复习专题4圆的有关计算与证明
人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析
中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。
考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。
中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)
中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31 .解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=131312222++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.【答案】321::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q 分别表示阴影部分的面积,那么P和Q的大小关系是( ).A.P=Q B.P>Q C.P<Q D.无法确定(2)如图(b),△ABC为等腰直角三角形,AC=3,以BC为直径的半圆与斜边AB交于点D,则图中阴影部分的面积是________.(3)如图(c),△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D. 3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA , ∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】解:连接OC 、OD 、CD . ∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD .4.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E .(1)求弧BE 所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(AB)对应的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.(1)求线段PC的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048= 3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,∴S△OCD=12DC•OD=12×23×2=23,则S阴影=S扇形OCE-S△OCD=8-233π.【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
圆证明题的归纳与总结
圆证明题的归纳与总结一、引言圆是初中数学中的一个重要概念,在学习中常常会遇到各种与圆相关的证明题。
这些题目需要我们灵活运用各种几何知识和推理方法,才能成功地解答。
本文将针对圆证明题进行归纳和总结,帮助读者更好地理解和掌握这类问题的解题方法。
二、圆的基本性质1. 圆的定义圆是平面上到一定点距离相等的点的轨迹。
2. 圆的元素一个圆由圆心、直径、半径和弧组成。
3. 圆的重要性质(1)直径与半径的关系:直径是半径的两倍。
(2)圆的周长公式:周长等于直径乘以π(π≈3.14)。
(3)圆的面积公式:面积等于半径的平方乘以π。
三、圆的证明题解题方法解决圆的证明题需要掌握以下几种常用的解题方法:1. 利用圆的性质和定理在圆的证明过程中,可以充分利用圆的基本性质和定理,如弦切角定理、切线定理、弧长角度定理等。
通过灵活应用这些性质和定理,可以推导出所给证明题目的解答过程。
2. 利用等价命题在圆的证明中,我们常常可以将所要证明的命题转化为等价的命题,然后再通过证明该等价命题来完成整个问题的解答。
例如,对于证明两个圆互为切圆,可以转化为证明两个圆内切。
3. 利用反证法反证法是一种常用的证明方法,也适用于圆证明题。
当我们在解题过程中遇到矛盾的命题时,可以采用反证法,设定一个假设,通过推导矛盾的结论来证明所给命题的正确性。
4. 利用平移、旋转和对称在一些复杂的圆证明题中,我们可以通过平移、旋转和对称等操作,改变问题的结构,简化问题的难度。
例如,通过平移一个圆,可以使两个圆相交于一点,进而证明它们相切。
四、常见的圆证明题类型1. 圆的切线问题圆的切线问题是圆证明题中常见的一类问题。
在解答这类题目时,需要根据切线与半径的相互关系,运用平行线性质或相似三角形的性质,进行推导和证明。
2. 圆的切圆问题切圆问题是指两个或多个圆相切的情况。
在解答这类问题时,我们需要利用切线的性质,结合等角定理和相似三角形性质,推导出所给的切圆关系。
3. 圆的内接四边形问题内接四边形问题是指一个四边形可以内接于一个圆的情况。
2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
时2PB+PC最小,最小值为2BD,延长CD交AB于H,则
CH⊥AB,
O D P
B
A
H
易求得DH= ,BH=3,∴BD= ,
C
O
P
∴2PB+PC的最小值为3 .
B
C
针对训练
变式一 系数需要转化(提系数)
知识点三
1.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的
P(x,y),PA=kPB,即:(x+m)2+y2 =k (x-m)2+y2
∴(x+m)2+y2=k2(x-m)2+k2y2
∴(k2-1)(x2+y2)-(2m+2k2m)x+(k2-1)m2=0
2m
2m+2k
∴x2+y2- k2-1 x+m2=0
知识点二
新知探究
解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.除
则 PD+4PC的最小值为_____.
D
A
P
B
C
典例精讲
变式三 求差最大的问题
知识点五
求带系数的两条线段差最大的问题,转化方法和前面所讲完全一样,只是
最后求最值时有所不同,前面求和最小都是运用两点之间线段最短的原理,
求差最大,我们需要运用“三角形两边只差小于第三边”这一原理来解决.
【例6】(1)如图1,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上
【引例】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,⊙C半径为2,P为圆上
高二数学必修二 第四章 圆与圆的方程知识点总结
第四章 圆 与 方 程★1、圆的定义:平面内到肯定点的间隔 等于定长的点的集合叫做圆,定点圆心,定长为圆的半径。
设M (x,y )为⊙A 上随意一点,则圆的集合可以写作:P = {M |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:待定系数法:先设后求。
确定一个圆须要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,须要求出D ,E ,F ; 干脆法:干脆依据已知条件求出圆心坐标以及半径长度。
另外要留意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种状况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的间隔 为22B AC Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔< (2)过圆外一点的切线:设点斜式方程,用圆心到该直线间隔 =半径,求解k ,②若求得两个一样的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线肯定为另一条切线)(3)22=r 2,圆上一点为(x 0,y 0),则过此★4、圆与圆的位置关系:通过两圆半径的与(差),与圆心距(d )之间的大小比拟来确定。
2018中考数学中考数学复习模块4圆之典型中考题讲解有详细答案.docx
《中考数学复习模块4•圆》之典型中考题讲解1、(2017-金华)如图,已知:AB是的直径,点C在(DO上,CD是(DO的切线,AD丄CD于点D.E是AB延长线上一点,CE交(DO于点F,连结OC,AC.(1)求证:AC平分ZDA0.(2)若ZDAO=105°, ZE=30°.①求ZOCE的度数.②若的半径为2运,求线段EF的长.2、(2017浙江台州).如图,已知等腰直角三角形ABC,点P是斜边BC 上一点(不与B, C重合),PE是△ ABP的外接圆(DO的直径.(1)求证:△ APE是等腰直角三角形;(2)若的直径为2,求PC2+PB2的值.3、(2017山东枣庄).如图,在△ ABC中,ZC=90°, ZBAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC, AB于点E, F.(1)试判断直线BC与。
0的位置关系,并说明理由;(2)若BD=2V3, BF=2,求阴影部分的面积(结果保留兀). 4、(2017山东聊城).如图,OO是△ ABC的外接圆,O点在BC边上,ZBAC的平分线交于点D,连接BD、CD,过点D 作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是(DO的切线;(2)求证:APBDsADCA;D (3)当AB=6, AO8时,求线段PB的长.5、(2017山东东营).如图,在△ ABC中,AB=AC,以AB为直径的(DO交BC于点D,过点D作的切线DE,交AC于点E, AC 的反向延长线交于点F.(1)求证:DE丄AG;(2)若DE+EA=8, OO的半径为10,求AF的长度.6、(2017山东潍坊).如图,AB为半圆O的直径,AC是(DO 的一条弦,D为辰的中点,作DE丄AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6J5,求阴影区域的面积.(结果保留根号和兀)7、(2017江苏无锡).如图,以原点O为圆心,3为半径的圆与x轴分别交于4, B两点(点B在点4的右边),P是半径OB上一点,过P且垂直于AB的直线与分别交于C, D两点(点C在点D的上方),直线AC, DB交于点E.若AC:CE=1: 2.(1)求点P的坐标;(2)求过点4和点E,且顶点在直线CD上的抛物线的函数表达式.8、(2017江苏盐城).如图,在平面直角坐标系中,RtA ABC的斜边AB在y 轴9、(2017湖北襄阳).如图,AB为(DO的直径,C、D为©O ±的两点,ZBAOZDAC,过点C做直线EF丄AD,交AD的延长线于点E,连接BC.(1)求证:EF是(DO的切线;(2)若DE=1, BC=2,求劣弧晓的长1.10、(2017湖北恩施).如图,AB、CD是(DO的直径,BE是(DO 的弦,且BE〃CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分ZABP;(2)求证:PC2=PB«PE;(3)若BE-BP=PC=4,求(DO 的半径.11、(2017 湖北随州).如图,在RtA ABC 中,ZC=90°, AC=BC,点O在AB上,经过点A的(DO与BC相切于点D,交AB于点E.(1)求证:AD平分ZBAC;(2)若CD=1,求图中阴影部分的面积(结果保留兀).12、(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC, 以AE为直径的与边CD相切于点D. B点在(DO上,连接0B.(1)求证:DE=OE;/一:(2)若CD〃AB,求证:四边形ABCD是菱形. / 丿/答案:1、(1)解:•.