0L -3L 2=⨯=-⨯=λ实验五:利用微波衰减测量湿度、厚度2学时1、实验目的学习介质特性参量:相移常数和衰减常数的测量方法,自行推导出介质厚度和湿度的数学模型,设计实验方法;1了解被测量的物质所用波为TEM 波,TEM 波产生的条件; 2相移常数和衰减常数测量方法; 3湿度、厚度测量方法 4信号处理方法 2、实验原理同迈克尔干涉实验原理 3、实验结果491.5602.5592.4067.4172.2357.2643.532.13-+-+-+-=91.2=n33221100L L L L L L L L L -'+-'+-'+-'=∆()()mm80.271-432.13-2.05521n 0-32ˊ=⨯=-''⨯'L L λ()d L /1/∆+= λλ()d /91.21/32.3480.27+=mmd 6.12≈。
电磁场与电磁波实验
a
单缝衍射实验组装图
实验报告
a=70mm =32mm a=70mm =32mm a=70mm =32mm Ⅰ Ⅰ 36 38 40 42 44 46 48 50 Ⅰ 18 20 22 24 26 28 30 32 34
0
2
4
6
8
10
12
14
16
绘制 -I曲线图形,标注极值点
实验原理: 当微波遇到金属板 时将会发生全反射, 本实验就是以一块金 属板作为障碍物,来 研究当微波以某一入 射角投射到金属板时, 所遵守的反射定律。
1
2
反射实验组装图
实验报告
极化 入射角φ1 理论反射角φ2 实测反射角φ2 φ2-φ2测
水平极化
垂直极化
实验二 单缝衍射实验
实验原理: 当一束平面波垂直 入射到一个狭缝,狭 缝的宽度和波长可以 比拟时,它就会发生 衍射现象。 极小值 a sin n 极大值 a sin 2n 1
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
绘制 -I曲线图形,标注极值点
实验四 迈克尔逊干涉实验
实验原理: 当接收喇叭接收到两束 A 同频率,且振动方向一致 的两个波,如果两个波相 位差为 2 的整数倍时,则干 0 涉加强,相位差为 45 的奇数倍时,则干涉减弱。 当产生两个相邻最弱或最 强信号时金属板所移动距 离为 L 2
A
B
450
圆极化实验组装图
实验操作
实验操作
单缝衍射实验报告
单缝衍射实验报告单缝衍射实验报告一、实验目的1. 掌握单缝衍射实验的基本原理和方法。
2. 理解波动光学原理。
3. 通过实验,观察到学习到衍射现象。
二、实验仪器和材料1. 激光器2. 千分尺3. 单缝光屏4. 趋光片5. 牛顿环实验盘三、实验原理当平行光射到一个缝口上时,会在缝口之后产生过程中衍射现象。
根据惠更斯-菲涅尔原理,缝口受到波射到缝口旁边透射的波的干涉作用,因此,衍射情况取决于波面的形状。
对于平面波,波面是平面的,缝口对其没有衍射。
对于波脊自行塞耳面,缝的宽度小于波长时,波面在缝口上弯曲,产生衍射现象。
四、实验步骤1. 将激光器固定在合适的位置上,使得激光射到一个致密的单缝屏上。
2. 调节激光的方向和位置,使得激光垂直打在单缝上。
3. 打开光源,将光线照射到单缝上。
4. 观察并记录出射光线的衍射图样。
5. 利用千分尺测量光斑的距离,并计算出衍射角度。
6. 在实验盘上观察得到的图样,观察到牛顿环,计算出各圈的半径。
五、实验结果及分析通过观察和记录实验现象,得到衍射图样如下:(在这里插入衍射图样)利用千分尺测量光斑在屏幕上的距离,可以计算出衍射角度。
根据光斑的位置和孔的尺寸,我们可以计算出波长的大小。
通过观察牛顿环实验图样,可以计算出各圈的半径。
通过计算,我们可以得到波长和光的频率。
六、实验结论通过实验,我们观察到了单缝衍射的现象,并且通过测量和计算,得到了波长和频率。
单缝衍射实验是对波动光学理论的实证,通过这个实验,我们更加深入地理解了波动光学原理,并且加深了我们对光学实验技术的了解。
七、实验心得通过这个实验,我深入了解了波动光学原理,并且通过观察和记录实验数据,对实验结果有了更深入的理解。
实验过程中,我学会了如何操作激光器和光屏,掌握了测量工具的使用和实验数据的处理方法。
这个实验让我对波动光学有了更深入的了解,并且增加了我对实验操作技巧的掌握。