•直线与(DO相切,AOC 丄CD;又VAD丄CD,.•.AD//OC,/.ZDAC=ZOCA;又VOC=OA,.*.ZOAC=ZOCA,.*.ZDAC=ZOAC;••.AC 平分ZDA.O.(2)解:①TAD//OC, ZDAO=105°,ZEOC=ZDAO=105°;T ZE=30°,ZOCE=45°.②作OG丄CE于点G,可得FG=CG,VOC=2\P,ZOCE=45°..\CG=OG=2,.*.FG=2;*.•在RTA OGE 中,ZE=30°,:.GE=2^, .\EF=GE-FG=2V3-2.2、(1)证明:VAB=AC, ZBAC=90°,/.ZC=ZABC=45°,A ZAEP=ZABP=45°,VPE是直径,/. ZPAB=90°,A ZAPE=ZAEP=45°,.*.AP=AE,•••△PAE是等腰直角三角形.(2)作PM丄AC于M, PN丄AB于N,则四边形PMAN是矩形, .*.PM=AN,「△PCM, △ PNB都是等腰直角三角形,.•.PCpPM, PBpPN,/.PC2+PB2=2 (PM2+PN2) =2 (AN2+PN2) =2PA2=PE2=22=4.3、解:(1) BC与(DO相切. 证明:连接OD.TAD是ZBAC的平分线,.*.ZBAD=ZCAD.又TODOA,.*.ZOAD=ZODA./.ZCAD=ZODA..•.OD〃AC..•.ZODB=ZC=90°,即0D±BC. 又TBC过半径OD的外端点D, ABC与(DO相切.(2)设0F=OD=x,则OB=OF+BF=x+2, 根据勾股定理得:OB2=C)D2+BD2,即(x+2) 2=X2+12,解得:x=2,即OD=OF=2,/. OB=2+2=4,VRtA ODB 中,OD=*3B,:.ZB=30°,/.ZDOB=60°,• u_60K X4_2H••S 號AOB-,则阴影部分的面积为S A ODB -S麻DOF=*X2X2*\/^-2? -故阴影部分的面积为2^3 -写.4、(1)证明:•.•圆心0在BC±,ABC是圆O的直径,.\ZBAC=90o, 连接OD,TAD 平分ZBAC,ZBAO2ZDAC,VZDOC=2ZDAC,.•.ZDOC=ZBAC=90°,即OD丄BC,VPD/7BC,AOD 丄PD,TOD为圆O的半径,.•.PD是圆O的切线;(2)证明:•.•PD〃BC,.*.ZP=ZABC,T ZABOZADC,.*.ZP=ZADC,T ZPBD+ZABD=180°, ZACD+ZABD=180°,A ZPBD=ZACD,.•.APBD^ADCA;(3)解:••'△ABC为直角三角形,BC2=AB2+AC2=62+82=100,.\BC=10,TOD垂直平分BC,.*.DB=DC,VBC为圆O的直径,.•.ZBDC=90°,在RtA DBC 中,DB2+DC2=BC2,即2DC2=BC2=100,.\DC=DB=5V2-V APBD^ADCA,.PB_BD''~DC~W川"9_DC・BD_Sx奶_25人AC 8 4 -5、(1)证明:VOB=OD,.*.ZABC=ZODB,VAB=AC,.•.ZABOZACB,.*.ZODB=ZACB,.•.OD〃AC.「DE是(DO的切线,OD是半径,.'.DE 丄OD,A DEX AC;(2)如图,过点0 作OH丄AF于点H,则ZODE= ZDEH= ZOHE=90°, •••四边形ODEH是矩形,.*.OD=EH, OH=DE.设AH=x.VDE+AE=8, OD=10,/. AE=10 - x, 0H=DE=8 - ( 10 - x) =x - 2.在RtA AOH中,由勾股定理知:AH2+OH2=OA2,即x2+ (x-2) 2=102,解得xi=8, x2= - 6 (不合题意,舍去)..\AH=8.TOHIAF,.*.AH=FH=—AF,2・:AF=2AH=2x8 二16.6、(1)证明:连接OD,VD为说的中点,/.ZCAD=ZBAD,VOA=OD,A ZBAD=ZADO,.•.ZCAD=ZADO,VDE 丄AC,ZE=90°,ZCAD+ZEDA=90°,即ZADO+ZEDA=90°,AOD 丄EF,・・.EF为半圆O的切线;(2)解:连接OC与CD,VDA=DF,A ZBAD=ZF,A ZBAD=ZF=ZCAD,又T ZBAD+ ZCAD+ ZF=90°,A ZF=30°, ZBAC=60°,VOC=OA,AAOC为等边三角形,ZAOC=60°, ZCOB=120°,TOD丄EF, ZF=30°,.•.ZDOF=60°,在RtA ODF 中,DF=6屈OD=DF *tan3 0°=6,在RtA AED 中,D26胰,ZCAD=30°, /. DE=DA*sin30 "晶,EA=DA*cos30°=9, T ZCOD=180° - ZAOC - ZDOF=60°, /. CD/7 AB,故S △ACD-S A COD,•'•S 阴萨S A AED -S扇旳COD=*<9X3后-~^Q nX^2=~^~ ~ ^71-7、解:(1)如图,作EF丄y轴于F, DC的延长线交EF于H.设H (m, “), 则P (m, 0), PA=m+3, PB=3 - m.EH//AP,△ACPs&CH,AC = PC = AP=j_CE_CH_'^7,CH=2n, EH=2m=6,CD 丄AB,PC=PD=n,PB//HE,ADPB s'DHE,PB」)P_ n _13-m _ 12nH-6 4'm=l,P (1, 0).(2)由(1)可知,PA=4, HE=8, EF=9, 连接OP,在R仏OCP中,PC=7OC^O P=2V2-:.CH=2PC=4皈 PH=6屈:.E (9, 6冋,•••抛物线的对称轴为CD,:.(-3, 0)和(5, 0)在抛物线上,设抛物线的解析式为尸a (x+3) (%-5), 把E (9, 6迈)代入得到a欝,•••抛物线的解析式为尸誓.&+3) &-5),即尸导2-孚-耳Z8、(1)证明:连接EF,TAE 平分ZBAC,/. ZFAE=ZCAE,VFA=FE,ZFAE=ZFEA, /. ZFEA=ZEAC,.・.FE〃AC,ZFEB=ZC=90°,即BC 是OF 的切线;(2)解:连接FD,设。
中考数学专题复习《圆的证明与计算》检测题(含答案)
专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。
圆的证明与计算范文
圆的证明与计算范文圆是几何中的基本图形之一,它是平面上所有点与固定点之间距离保持不变的集合。
下面将从不同的角度对圆的性质进行证明,并介绍一些常见的圆的计算方法。
一、圆的性质及证明1.圆的定义证明对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合。
我们要证明E是一个圆。
证明:(1)任意取平面上的一点A,若A∈E,证明OA=r。
假设A∈E,则OA的长度等于A与O的距离,即OA=r。
因此,E是以O为圆心,长度为r的圆。
(2)任意取平面上的一点B,若OB=r,证明B∈E。
假设OB=r,则OB的长度等于B与O的距离,即OB=BO=r。
因此,B∈E。
由(1)和(2)可得,对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合是一个圆。
2.圆心角的证明圆心角是指圆上两条射线所夹的角,它的度数等于弧所对的圆周角的度数。
我们要证明圆心角的度数等于所对弧的度数。
证明:任意取圆上两点A和B,以圆心O为顶点,连接OA和OB两条射线。
延长AO和OB分别与圆交于点C和D,则∠AOB是圆心角,∠ACB是所对弧所对的圆周角。
(1)∠AOB的度数等于所对弧AD的度数。
由于AD是圆上的弧,所以∠ACO是所对弧AD的圆周角。
根据圆周角的性质,∠ACO的度数等于所对弧AD的度数。
(2)∠ACB的度数等于所对弧AD的度数。
同样根据圆周角的性质,∠ACB的度数等于所对弧AD的度数。
由(1)和(2)可得,圆心角∠AOB的度数等于所对弧AD的度数。
通过证明,我们可以得出圆心角的度数等于所对弧的度数这一结论。
二、圆的计算在实际应用中,我们有时需要计算圆的周长、面积以及部分圆的面积。
以下是圆的计算公式:1.周长的计算2.面积的计算3.部分圆的面积的计算对于已知圆的半径r和所对的圆心角θ,部分圆的面积计算公式为:A=(πr²×θ)/360,其中A表示部分圆的面积,r表示半径,θ表示圆心角。
圆中的相关证明与计算
圆中的相关证明与计算圆是平面上到一个给定点的距离恒定的所有点的集合。
通过研究圆的性质和相关的定理,我们可以了解圆的性质和概念,并可以进行相关的证明和计算。
以下是一些关于圆的相关证明和计算的例子:1.圆的半径与直径的关系证明:首先,我们知道直径是通过圆心并且两端点在圆上的线段。
现在我们要证明直径是半径的两倍。
证明:假设圆的半径为r,直径为d。
根据直径的定义,我们知道直径是通过圆心的,并且它的两个端点在圆上。
所以直径d可以看作是两个半径r的长度相加,即d=r+r=2r。
所以我们可以得出结论:直径等于半径的两倍。
即d=2r。
2.圆周率的计算:周长的计算公式为:C=2πr,其中r为圆的半径。
面积的计算公式为:A=πr^2,其中r为圆的半径。
例如,如果一个圆的半径为5厘米,则它的周长为:C=2π*5=10π≈31.42厘米;面积为:A=π*5^2=25π≈78.54平方厘米。
3.弦和半径的垂直关系证明:在圆中,连接圆周上的两点的线段称为弦。
现在我们要证明如果一个弦与半径相交,那么这个弦就是半径的垂直平分线。
证明:假设在圆中有一个弦AB,如果它与半径OC相交于点M,我们要证明AM=MB。
根据圆的性质,半径OC与弦AB相交于点M,则角OMC是直角,因为OC是半径,所以OM=MC。
又由于弦AB与半径OC相交于点M,所以AM=MC,MB=MC。
综上所述,AM=MB,即弦AB是半径OC的垂直平分线。
通过以上证明和计算,我们可以更深入地了解圆的性质和相关的定理。
圆是几何学中重要的概念之一,它在各种数学和科学领域中都有广泛的应用。
希望以上内容对您有所帮助。
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt
复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
圆的证明及计算(精编版)
《圆的证明与计算》专题讲解圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
圆的有关证明一、圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
知识点一:判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA.∴PA 与⊙O 相切.证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE ,∴OE ⊥BC.∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900即OA ⊥PA.∴PA 与⊙O 相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.⌒ ⌒例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900. 即CE⊥OC.∴CE与△CFG的外接圆相切方法二:若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题)例1:如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.分析:说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例2:已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD 是⊙O 的切线.证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB.∵AC ∥BD ,∴∠1+∠2+∠3+∠4=1800. ∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900. ∵∠4+∠5=900. ∴∠1=∠5.∴Rt △AOC ∽Rt △BDO. ∴OD OCOB AC =. ∵OA=OB ,∴ODOCOA AC =. 又∵∠CAO=∠COD=900, ∴△AOC ∽△ODC , ∴∠1=∠2.又∵OA ⊥AC ,OE ⊥CD, ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线.证明二:连结OA ,OB ,作OE ⊥CD 于E ,延长DO 交CA 延长线于F. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB. ∵AC ∥BD , ∴∠F=∠BDO. 又∵OA=OB ,∴△AOF ≌△BOD (AAS )∴OF=OD.O∵∠COD=900, ∴CF=CD ,∠1=∠2. 又∵OA ⊥AC ,OE ⊥CD , ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线.证明三:连结AO 并延长,作OE ⊥CD 于E ,取CD 中点F ,连结OF. ∵AC 与⊙O 相切, ∴AC ⊥AO.∵AC ∥BD , ∴AO ⊥BD.∵BD 与⊙O 相切于B , ∴AO 的延长线必经过点B. ∴AB 是⊙O 的直径. ∵AC ∥BD ,OA=OB ,CF=DF , ∴OF ∥AC , ∴∠1=∠COF. ∵∠COD=900,CF=DF , ∴CF CD OF ==21. ∴∠2=∠COF. ∴∠1=∠2. ∵OA ⊥AC ,OE ⊥CD , ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.课后练习:A(1)如图,AB 是⊙O 的直径,BC ⊥AB ,AD ∥OC 交⊙O 于D 点,求证:CD 为⊙O 的切线;(2)如图,以Rt △ABC 的直角边AB 为直径作⊙O ,交斜边AC 于D ,点E 为BC 的中点,连结DE ,求证:DE 是⊙O 的切线.(3)如图,以等腰△ABC 的一腰为直径作⊙O ,交底边BC 于D ,交另一腰于F ,若DE ⊥AC 于E (或E 为CF 中点),求证:DE 是⊙O 的切线.(4)如图,AB 是⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C ,求证:CD 是⊙O 的切线.知识点二:与圆有关的计算计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
2025年九年级中考数学一轮复习考点突破课件+第26讲 与圆有关的计算(7年7考,3~5分)
A. 4
B. 6
C. π
D. π
D
3. (2022·玉林16题3分)数学课上,老师将如图边长为1的正方形铁
丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不
计),则所得扇形DAB的面积是 .
1
4. (2019·北部湾经济区23题8分)如图,△ABC是☉O的内接三角
∴ 的长为 = π.
圆锥的有关计算(7年1考,3分)
5. (2022·柳州10题3分)如图,圆锥底面圆的半径AB=4,母线长
AC=12,则这个圆锥的侧面积为( C )
A. 16π
B. 24π
C. 48π
D. 96π
C
6. (2021·北部湾经济区17题3分·源自人教九上P116第10题)如图,
3. [源自人教九上P的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .
4. 若圆锥的底面圆半径为4,母线长为5,则该圆锥的侧面积
为 .
2
20π
考点梳理
3. 正多边形和圆
(1)正多边形每一边所对的圆心角叫作正多边形的中心角,正n边
形的中心角α的度数为 ;
(2)正多边形中心到正多边形的一边的距离叫作正多边形的边
心距;
(3)正多边形的外接圆的半径R、边心距r、边长a之间的关系:
r2+()2=R2.
对点训练
5. 如果正多边形的中心角是36°,那么这个正多边形的边数
是 .
是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC
分别交于E,F两点,则图中阴影部分的面积为( C )
A.
B.
C.
D.
C
8. (2020·百色16题3分)如图,正方形ABCD的边长为2.以点A为
2020九年级中考数学 专题复习:圆的综合(含答案)
2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ;(2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.第6题图 (1)证明:如解图,连接OB,第6题解图∵OB =OC ,∠ACB =30°,∴∠OBC =∠OCB =30°,∵DE ⊥AC ,∴∠DEC =90°,∴∠D =60°,∵CB =BD ,∴BE =BD ,∴△BDE 为等边三角形,∴∠DBE =60°,∴∠EBO =180°-∠DBE -∠OBC =180°-60°-30°=90°,即OB ⊥BE ,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;(2)解:∵AC 为⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,BC =BD =BE =3,∠ACB =30°,∴AB =BC ·tan30°= 3,AC = 2AB =23,∴OA =12AC =3,∴S △ABC =12AB ·BC = 12×3×3=332, ∴S 阴影= S 半圆-S △ABC = 12π×(3)2-332=3π-332. 7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC = 8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,即82+62=DO 2,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,即CE 8=610, ∴CE =4.8.8. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,BD 是⊙O 的弦,点E 是BC 的中点,连接DE .第8题图(1)求证:DE 是⊙O 的切线;(2)若CD ∶AD =1∶3,BC =2,求线段BD 的长. (1)证明:如解图,连接OD .第8题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =90°,在Rt △CDB 中,∵点E 是BC 的中点,∴DE 是Rt △CDB 斜边BC 上的中线,∴ED =12BC ,EB =12BC , ∴ED =EB ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠ODB =∠OBD ,∠OBD +∠EBD =∠ODB +∠EDB =∠ABC =90°,∴∠ODE =90°,∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)解:在Rt △CDB 和在Rt △CBA ,∵∠C=∠C ,∠CDB=∠ABC=90°,∴Rt △CDB ≌Rt △CBA.∴CD :BC= BC :AC ,∵CD :AD=1:3,∴设CD 为x ,则AD =3x ,AC=4x ,∴x :2=2:4x ,解得x 1=1, x 2=-1(舍),∴CD =1,∴BD=222221 3.BC CD -=-=9. 如图,在⊙O 中,AB 为直径,C 为圆上一点且∠P +12∠AOC =90°. (1)求证:P A 是⊙O 的切线;(2)cos B =45,P A =8,求⊙O 的半径.第9题图(1)证明:∵∠B 与∠AOC 所对的弧都为弧AC ,∴∠B =12∠AOC , 又∵∠P +12∠AOC =90°, ∴∠P +∠B =90°.在△ABP 中,∠BAP =180°-90°=90°,∴P A ⊥AB .又∵AB 为⊙O 的直径,∴P A 是⊙O 的切线;(2)解:在Rt △ABP 中,∵cos B =45,P A =8,∴AB PB =45. ∴设AB =4x ,则PB =5x ,根据勾股定理得P A 2+AB 2=PB 2,∴82+(4x )2=(5x )2,化简得:9x 2=64,解得x =83. ∴AB =4×83=323, ∴AO =12AB =12×323=163. ∴⊙O 的半径为163.10. 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC = BC = DC .(1)若∠CDB =39°,求∠BAD 的度数;(2)求证:∠1=∠2.第10题图(1)解:∵BC =DC ,∴∠CBD =∠CDB = 39°,∵∠BAC =∠CDB = 39°,∠CAD = ∠CBD = 39°,∴∠BAD =∠BAC +∠CAD = 39°+39°= 78°;(2)证明:∵BC = EC ,∴∠CBE =∠CEB ,∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE = ∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1= ∠2.。
2022年九年级中考复习数学考点训练——几何专题:《圆的综合》(四)及答案
备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(四)1.(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN =1,试证明:PN=PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD﹣PC的最大值.2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点C为BM 上一点,连接AC与⊙O交于点D,E为⊙O上一点,且满足∠EAC =∠ACB,连接BD,BE.(1)求证:∠ABE=2∠CBD;(2)过点D作AB的垂线,垂足为F,若AE=6,BF=,求⊙O的半径长.3.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD 上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.4.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x 轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q 交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan∠AFC的值;(3)若△DEF与△AEB相似,求EF的值.5.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA 到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.6.如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE,作△ECD的外接⊙O,交AD于点F,交AE 于点G,连接FG.