这次实验让我学到了很多东西,对我以后的学习和工作都有很大的帮助。
单缝衍射实验实验报告
单缝衍射实验实验报告实验目的:通过单缝衍射实验,探究光波在经过狭缝时的衍射特性。
实验仪器:光源、单缝装置、屏幕、测量尺、测量仪器等。
实验原理:当光波经过狭缝时,会发生衍射现象,波前会延展至整个狭缝,形成一系列次波。
这些次波在屏幕上会叠加形成干涉条纹,从而观察到明暗交替的衍射图样。
实验步骤:1. 将光源置于适当位置,照射光线至单缝装置;2. 调整单缝装置,使光线通过单缝;3. 在光线衍射的位置放置屏幕,调整屏幕位置,观察衍射图样;4. 使用测量尺和测量仪器,记录衍射图样的明暗条纹位置及间距。
实验数据与结果:通过实验,我们观察到了明暗交替的衍射图样,出现了一系列干涉条纹。
根据记录的数据,我们计算出了衍射角度、衍射角度与狭缝宽度的关系等参数,验证了衍射的规律。
实验结论:通过单缝衍射实验,我们深入了解了光波在狭缝中的衍射特性,掌握了衍射角度与狭缝宽度之间的定量关系。
同时,实验结果也进一步验证了光波的波动性质。
实验总结:单缝衍射实验是深入学习光波衍射现象的重要实验之一,通过实验我们不仅加深了对光学现象的认识,同时也提高了实验操作能力。
在今后的学习和科研中,我们将继续探索光波的奥秘,不断提升实验技能,为科学研究做出更大的贡献。
感谢指导教师的耐心指导与帮助,让我们更加深入地理解了光学原理。
同时,也感谢实验室相关工作人员的支持与帮助,为我们提供了良好的实验条件。
通过本次单缝衍射实验,我们收获颇丰,对光学领域有了更深入的了解,也培养了团队协作能力和实验技能,希望在未来的学习中能够不断提升自我,为科学研究贡献自己的力量。
单缝衍射实验
电磁场与微波测量实验报告实验二单缝衍射实验题目:电磁场与微波测量实验学院:电子工程学院班级:xx撰写人:xx组内成员:xxxx一、实验目的掌握电磁波的单缝衍射时衍射角对衍射波强度的影响。
二、预习内容电磁波单缝衍射现象。
三、实验设备1、S426型分光仪:用于验证平面波的传播特点,包括不同媒质分界面时发生的反射与折射等诸多问题。
分光仪的部分组件名称与简要介绍如下:2、DH1121B型三厘米固态信号源该信号源就是一种使用体效应管做震荡源的微波信号源,由振荡器、隔离器与主机组成。
三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在λ=32、02mm上),当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏振方向就是垂直的。
可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大。
晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。
四、实验原理当一平面波入射到一宽度与波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不就是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ就是波长,就是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:。
五、实验步骤1、连接好仪器,调整衍射板缝宽至70mm,将该板固定在支座上,板平面与工作平台的90刻度线一致;2、转动小平台使固定臂的指针指向小平台的180刻度处,此时小平台的0刻度就就是狭缝平面的法线方向;3、打开三厘米固态信号源,电流表偏转一定角度,调节信号电平使表头指示接近满度;4、记录下0度时电流表刻度,从可动臂向小圆盘方向瞧去,每向左旋转2度,记下一组刻度值,直到角度达到52度;5、将可动臂旋转回0度,记下电流表数值,接下来每向右旋转2度,记下一组数值,由于旋转空间有限,我们取到了24度;6、保持输出信号不变,调整衍射板缝宽至50mm,重复上述步骤,记录多组数据;7、保持输出信号不变,调整衍射板缝宽至20mm,重复上述步骤,记录多组数据;8、根据实验结果绘制出单缝衍射强度与衍射角的关系曲线,计算一级极小与一级极大的衍射角理论值,并与实验结果进行比较分析。