(1)求证△AFG∽△AED;(2)当BE的长为时,△AFG为等腰三角形;(3)如图②,若BE=1,求证:AB与⊙O相切.7.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为.(直接写出结果)8.已知:△ABC是⊙O的内接三角形,AB为直径,AC=BC,D、E 是⊙O上两点,连接AD、DE、AE.(1)如图1,求证:∠AED﹣∠CAD=45°;(2)如图2,若DE⊥AB于点H,过点D作DG⊥AC于点G,过点E作EK⊥AD于点K,交AC于点F,求证:AF=2DG;(3)如图3,在(2)的条件下,连接DF、CD,若∠CDF=∠GAD,DK=3,求⊙O的半径.9.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.10.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.参考答案1.(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴=.又∵∠B=∠B,∴△BPN∽△BCP.∴==.∴PN=PC;(2)如图2,在BC上取一点G,使得BG=1,(3)同(2)中证法,如图3,取BG=1,当点P在DG的延长线上时,PD﹣PC的最大值,最大值为.2.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠DAB+∠DBA=90°,∵BM是⊙O的切线,∴AB⊥BC,∴∠ABC=90°,即∠CBD+∠DBA=90°,∴∠DAB=∠CBD,∵∠ABC=90°,∴∠ACB=90°﹣∠BAC,∵∠EAC=∠ACB,∴∠EAC=90°﹣∠BAC=90°﹣(∠EAC﹣∠BAE),∴∠BAE=2∠EAC﹣90°,∵AB是直径,∴∠AEB=90°,∴∠ABE=90°﹣∠BAE=90°﹣(2∠EAC﹣90°)=2(90°﹣∠EAC)=2(90°﹣∠ACB)=2∠CAB=2∠CBD.∴∠ABE=2∠CBD;(2)如图,连接DO并延长交AE于点G,∵∠DOB=2∠BAD,∠ABE=2∠CAB,∴∠DOB=∠ABE,∴DG∥BE,∴∠AGO=∠AEB=90°,∴AG=EG=AE=3,∠AOG=∠DOF,OA=OD,∴△AOG≌△DOF(AAS)∴DF=AG=3,又OF=OB﹣BF=OD﹣,在Rt△DOF中,根据勾股定理,得OD2=DF2+OF2,即OD2=32+(OD﹣)2,解得OD=.答:⊙O的半径长为.3.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,∵S△ABF=AB×FH=×BF×AD,∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.4.解:(1)∵点A(0,4),∴AO=4,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得:42+x2=(x+2)2,解得:x=3,∴OB=BE=3,AB=5,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BFA=∠AFC,∴△BFA∽△AFC∴==,设EF=x,则AF=4+x,BF=(4+x),∵在Rt△BEF中,BE2+EF2=BF2,∴32+x2=[(4+x)]2,解得:x=,即EF=,∴tan∠AFC===;(3)①当△DEF∽△AEB时,∠BAE=∠FDE,∴∠ADE=∠FDE,∴BD垂直平分AF,∴EF=AE=4;②当△DEF∽△BEA时,∠ABE=∠FDE,∴AB∥DF,∴∠ADF=∠CAB=90°,∴DF相切⊙Q,∴∠DAE=∠FDE,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,如图所示:则∠FDH=∠DAG,四边形OGHF是矩形,∴OG=FH,∵△ABE≌△ABO,∴∠OAB=∠EAB,∵AB⊥AD,∴∠DAE=∠CAO,∵∠CAO=∠DAE,∴∠DAE=∠DAE,∴∠DAE=∠DAG=∠FDE=∠FDH,∴AG=AE=4,∴EF=FH=OG=AO+AG=4+4=8,综上所述,若△DEF与△AEB相似,EF的值为4或8.5.(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠FAG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,∴S△ABC=×4×6=12;当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,∴S△ABC=×4×(4+2)=8+8,∴△ABC的面积为12或8+8.6.(1)证明:∵四边形FGED是⊙O的内接四边形,∴∠FGE+∠ADE=180°,∵∠AGF+∠FGE=180°,∴∠AGF=∠ADE,又∠GAF=∠DAE,∴△AFG∽△AED;(2)解:由(1)得:△AFG∽△AED,∴当△AED为等腰三角形时,△AFG为等腰三角形,连接EF,如图①所示:∵四边形ABCD是矩形,AB=6,BC=9,∴CD=AB=6,AD=BC=9,∠BAD=∠ABC=∠BCD=∠ADC=90°,∵⊙O是△ECD的外接圆,∠ECD=90°,∴DE是⊙O的直径,∴∠DFE=90°,∴∠AFE=180°﹣∠DFE=180°﹣90°=90°,∴∠BAF=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∴AF=BE,EF=AB=6,△AED为等腰三角形,分三种情况:①当AE=DE时,∵∠DFE=90°,∴AF=DF=AD=×9=,∴BE=AF=;②当DE=AD=9时,在Rt△DCE中,由勾股定理得:CE===3,∴BE=BC﹣CE=9﹣3;③当AE=AD=9时,在Rt△ABE中,由勾股定理得:BE===3;综上所述,当BE的长为或9﹣3或3时,△AFG为等腰三角形,故答案为:或9﹣3或3;(3)证明:过O作OH⊥AB于点H,反向延长OH交CD于点I,如图②所示:则∠AHI=90°,∵四边形ABCD是矩形,∴CD=AB=6,∠BCD=∠BAD=∠ADC=90°,∴∠AHI=∠BAD=∠ADC=90°,∴四边形AHID为矩形,∴HI=AD=9,∠OID=90°,∴∠ECD=∠OID,∴OI∥CE,∵∠BCD=90°,∴DE为直径,∴OD=OE,∴OI是△DCE的中位线,∴DI=CD=3,OI=EC,∵BE=1,BC=9,∴EC=8,∴OI=×8=4,∴OH=HI﹣OI=9﹣4=5,在Rt△DEC中,由勾股定理得:DE===10,∴⊙O的半径OD=5∴OH是⊙O的半径,又OH⊥AB,∴AB与⊙O相切.7.(1)①解:连接BE,如图1所示:∵BP是直径,∴∠BEC=90°,∵=130°,∴=50°,∵=,∴=100°,∴∠CBE=50°,∴∠C=40°;②证明:∵=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(2)解:①由AB=15,BC=20,由勾股定理得:AC===25,∵AB•BC=AC•BE,即×15×20=×25×BE∴BE=12,连接DP,如图1﹣1所示:∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴=,∴CP===CD,△BDE是等腰三角形,分三种情况:当BD=BE时,BD=BE=12,∴CD=BC﹣BD=20﹣12=8,∴CP=CD=×8=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,∴CD=BC=10,∴CP=CD=×10=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,∵EH∥AB,∴=,即=,解得:BH=,∴BD=2BH=,∴CD=BC﹣BD=20﹣=,∴CP=CD=×=7;综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,由对称的性质得:DE垂直平分OQ,∴OD=QD,OE=QE,∵OD=OE,∴OD=OE=QD=QE,∴四边形ODQE是菱形,∴PQ∥OE,∵PB为直径,∴∠PDB=90°,∴PD⊥BC,∵∠ABC=90°,∴AB⊥BC,∴PD∥AB,∴DE∥AB,∵OB=OP,∴OE为△ABP中位线,∴PE=AE=9,∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;当点Q落在∠CPH的边PC上时,CP最大,如图3所示:连接OD、OQ、OE、QD,同理得:四边形ODQE是菱形,∴OD∥QE,连接DF,∵∠DBA=90°,∴DF是直径,∴D、O、F三点共线,∴DF∥AQ,∴∠OFB=∠A,∵OB=OF,∴∠OFB=∠OBF=∠A,∴PA=PB,∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,∴PB=PC=PA,∴PC=AC=12.5,∴7<CP<12.5,故答案为:7<CP<12.5.8.(1)证明:如图1,连接CO,CE,∵AB是直径,∴∠ACB=90°,∵AC=BC,∴∠B=∠CAB=45°,∴∠COA=2∠B=90°,∵,∴∠CAD=∠CED,∴∠AED﹣∠CAD=∠AED﹣∠CED=∠AEC=∠COA=45°,即∠AED﹣∠CAD=45°;(2)如图2,连接CO并延长,交⊙O于点N,连接AN,过点E 作EM⊥AC于M,则∠CAN=90°,∵AC=BC,AO=BO,∴CN⊥AB,∴AB垂直平分CN,∴AN=AC,∴∠NAB=∠CAB,∵AB垂直平分DE,∴AD=AE,∴∠DAB=∠EAB,∴∠NAB﹣∠EAB=∠CAB﹣∠DAB,即∠GAD=∠NAE,∵∠CAN=∠CME=90°,∴AN∥EM,∴∠NAE=∠MEA,∴∠GAD=∠MEA,又∵∠G=∠AME=90°,AD=EA,∴△ADG≌△EAM(AAS),∴AG=EM,AM=DG,又∵∠MEF+∠MFE=90°,∠MFE+∠GAD=90°,∴∠MEF=∠GAD,又∵∠G=∠FME=90°,∴△ADG≌△EFM(ASA),∴DG=MF,∵DG=AM,∴AF=AM+MF=2DG;(3)∵∠CDF=∠GAD,∠FCD=∠DCA,∴△FCD∽△DCA,∴∠CFD=∠CDA=∠CBA,∵AC=BC,AB为直径,∴△ABC为等腰直角三角形,∴∠CFD=∠CDA=∠CBA=45°,∴△GFD为等腰直角三角形,设GF=GD=a,则FD=a,AF=2a,∴==,∵∠FAK=∠DAG,∠AKF=∠G=90°,∴△AFK∽△ADG,∴==,在Rt△AFK中,设FK=x,则AK=3x,∵FK2+AK2=AF2,∴x2+(3x)2=(2a)2,解得,x=a(取正值),∴FK=a,在Rt△FKD中,FK2+DK2=FD2,∴(a)2+32=(a)2,解得,a=(取正值),∴GF=GD=,AF=,∵△FCD∽△DCA,∴=,∴CD2=CA•FC,∵CD2=CG2+GD2,∴CG2+GD2=CA•FC,设FC=n,则(﹣n)2+()2=(+n)n,解得,n=,∴AC=AF+CF=+=,∴AB=AC=,⊙O的半径为.9.(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴=,即=,∴AC=4,即AC的长为4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB为等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC为等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.10.(1)证明:如图,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS);(2)由(1)知,△DAF≌△DCE,则∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴AD2﹣(AD﹣2)2=(2)2﹣22,∴AD=5.∴AH===2∴S四边形ABCD=2S△ABD=2וAH=BD•AH=2×2=20.即四边形ABCD的面积是20.。
圆的计算与证明范文
圆的计算与证明范文圆是数学中一种重要的几何形状,由于其特殊的性质和广泛的应用,圆的计算和证明一直是几何学习的重点内容之一、本文将对圆的计算和证明进行详细介绍。
一、圆的定义与性质圆的定义:平面上的一个点集合,到该点距离相等的所有点构成的图形,称为圆。
圆的性质:1.圆上的任意一点到圆心的距离都相等。
2.圆心到圆上任意一点的线段称为半径,圆上任意两点之间的线段称为弦。
3.圆的直径是通过圆心的一条弦,且等于弦长的两倍。
4.圆的周长是圆上任意一段弧长与半径的乘积,即C=2πr,其中C 为周长,r为半径。
5.圆的面积是半径平方乘以π,即A=πr²,其中A为面积,r为半径。
二、圆的计算根据圆的性质,可以进行以下计算:1.已知圆的半径,计算周长和面积。
以半径为4cm的圆为例,周长和面积的计算公式为:C=2πr=2π×4=8π≈25.13cm(取π≈3.14),A=πr²=π×4²=16π≈50.27cm²。
2.已知圆的周长,计算半径和面积。
以周长为10cm的圆为例,半径的计算公式为:r=C/2π=10/(2π)≈1.59cm,面积的计算公式为:A=πr²=π×(1.59)²≈7.97cm²。
3.已知圆的面积,计算半径和周长。
以面积为20cm²的圆为例,半径的计算公式为:r=√(A/π)=√(20/π)≈2.52cm,周长的计算公式为:C=2πr=2π×2.52≈15.86cm。
三、圆的证明1.圆心角的证明圆心角是指圆心所对的弧所对应的角,圆心角的证明如下:(步骤一)连接弧所对应的两条半径。
(步骤二)在弧所对应的两条半径上分别取任意一点,分别连接这两点与圆心的直线。
(步骤三)观察三角形圆心角,可以发现它们是共边共顶点的相似三角形,根据相似三角形的性质可知,它们的对应角相等。
(步骤四)由于圆上任意两点之间的弦所对应的圆心角相等,因此可以得出结论:圆上任意两点之间的弦所对应的圆心角相等。
圆的证明与计算
圆的证明与计算圆是数学中的重要图形,具有许多独特的性质和规律。
本文将详细介绍圆的证明与计算。
一、圆的定义及性质在几何学中,圆被定义为平面上所有距离一个点(圆心)相等的点的集合。
圆的性质如下:1.圆心到圆上任意一点的距离相等。
2.圆上任意两点之间的距离是最短的。
3.圆的直径是任意一条通过圆心的线段,它等于圆的半径的两倍。
4.圆的周长是圆周上的所有点与圆心的距离之和,即2πr(其中r为圆的半径)。
二、圆的证明1.圆心角相等的证明:圆的周长是圆的半径的长度的π倍,因此圆的周长上的任意一段弧的长度是圆周长的其中一比例。
当这段弧所对应的圆心角的度数是相等的,那么这段弧的长度也是相等的。
因此,得出圆心角相等的结论。
2.弦长相等的证明:如果两个弦的两个端点分别在圆上,并相互连接,则这两个弦的长度相等。
证明方法:假设AB和CD是两个端点在圆上的弦,连接AC和BD两条线段。
根据三角形的性质,直角三角形ACB和BDC的两条直角边AC和BC相等,直角三角形ADB和CDB的两条直角边AD和CD相等,因此根据三角形的共同性质可以得出∠BAC=∠BD C,∠ACB=∠AEB,∠B>D≥AD=CB,所以ABB"C是等边三角形.”3.同弧上的角相等的证明:如果两个角对应的弧相等,那么这两个角也是相等的。
证明方法:设∠BAC=∠BDC,连接AC和BD两条线段,再连接线段AB和CD。
根据三角形的性质得出:直角三角形ACB和BDC的两条直角边AC和BC相等,直角三角形ADB和CDB的两条直角边AD和CD相等。
因此,根据三角形的共同性质可以得出∠ACB=∠BDC,∠BAC=∠ADB,所以AC=BD,即证明同弧上的角相等。
三、圆的计算1.圆的周长计算:圆的周长是圆周上的所有点与圆心的距离之和,即2πr,其中r为圆的半径。
2.圆的面积计算:3.弧长计算:弧长可以通过弧度来计算,公式为:弧长=弧度×半径。
4.弦长计算:可以根据弦的两个端点和圆心的位置,使用一些几何定理来计算弦长。
中考数学复习 圆的计算与证明
圆的计算与证明1.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC(1)求证:PC是⊙O的切线;(2)若∠BPC=60°,PB=3,求阴影部分面积.2.如图,已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.(1)求证:∠ACD=∠ACF;(2)当AD⊥CD,BE=2cm,CF=8cm,求AD的长.3.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.4.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D 作DE⊥MN于点E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.5.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO.若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分及△PBF的面积.6.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.7.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=24,求OP的长.8.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC 于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.9.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.10.如图,Rt△OAB中,∠OAB=90°,以OA为半径的⊙O交BO于点C,交BO延长线于点D.在⊙O上取一点E,且=,延长DE与BA交于点F.(1)求证:△BDF是直角三角形;(2)连接AC,AC=2,OC=2BC,求AF的长.11.如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O,分别与AC和BC相交于点D和E,连接OD.(1)求证:OD∥BC;(2)求证:AD=DE.12.如图,点C在以线段AB为直径的圆上,且,点D在AC上,且DE⊥AB于点E,F是线段BD的中点,连接CE、FE.(1)若AD=6,BE=8,求EF的长;(2)求证:CE=EF.13.如图,⊙O的半径OA⊥弦BC于E,D是⊙O上一点.(1)求证:∠ADC=∠AOB;(2)求AE=2,BC=6,求OA的长.14.如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.15.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若tan∠ACO=,CD=6,求⊙O的直径.16.已知如图,⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且∠C=2∠A.(1)求∠A的度数.(2)求BD的长.17.已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D 作DH⊥AC于点H.(1)求证:BD=CD;(2)连结OD若四边形AODE为菱形,BC=8,求DH的长.19.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.20.如图,△ABC内接于⊙O,∠BAC=60°,高AD的延长线交⊙O于点E,BC=6,AD=5.(1)求⊙O的半径;(2)求DE的长.21.如图,Rt△ABC中,∠C=90°,在BC上取一点D使AD=BD,连结AD,作△ACD的外接圆⊙O,交AB于点E.(1)求证:AE=BE;(2)若CD=3,AB=4,求AC的长.22.如图,△ABC内接于⊙O,OE⊥BC于E,延长EO交AB于F,交⊙O于D,A为的中点,连接BD.(1)求证:∠ACB=3∠ABC;(2)若OF=5,EO=7,求△BDF的面积.23.如图,△ABC内接于⊙O,∠ABC和∠BAC的平分线交于点E,延长AE分别交BC,⊙O于点F,D,连接BD.(1)求证:BD=DE.(2)若BD=6,AD=10,求EF的长.24.如图,△ABC内接于⊙O,直径AD⊥BC于点E,连结CO.(1)求证:∠COD=∠CAB;(2)若=2,AB=3,求图中阴影部分面积.25.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC于点D.(1)求证:BE=EF;(2)若DE=4,DF=3,求AF的长.26.如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,FG是⊙O的切线,FG∥BD,DF与AB交于点E.(1)求证:BE=BD;(2)若AB=8,DH=3,求EH的长.27.如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D作直线AC的垂线,交AC的延长线于E,连接BD,CD.(1)求证:BD=CD;(2)求证:直线DE是⊙O的切线;(3)若DE=,AB=4,求AD的长.28.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,AE=4,∠OAF=30°,求图中阴影部分的面积.(结果保留π)29.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 为BC的中点,连接DE交BA的延长线于点F.(1)求证:DE是⊙O的切线;(2)若OA=AF,DF=4,求阴影部分面积.30.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)31.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2,求图中阴影部分的面积.32.如图,正方形ABCD的外接圆为⊙O,点P在劣弧BC上(不与B、C点重合).(1)求∠BPC的度数;(2)若正方形ABCD的边长为2cm,求⊙O的半径及阴影部分的面积.33.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.34.如图,P A,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△P AB是等边三角形;(2)求AC的长.35.如图,AB为⊙O直径,P A、PC分别与⊙O相切于点A、C,PQ⊥P A,PQ交OC的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,P A=AB,且CQ=6,求BD的长.36.已知P A、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交P A于C、交PB于D.(1)若P A=6,求△PCD的周长.(2)若∠P=50°求∠DOC.37.如图,P A,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.38.