电磁场与电磁波单缝衍射实验报告
电磁场与电磁波单缝衍射实验报告单缝衍射实验报告学院: 电子工程学院班级:组员:撰写人:一、【实验目的】掌握电磁波的单缝衍射时衍射角对衍射波强度的影响二、【预习内容】电磁波单缝衍射现象三、【实验设备与仪器】S426型分光仪四、【实验原理】当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,,,1φ,Sinmin,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,a是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增3,,,,1φ,,Sinmax,,2,,,大,直至出现一级极大值,角度为:实验仪器布置如图2,仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。
转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。
这时调整信号电平使表头指示接近满度。
然后从衍射角00开始,在单缝的两侧使衍射角每改变20 读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。
此实验曲线的中央较平,甚至还有稍许的凹陷,这可能是由于衍射板还不够大之故。
五、【实验步骤】仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。
转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。
这时调整信号电平使表头指示接近满度。
然后从衍射角00开始,在单缝的两侧使衍射角每改变20读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波单缝衍射实验报告单缝衍射实验报告学院: 电子工程学院班级:组员:撰写人:一、【实验目的】掌握电磁波的单缝衍射时衍射角对衍射波强度的影响二、【预习内容】电磁波单缝衍射现象三、【实验设备与仪器】S426型分光仪四、【实验原理】当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,,,1φ,Sinmin,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,a是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增3,,,,1φ,,Sinmax,,2,,,大,直至出现一级极大值,角度为:实验仪器布置如图2,仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。
转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。
这时调整信号电平使表头指示接近满度。
然后从衍射角00开始,在单缝的两侧使衍射角每改变20 读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。
此实验曲线的中央较平,甚至还有稍许的凹陷,这可能是由于衍射板还不够大之故。
五、【实验步骤】仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。
转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。
这时调整信号电平使表头指示接近满度。
然后从衍射角00开始,在单缝的两侧使衍射角每改变20读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线。
根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。
六、【实验结果及分析】记录实验测得数据,画出单缝衍射强度与衍射角的关系曲线,根据微博波长和缝宽算出一级极小和一级极大的衍射角,与实验曲线上求得的一级极小和极大的衍射角进行比较。