如图,已知AB为⊙O的直径,P A,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求P A的长(结果保留根号).39.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.40.如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.圆的计算与证明参考答案与试题解析一.解答题(共40小题)1.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC(1)求证:PC是⊙O的切线;(2)若∠BPC=60°,PB=3,求阴影部分面积.【解答】(1)证明:连接OC,如图:∵OB=OC,∴∠OBC=∠OCB,∵AB是⊙O的直径,PB切⊙O于点B,∴AB⊥PB,∠PBO=∠OBC+∠PBC=90°,∵BC⊥PO,∴BD=CD,∴PO是BC的垂直平分线,∴PB=PC,∴∠PBC=∠PCB,∴∠OCB+∠PCB=∠OBC+∠PBC=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:由(1)知,PB、PC为⊙O的切线,∴PB=PC,∵∠BPC=60°,PB=3,∴△PBC是等边三角形,∴BC=PB=3,∠PBC=60°,∴∠OBC=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC=OB=PB=,∴扇形OAC的面积==,△OAC的面积=×()2=,∴阴影部分面积=﹣.2.如图,已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.(1)求证:∠ACD=∠ACF;(2)当AD⊥CD,BE=2cm,CF=8cm,求AD的长.【解答】(1)证明:连接OC,∵CD切⊙O于C点,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵CF⊥AB,∴∠AEC=90°,∴∠ACF+∠CAE=90°,∵OA=OC,∴∠ACO=∠CAE,∴∠ACD=∠ACF;(2)解:由(1)可知,∠ACD=∠ACF,∵CF⊥AB,∴CE=CF=4,设⊙O的半径为r,则OE=r﹣2,在Rt△OEC中,OC2=OE2+CE2,即r2=(r﹣2)2+42,解得,r=5,∴AE=AB﹣BE=8,∵∠ACD=∠ACF,AD⊥CD,CF⊥AB,∴AD=AE=8(cm).3.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.【解答】解:(1)过点O作OE⊥AB于点E,∵O为∠MBN角平分线上一点,∴∠ABD=∠CBD,又∵BC为⊙O的切线,∴AC⊥BC,∵AD⊥BO于点D,∴∠D=90°,∴∠BCO=∠D=90°,∵∠BOC=∠AOD,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴,即=,∴AD=2.4.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D 作DE⊥MN于点E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠3=∠2,∵AD平分∠CAM,∴∠2=∠1,∴∠1=∠3,∴MN∥OD,∵DE⊥MN,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连接CD,如图所示:∵AC是⊙O的直径,∴∠ADC=90°,∴AD===3(cm),∵DE⊥MN,∴∠AED=90°,∴∠ADC=∠AED,又∵∠2=∠1,∴△ADC∽△AED,∴=,即=,∴AC=15(cm),∴OA=AC=cm,即⊙O的半径为cm.5.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO.若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分及△PBF的面积.【解答】解:(1)∵OC⊥DE,∴DC=EC=DE=×2=,∵弦DE垂直平分半径OA,∴OC=OA=OE,在Rt△OCE中,∵OE=2OC,∴∠E=30°,∴OC=CE=1,∴OE=2,即⊙O的半径为2;(2)连结OF,BF,BE,作BH⊥DF于H,如图,∵∠DP A=45°,∴∠DDC=45°,∴∠EOF=2∠EPF=90°,△PCD为等腰直角三角形,∴图中阴影部分的面积=S扇形EOF﹣S△OEF=﹣•2•2=π﹣2;∵BC=AB﹣AC=4﹣1=3,而DC=,∴BD==2,∵BC垂直平分DE,∴BD=BE=2,∵BD=DE=BE,∴△BED为等边三角形,∴∠BED=60°,∴∠BFD=∠BED=60°,∵△PCD为等腰直角三角形,∴PC=DC=,∴OP=PC﹣OC=﹣1,∴PB=2﹣(﹣1)=3﹣,在Rt△PBH中,∠BPH=∠DPC=45°,∴BH=PH=PB=,在Rt△BHF中,∠HBF=30°,∴HF=BH=•=,∴PF=PH+HF=+=,∴S△PBF=••=.6.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.【解答】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG.(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,∵CA=CG,CD⊥AB,∴AE=EG=,EC=ED=4,∴OE=AE﹣OA=,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=()2+42,解得r=或(舍弃),∴⊙O的半径为.7.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=24,求OP的长.【解答】(1)证明:如图,∵PG平分∠EPF,∴∠CPO=∠APO.∵AO∥PE,∴∠CPO=∠AOP,∴∠APO=∠AOP,∴AP=AO.(2)解:过点O作OH⊥AB于H,如图.根据垂径定理可得AH=BH=AB=12,∴PH=P A+AH=AO+AH=13+12=25.在Rt△AHO中,OH===5,由勾股定理得:OP====5.则OP的长为5.8.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC 于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.【解答】(1)证明:作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,∵点O为△ABC的角平分线交点,∴OM=ON,∵OE=OD=OC,∴RT△OME≌RT△OND(HL),∴ME=ND,∵EF=2ME,CD=2ND,∴CD=EF;(2)解:由(1)可知CD=EF=CG,∵点O为△ABC的角平分线交点,∴OM=ON=OH,∵∠ACB=90°,∴四边形ONCH是正方形,∴OM=ON=OH=CD=EF=CG,∵OC=4,∴OH=OC=4,∴EF=CD=CG=8,易证得AM=AN=6,BM=BH,∴AC=10,设BM=BH=x,则BC=x+4,AB=x+6,∵∠ACB=90°,∴AB2=AC2+BC2,即(6+x)2=102+(4+x)2,解得x=20,∴BM=20,∴AB=AM+BM=20+6=26.9.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.【解答】解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.10.如图,Rt△OAB中,∠OAB=90°,以OA为半径的⊙O交BO于点C,交BO延长线于点D.在⊙O上取一点E,且=,延长DE与BA交于点F.(1)求证:△BDF是直角三角形;(2)连接AC,AC=2,OC=2BC,求AF的长.【解答】(1)证明:如图连接EC交OA于H.∵=,∴OA⊥EC,∵CD是⊙O的直径,∴∠DEC=90°,∴DF⊥EC,∴OA∥DF,∵BF是⊙O的切线,∴OA⊥BF,∴DF⊥BF,∴∠F=90°,∴△DFB是直角三角形.(2)解:∵∠DEC=∠F=90°,∴EC∥FB,∴==2,∴OH=2AH,设AH=m,则OH=2m,OC=3m,∵CH2=OC2﹣OH2=AC2﹣AH2,∴9m2﹣4m2=40﹣m2,∴m=(负根已经舍弃),∴CH=,∵OA⊥EC,∴EH=HC=,∵∠F=∠F AH=∠AHE=90°,∴四边形AFEH是矩形,∴AF=EH=.11.如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O,分别与AC和BC相交于点D和E,连接OD.(1)求证:OD∥BC;(2)求证:AD=DE.【解答】证明:(1)∵OA=OD,∴∠OAD=∠ODA,∵AB=BC,∴∠BAC=∠OAD=∠C,∴∠ODA=∠C,∴OD∥BC;(2)连接半径OE,如图,∴OB=OE,∴∠B=∠OEB,由(1)知OD∥BC,∴∠AOD=∠B,∴∠OEB=∠EOD,∴∠EOD=∠B,∴∠AOD=∠EOD,∴AD=DE.12.如图,点C在以线段AB为直径的圆上,且,点D在AC上,且DE⊥AB于点E,F是线段BD的中点,连接CE、FE.(1)若AD=6,BE=8,求EF的长;(2)求证:CE=EF.【解答】解:(1)∵点C在以线段AB为直径的圆上,且∴∠ACB=90°,且AC=BC,∴△ABC为等腰直角三角形,∴∠A=∠ABC=45°,∵DE⊥AB,∴AE=DE=AD=×6=6,在Rt△BDE中,∵DE=6,BE=8,∴BD==10,又∵F是线段BD的中点,∴EF=BC=5;(2)如图,连接CF,∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∴B、C、D、E在以BD为直径的圆上,∴∠EFC=2∠EBC=2×45°=90°,∴△EFC为等腰直角三角形,∴CE=EF.13.如图,⊙O的半径OA⊥弦BC于E,D是⊙O上一点.(1)求证:∠ADC=∠AOB;(2)求AE=2,BC=6,求OA的长.【解答】(1)证明:∵OA⊥BC,∴=,∴∠ADC=∠AOB;(2)解:∵OA⊥BC,∴BE=CE=BC=×6=3,设⊙O的半径为r,则OA=OB=r,OE=r﹣2,在Rt△OBE中,32+(r﹣2)2=r2,解得r=,即OA的长为.14.如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.【解答】解:(1)连接OA.∵AC垂直平分OD,∴AO=AD,又OA=OD,∴△OAD是等边三角形,∴∠DAO=60°.∵AC⊥OD,AO=AD,∴∠DAC=∠OAC=×60°=30°,(2)∵OD⊥AC,AC=6,∴AE=AC=3,∵AC垂直平分OD,垂足为E,∴∠AEO=90°,OE=OD,∴OE=OA,设OE=x,则OA=OB=2x,在Rt△AEO中,AE2+EO2=AO2,即:32+x2=(2x)2,解得,x=.∴BE=OE+OB=x+2x=3x=3.15.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若tan∠ACO=,CD=6,求⊙O的直径.【解答】(1)证明:∵AB⊥CD,∴=,∴∠A=∠BCD,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCD;(2)解:∵AB⊥CD,∴CE=DE=CD=3,在Rt△BCE中,∵tan∠BCD=tan∠ACO==,∴BE=1,设⊙O的半径为r,则OC=r,OE=r﹣1,在Rt△OCE中,32+(r﹣1)2=r2,解得r=5,∴⊙O的直径为10.16.已知如图,⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且∠C=2∠A.(1)求∠A的度数.(2)求BD的长.【解答】解:(1)∵四边形ABCD为⊙O的内接四边形,∴∠C+∠A=180°,∵∠C=2∠A,∴∠A=60°;(2)连接OB,OD,作OH⊥BD于H∵∠A=60°,∠BOD=2∠A,∴∠BOD=120°;又∵OB=OD,∴∠OBD=∠ODB=30°,∵OH⊥BD于H,在Rt△DCP中,,∴,∵OH⊥BD于H,∴.17.已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.【解答】(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,∴=,∴=,解得:BC=6,∴AB=6.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D 作DH⊥AC于点H.(1)求证:BD=CD;(2)连结OD若四边形AODE为菱形,BC=8,求DH的长.【解答】(1)证明:如图,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如图,连接OE.∵四边形AODE是菱形,∴OA=OE=AE,∴△AOE是等边三角形,∵AB=AC,∴△ABC是等边三角形,∵OA=OB=BD=CD∴AE=EC,∴CD=CE,∵∠C=60°,∴△EDC是等边三角形,∵DH⊥EC,CD=4,∴DH=CD•sin60°=2.19.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.【解答】(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.20.如图,△ABC内接于⊙O,∠BAC=60°,高AD的延长线交⊙O于点E,BC=6,AD=5.(1)求⊙O的半径;(2)求DE的长.【解答】解:(1)如图,作直径BF,连接CF,∴∠BCF=90°,∵∠F=∠BAC=60°,∴BF===4,∴⊙O的半径为;(2)如图,过O作OG⊥AD于G,OH⊥BC于H,∴GE=GA,四边形OHDG是矩形,∴OH=DG,∵OB=,∠FBC=30°,∴OH=,∴DG=,∴AG=AD﹣GD=5﹣,∴EG=5﹣,∴DE=EG﹣GD==.21.如图,Rt△ABC中,∠C=90°,在BC上取一点D使AD=BD,连结AD,作△ACD的外接圆⊙O,交AB于点E.(1)求证:AE=BE;(2)若CD=3,AB=4,求AC的长.【解答】解:(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)设BD=x,∵∠B=∠B,∠C=∠DEB=90°∴△ABC~△DBE,∴=,∴,∴x=5.∴AD=BD=5,∴AC==4.22.如图,△ABC内接于⊙O,OE⊥BC于E,延长EO交AB于F,交⊙O于D,A为的中点,连接BD.(1)求证:∠ACB=3∠ABC;(2)若OF=5,EO=7,求△BDF的面积.【解答】(1)证明:∵OE⊥BC,∴==,∵A为的中点,∴==,∴=,∴=,∴∠ACB=3∠ABC;(2)连接OB,设OB=OD=r,∵OE⊥BC,OF=5,EO=7,∴DF=r﹣5,BE=,过F作FH⊥BD于H,∴FH=FE=12,∠DHF=∠DEB=90°,DH==,∵∠FDH=∠BDE,∴△DHF∽△DEB,∴=,∴=,∴r=25,∴DE=32,BE=24,∴BD===40,∴△BDF的面积==240.23.如图,△ABC内接于⊙O,∠ABC和∠BAC的平分线交于点E,延长AE分别交BC,⊙O于点F,D,连接BD.(1)求证:BD=DE.(2)若BD=6,AD=10,求EF的长.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴=.∴∠DBC=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE,由∠BED=∠BAD+∠ABE,∠DBE=∠DBC+∠CBE,∴∠BED=∠DBE,∴DB=DE;(2)解:由(1)得∠DBC=∠CAD,∠D=∠D,∴△DBF∽△DAB,∴=,∵BD=6,AD=10,∴=,∴DF=3.6,且由(1)得:DE=BD=6,∴EF=DE﹣DF=6﹣3.6=2.4.24.如图,△ABC内接于⊙O,直径AD⊥BC于点E,连结CO.(1)求证:∠COD=∠CAB;(2)若=2,AB=3,求图中阴影部分面积.【解答】(1)证明:∵AD是⊙O的直径,AD⊥BC,∴==,∵∠CAB的度数=的度数,∠COD的度数=的度数,∴∠COD=∠CAB;(2)解:∵=2,∴∠AOC=COD,∵直径AD⊥BC于点E,∴=,∴AC=AB=3,∴OC=2,∴S阴影=2×(﹣×32)=.25.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC于点D.(1)求证:BE=EF;(2)若DE=4,DF=3,求AF的长.【解答】(1)证明:∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF;(2)解:∵DE=4,DF=3,∴BE=EF=DE+DF=7,∵∠5=∠4,∠BED=∠AEB,∴△EBD∽△EAB,∴=,即=,∴EA=,∴AF=AE﹣EF=﹣7=.26.如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,FG是⊙O的切线,FG∥BD,DF与AB交于点E.(1)求证:BE=BD;(2)若AB=8,DH=3,求EH的长.【解答】解:(1)如图,连接OF,∵FG是⊙O的切线,∴∠GFD+∠OFD=90°,∵AB⊥CD,∴∠DEH+∠ODE=90°,∵OF=OD,∴∠OFD=∠ODF.∴∠DEH=∠GFD,∵FG∥BD,∴∠GFD=∠BDF,∴∠DEH=∠BDF,∴BE=BD;(2)∵CD是⊙O的直径,弦AB⊥CD,垂足为H,∴,∵DH=3,∴BD=5,∵BE=BD,∴BE=5,∴EH=BE﹣BH=1,答:EH的长为1.27.如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D作直线AC的垂线,交AC的延长线于E,连接BD,CD.(1)求证:BD=CD;(2)求证:直线DE是⊙O的切线;(3)若DE=,AB=4,求AD的长.【解答】(1)证明:∵在⊙O中,AD平分角∠BAC,∴∠CAD=∠BAD,∴BD=CD;(2)证明:连接半径OD,如图1所示:则OD=OA,∴∠OAD=∠ODA,∵DE⊥AC于E,在Rt△ADE中,∴∠EAD+∠ADE=90°,由(1)知∠EAD=∠BAD,∴∠BAD+∠ADE=90°,即∠ODA+∠ADE=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)解:过点D作DF⊥AB于F,如图2所示:则DF=DE=,∵AB=4,∴半径OD=2,在Rt△ODF中,OF===1,∴∠ODF=30°,∴∠DOB=60°,∵OD=OB,∴△OBD是等边三角形,∴OF=FB=1,∴AF=AB﹣FB=4﹣1=3,在Rt△ADF中,AD===2.28.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,AE=4,∠OAF=30°,求图中阴影部分的面积.(结果保留π)【解答】(1)证明:连接OE,∵AC=EC,OA=OE,∴∠CAE=∠CEA,∠F AO=∠FEO,∵AC⊥AB,∴∠CAD=90°,∴∠CAE+∠EAO=90°,∴∠CEA+∠AEO=90°,即∠CEO=90°,∴OE⊥CD,∴CE为⊙O的切线;(2)解:设OF=x,∵∠OAF=30°,OF⊥AF,∴OA=2OF=2x,在Rt△OEF中,由勾股定理得:,解得x=2,∴OA=4,∴,∵∠AOE=120°,AO=4;∴,∴.29.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 为BC的中点,连接DE交BA的延长线于点F.(1)求证:DE是⊙O的切线;(2)若OA=AF,DF=4,求阴影部分面积.【解答】解:(1)连接OD,OE,∵E为BC的中点,∴BE=CE,∵AO=OB,∴OE∥AC,∴∠OAD=∠BOE,∠ADO=∠DOE,∵OD=OA,∴∠OAD=∠ADO,∴∠DOE=∠BOE,∵OD=OB,∴△DOE≌△BOE(SAS),∴∠ODE=∠OBE,∵BC是⊙O的切线,∴∠OBE=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)解:∵OA=AF,∴OD=OF,∵∠ODF=90°,∴AD=OA,∴△ADO是等边三角形,∴∠DOF=60°,∵DF=4,∴OD=DF=,∴阴影部分面积=S△ODF﹣S扇形AOD=﹣=﹣.30.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)【解答】(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,OE与AD交于点M.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED=S△AOD,∴阴影部分的面积=S扇形ODE==π.31.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2,求图中阴影部分的面积.【解答】(1)证明:连接OF,AO,∵AB=AF=EF,∴==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;。
圆的各个公式证明
圆的各个公式证明一、圆的周长公式证明。
1. 定义法。
- 我们知道圆的周长C是指绕圆一周的长度。
- 我们可以采用极限的思想来推导圆的周长公式。
将圆分割成n个相等的小扇形(当n趋向于无穷大时)。
- 当n很大时,每个小扇形近似看成一个等腰三角形,其腰长为圆的半径r,底边长近似为弧长Δ l。
- 对于整个圆,所有小扇形的弧长之和就是圆的周长C。
- 对于一个圆心角为θ(弧度制)的扇形,弧长Δ l = rθ。
- 一个圆的圆心角为2π(弧度制),所以圆的周长 C = r×2π = 2π r。
2. 滚动法(实验法)- 拿一个圆形物体(如圆盘),在直尺上滚动一周。
- 测量出滚动的距离,这个距离就是圆的周长。
- 多次测量不同半径的圆,会发现圆的周长C与半径r存在着 C = 2π r的关系。
二、圆的面积公式证明。
1. 极限分割法。
- 把圆平均分成n个相等的小扇形(n趋向于无穷大)。
- 将这些小扇形近似看作等腰三角形,每个小扇形的半径为圆的半径r,弧长近似为底边长Δ l=(2π r)/(n)。
- 每个小扇形的面积Δ S=(1)/(2)r×Δ l=(1)/(2)r×(2π r)/(n)=frac{π r^2}{n}。
- 那么圆的面积S = n×Δ S=n×frac{π r^2}{n}=π r^2。
2. 定积分法(高中拓展内容)- 在平面直角坐标系中,以原点为圆心,r为半径的圆的方程为x^2+y^2=r^2,即y = ±√(r^2)-x^{2}。
- 圆的面积S = 4∫_0^r√(r^2)-x^{2}dx。
- 令x = rsin t,则dx = rcos tdt。
- 当x = 0时,t = 0;当x = r时,t=(π)/(2)。
- 则S = 4∫_0^(π)/(2)√(r^2)-r^{2sin^2t}· rcos tdt- 化简得S = 4r^2∫_0^(π)/(2)cos^2tdt。
中考数学一轮复习专题解析—圆的证明与计算