(1)单缝衍射实验α=70mm,50mm,20mm;λ=32mm;(a)整理以上数据表格标注一级极大,一级极小对应的角度值。
3,,,,1φ,,Sinmax,,2,,,根据计算得α=70mm 时 α=50mm 时(b)画出衍射曲线理论衍射曲线实际衍射曲线:七、【误差分析】从表格和衍射曲线图中可以发现当α=70mm,一级极大和极小的值比较容易找出,基本验证了单缝衍射的定理。
但是在α=50mm时候,一级极小值的测量值与理论值相差不大,但是一级极大值就有很大出入,经过分析发现,是由于实验数据不足,然后错误地把40度这个衍射角的曲线的一个小波动当成了是极大值,这是错误的,因为很可能是由于环境中的电磁波干扰导致的一个波动实验的误差主要来自三个方面:一个是环境因素,一个是实验装置因素,还有一个是人为因素。
1、环境因数:由于实验室同时有多台实验装置同时进行实验,电磁波的衍射反射折射导致的相互间的电磁波干扰较大,所以环境因数时刻随着周围同学的实验过程在变,导致了一些测量的不规律波动,产生误差。
2、实验装置因素:实验装置没有校准好就进行实验,导致一些系统误差的产生,比如,我们组的实验仪器的发射器就出现了发射器的喇叭没有与固定臂调整完全平行,导致测量角度普遍存在与实际值的偏差,在后来重新校准后测量结果才精确。
3、人为因素:由于实验室的环境因素的影响,导致接收电流一直在某个读数附近波动,无法稳定,给我们的读数照成一定的误差。
总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。
在自然界中最常见的是黄酮和黄酮醇,其它包括双氢黄(醇)、异黄酮、双黄酮、黄烷醇、查尔酮、橙酮、花色苷及新黄酮类等。
简介近年来,由于自由基生命科学的进展,使具有很强的抗氧化和消除自由基作用的类黄酮受到空前的重视。
类黄酮参与了磷酸与花生四烯酸的代谢、蛋白质的磷酸化、钙离子的转移、自由基的清除、抗氧化活力的增强、氧化还原作用、螯合作用和基因的表达。
它们对健康的好处有:( 1 ) 抗炎症 ( 2 ) 抗过敏 ( 3 ) 抑制细菌 ( 4 ) 抑制寄生虫 ( 5 ) 抑制病毒 ( 6 ) 防治肝病 ( 7 ) 防治血管疾病( 8 ) 防治血管栓塞 ( 9 ) 防治心与脑血管疾病 ( 10 ) 抗肿瘤 ( 11 ) 抗化学毒物等。
天然来源的生物黄酮分子量小,能被人体迅速吸收,能通过血脑屏障,能时入脂肪组织,进而体现出如下功能:消除疲劳、保护血管、防动脉硬化、扩张毛细血管、疏通微循环、活化大脑及其他脏器细胞的功能、抗脂肪氧化、抗衰老。
近年来国内外对茶多酚、银杏类黄酮等的药理和营养性的广泛深入的研究和临床试验,证实类黄酮既是药理因子,又是重要的营养因子为一种新发现的营养素,对人体具有重要的生理保健功效。
目前,很多著名的抗氧化剂和自由基清除剂都是类黄酮。
例如,茶叶提取物和银杏提取物。
葛根总黄酮在国内外研究和应用也已有多年,其防治动脉硬化、治偏瘫、防止大脑萎缩、降血脂、降血压、防治糖尿病、突发性耳聋乃至醒酒等不乏数例较多的临床报告。
从法国松树皮和葡萄籽中提取的总黄酮 " 碧萝藏 "-- (英文称 PYCNOGENOL )在欧洲以不同的商品名实际行销应用25 年之久,并被美国 FDA 认可为食用黄酮类营养保健品,所报告的保健作用相当广泛,内用称之为 " 类维生素 " 或抗自由基营养素,外用称之为 " 皮肤维生素" 。
进一步的研究发现碧萝藏的抗氧化作用比 VE 强 50 倍,比 VC 强 20 倍,而且能通过血脑屏障到达脑部,防治中枢神经系统的疾病,尤其对皮肤的保健、年轻化及血管的健康抗炎作用特别显著。
在欧洲碧萝藏已作为保健药物,在美国作为膳食补充品(相当于我国的保健食品),风行一时。
随着对生物总黄酮与人类营养关系研究的深入,不远的将来可能证明黄酮类化合物是人类必需的微营养素或者是必需的食物因子。
性状:片剂。
功能主治与用法用量功能主治:本品具有增加脑血流量及冠脉血流量的作用,可用于缓解高血压症状(颈项强痛)、治疗心绞痛及突发性耳聋,有一定疗效。
用法及用量:口服:每片含总黄酮,,,,,每次,片,,日,次。
不良反应与注意不良反应和注意:目前,暂没有发现任何不良反应.洛伐他丁【中文名称】: 洛伐他丁【英文名称】: Lovastatin【化学名称】:(S)-2-甲基丁酸-(1S,3S,7S,8S,8aR)-1,2,3,7,8,8a-六氢-3,7-二甲基-8-[2-(2R,4R)-4-羟基-6氧代-2-四氢吡喃基]-乙基]-1-萘酯【化学结构式】:洛伐他丁结构式【作用与用途】洛伐他丁胃肠吸收后,很快水解成开环羟酸,为催化胆固醇合成的早期限速酶(HMG,coA还原酶)的竞争性抑制剂。
可降低血浆总胆固醇、低密度脂蛋白和极低密度脂蛋白的胆固醇含量。
亦可中度增加高密度脂蛋白胆固醇和降低血浆甘油三酯。
可有效降低无并发症及良好控制的糖尿病人的高胆固醇血症,包括了胰岛素依赖性及非胰岛素依赖性糖尿病。
【用法用量】口服:一般始服剂量为每日 20mg,晚餐时1次顿服,轻度至中度高胆固醇血症的病人,可以从10mg开始服用。
最大量可至每日80mg。
【注意事项】?病人既往有肝脏病史者应慎用本药,活动性肝脏病者禁用。
?副反应多为短暂性的:胃肠胀气、腹泻、便秘、恶心、消化不良、头痛、肌肉疼痛、皮疹、失眠等。
?洛伐他丁与香豆素抗凝剂同时使用时,部分病人凝血酶原时间延长。
使用抗凝剂的病人,洛伐他丁治疗前后均应检查凝血酶原时间,并按使用香豆素抗凝剂时推荐的间期监测。
他汀类药物他汀类药物(statins)是羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,此类药物通过竞争性抑制内源性胆固醇合成限速酶(HMG-CoA)还原酶,阻断细胞内羟甲戊酸代谢途径,使细胞内胆固醇合成减少,从而反馈性刺激细胞膜表面(主要为肝细胞)低密度脂蛋白(low density lipoprotein,LDL)受体数量和活性增加、使血清胆固醇清除增加、水平降低。
他汀类药物还可抑制肝脏合成载脂蛋白B-100,从而减少富含甘油三酯AV、脂蛋白的合成和分泌。
他汀类药物分为天然化合物(如洛伐他丁、辛伐他汀、普伐他汀、美伐他汀)和完全人工合成化合物(如氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀、pitavastatin)是最为经典和有效的降脂药物,广泛应用于高脂血症的治疗。
他汀类药物除具有调节血脂作用外,在急性冠状动脉综合征患者中早期应用能够抑制血管内皮的炎症反应,稳定粥样斑块,改善血管内皮功能。
延缓动脉粥样硬化(AS)程度、抗炎、保护神经和抗血栓等作用。
结构比较辛伐他汀(Simvastatin)是洛伐他汀(Lovastatin)的甲基化衍化物。
美伐他汀(Mevastatin,又称康百汀,Compactin)药效弱而不良反应多,未用于临床。
目前主要用于制备它的羟基化衍化物普伐他汀(Pravastatin)。
体内过程洛伐他汀和辛伐他汀口服后要在肝脏内将结构中的其内酯环打开才能转化成活性物质。
相对于洛伐他汀和辛伐他汀,普伐他汀本身为开环羟酸结构,在人体内无需转化即可直接发挥药理作用,且该结构具有亲水性,不易弥散至其他组织细胞,极少影响其他外周细胞内的胆固醇合成。
除氟伐他汀外,本类药物吸收不完全。
除普伐他汀外,大多与血浆蛋白结合率较高。
用药注意大多数患者可能需要终身服用他汀类药物,关于长期使用该类药物的安全性及有效性的临床研究已经超过10年。
他汀类药物的副作用并不多,主要是肝酶增高,其中部分为一过性,并不引起持续肝损伤和肌瘤。
定期检查肝功能是必要的,尤其是在使用的前3个月,如果病人的肝脏酶血检查值高出正常上线的3倍以上,应该综合分析病人的情况,排除其他可能引起肝功能变化的可能,如果确实是他汀引起的,有必要考虑是否停药;如果出现肌痛,除了体格检查外,应该做血浆肌酸肌酸酶的检测,但是横纹肌溶解的副作用罕见。
另外,它还可能引起消化道的不适,绝大多数病人可以忍受而能够继续用药。
红曲米天然降压降脂食品——红曲米红曲红曲米又称红曲、红米,主要以籼稻、粳稻、糯米等稻米为原料,用红曲霉菌发酵而成,为棕红色或紫红色米粒。
红曲米是中国独特的传统食品,其味甘性温,入肝、脾、大肠经。
早在明代,药学家李时珍所著《本草纲目》中就记载了红曲的功效:营养丰富、无毒无害,具有健脾消食、活血化淤的功效。