中考数学一轮复习专题解析—圆的证明与计算复习目标1.了解圆的定义及点与圆的位置关系。
2.掌握圆的基本性质。
3.掌握圆中复杂证明及两圆位置关系中证明。
考点梳理一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作①O,线段OA叫做半径;①圆是到定点的距离等于定长的点的集合.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.①直径:经过圆心的弦叫做直径,如AC是①O的直径,直径是圆中最长的弦.①弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC、BAC都是①O中的弧,分别记作BC,BAC.①半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC是半圆.①劣弧:像BC这样小于半圆周的圆弧叫做劣弧.①优弧:像BAC这样大于半圆周的圆弧叫做优弧.①同心圆:圆心相同,半径不相等的圆叫做同心圆.①弓形:由弦及其所对的弧组成的图形叫做弓形.①等圆:能够重合的两个圆叫做等圆.①等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中①AOB,①BOC是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中①BAC、①ACB都是圆周角.例1.已知:如图所示,在①O中,弦AB的中点为C,过点C的半径为OD.(1)若AB=23,OC=1,求CD的长;(2)若半径OD=R,①AOB=120°,求CD的长.【答案】解:①半径OD经过弦AB的中点C,①半径OD①AB.(1)①AB=3AC=BC3①OC=1,由勾股定理得OA=2.①CD=OD-OC=OA-OC=1,即CD =1.(2)①OD①AB ,OA =OB , ①①AOD =①BOD .①①AOB =120°,①①AOC =60°. ①OC =OA·cos①AOC =OA·cos60°=12R , ①1122CD OD OC R R R =-=-=.二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:在图中(1)直径CD ,(2)CD①AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径. 3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;①在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.①圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.例2.如图所示,AB=AC,O是BC的中点,①O与AB相切于点D,求证:AC与①O相切.【答案】证明:连接OD,作OE①AC,垂足为E,连结OA.①AB与①O相切于点D,①OD①AB.①AB=AC,OB=OC,①①1=①2,①OE=OD.①OD为①O半径,①AC与①O相切.三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r(1)圆的确定:①过一点的圆有无数个,如图所示.①过两点A、B的圆有无数个,如图所示.①经过在同一直线上的三点不能作圆.①不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.①圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是①O的切线,必须符合两个条件:①直线l经过①O上的一点A;①OA①l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.①三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.3.三角形外心、内心有关知识比较4.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.①同心圆是内含的特殊情况.①圆与圆的位置关系可以从两个圆的相对运动来理解.①“r1-r2”时,要特别注意,r1>r2.四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360 n °.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比. 3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形. 正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n°的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长.圆锥的全面积是它的侧面积与它的底面积的和.1.(2022·四川省宜宾市第二中学校九年级)如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,1CE =,6AB =,则O 的半径为( )A.3B.4C.5D.无法确定【答案】C【分析】连接OA,由垂径定理得AE=3,设OA=OC=x,根据勾股定理列出方程,进而即可求解.【详解】连接OA,①CD为O的直径,弦AB CD⊥,AB=3,①AE=12设OA=OC=x,则OE=x-1,①()222x x-+=,解得:x=5,13①O的半径为5.故选C.2.(2022·河南九年级期末)如图,AD为①O的直径,6cmAD=,DAC ABC∠=∠,则AC的长度为()A.2B.22C.32D.33【答案】C【分析】连接CD,由圆周角定理可知90∠=∠可知AC CD=,由∠=︒,再根据DAC ABCACD勾股定理即可得出AC的长.【详解】解:连接CD,AD是O的直径,∴∠=︒,ACD90∠=∠,DAC ABC∠=∠,ABC ADC∴∠=∠,DAC ADC∴CD AC=,∴=,AC CD又222AC CD AD+=,22∴=,2AC ADAD=,6∴=AC故选:C.3.(2022·全国九年级课时练习)O的半径为10cm,弦//AB CD.若==,则AB和CD的距离为()AB CD12cm,16cmA.2cm B.14cm C.2cm或14cm D.2cm或10cm 【答案】C【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心异侧时,如图1,过点O作OE①AB于点E,反向延长OE交CD于点F,连接OA,OC,①AB①CD,①OF①CD,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=10cm,①在Rt①AOE中,由勾股定理可得;8EO cm,在Rt①COF中,由勾股定理可得:6OF===cm,①EF=OF+OE=8+6=14cm.当弦AB和CD在圆心同侧时,如图2,过点O作OF①CD,垂足为F,交AB于点E,连接OA,OC,①AB①CD,①OE①AB,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=5cm,在Rt①AOE中,由勾股定理可得:2222=-=-=cm,1068EO OA AE在Rt①COF中,由勾股定理可得:2222=-=-=cm,OF OC CF1086①EF=OE﹣OF=8﹣6=2cm;故选C.4.(2022·全国九年级课时练习)如图,在ABC中,10,8,6===,经过AB AC BC点C且与边AB相切的动圆与,CB CA分别相交于点E,F,则线段EF长度的最小值是()A.42B.4.75C.5D.4.8【答案】D【分析】设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,则有OD①AB,由勾股定理逆定理知,ABC是直角三角形,OC+OD=EF,而OC+OD≥CD,只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知求出CD的长即可.【详解】解:设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,①10,8,6===,AB AC BC①AC2+BC2=AB2,①ABC 是直角三角形,①ACB =90°, ①EF 是①O 的直径, ①OC +OD =EF , ①①O 与边AB 相切, ①OD ①AB , ①OC +OD ≥CD ,即当点O 在直角三角形ABC 的斜边AB 的高上时,OC +OD =EF 有最小值, 此时最小值为CD 的长, ①CD =864.810AC BC AB ⋅⨯==, ①EF 的最小值为4.8. 故选D .5.(2020·沭阳县怀文中学九年级月考)有下列说法:①直径是圆中最长的弦;①等弧所对的弦相等;①圆中90°的角所对的弦是直径;①相等的圆心角对的弧相等;①平分弦的直径垂直于弦;①任意三角形一定有一个外接圆.其中正确的有( ) A .2个 B .3个C .4个D .5个【答案】B 【分析】根据直径的定义对①进行判断;根据圆心角、弧、弦的关系对①①进行判断;根据圆周角定理对①进行判断;根据垂径定理对①进行判断;根据三角形外接圆的定义对①进行判断. 【详解】解:①直径是圆中最长的弦;故①正确,符合题意;①能够重合的弧叫做等弧,等弧所对的弦相等;故①正确,符合题意; ①圆中90°的圆周角所对的弦是直径;故①错误,不符合题意;①在同圆或等圆中,相等的圆心角所对的弧相等;故①错误,不符合题意; ①平分弦(弦不是直径)的直径垂直于弦;故①错误,不符合题意; ①任意三角形一定有一个外接圆;故①正确,符合题意; 其中正确的有①①①, 故选:B .6.(2022·厦门海沧实验中学九年级开学考试)四边形ABCD 中,ACD △是边长为6的等边三角形,ABC 是以AC 为斜边的直角三角形,则对角线BD 的长的取值范围是( ) A .33BD <≤+B .36BD << C .63BD <≤+D .3BD <≤【答案】C 【分析】由①ABC 是以AC 为斜边的直角三角形可知点B 在以AC 为直径的圆上,然后结合点到圆上点的距离求出对角线BD 长度的取值范围. 【详解】①①ABC 是以AC 为斜边的直角三角形, ①点B 在以AC 为直径的圆上,如图中①O ,连接OD 并延长,交①O 于点E 和点B ,①等边①ACD的边长为6,①AC=BE=6,OB=OE=OA=OC=3,OD①AC,①①COD=90°,①OD=2222CD OC-=-=,6333①BD=OD+OB=333+,△是边长为6的等边三角形,ACD当B与,A C重合时,BD最小6=①对角线BD的长度的取值范围为6<BD≤333+.故选:C.7.(2022·河南九年级期末)如图,在ABC∠=︒,30Rt△中,90ACB∠=︒,3ABCAB=,将ABCRt△绕直角顶点C顺时针旋转,当点A的对应点A'落在AB边上时,停止转动,则点B经过的路径长为__.3【分析】首先根据勾股定理计算出BC 长,再根据等边三角形的判定和性质计算出60ACA ∠'=,进而可得60BCB ∠'=,然后再根据弧长公式可得答案.【详解】解:30B ∠=,3AB =,①ACB=90° ①1322AC AB ==,60A ∠=,①22332BC AB AC =-=AC A C =',AA C ∴'是等边三角形, 60ACA ∴∠'=,60BCB ∴∠'=,∴弧长3360321802l ππ⋅⋅==, 故答案为:32π. 8.(2022·河南九年级期末)如图,在ABC 中,90ACB ∠=︒,60B ∠=︒,以AC 为直径做半圆交AB 于点D ,若1BC =,则图中阴影部分的面积为__.3π+【分析】连接OD ,CD ,根据圆周角定理得到90ADC ∠=︒,解直角三角形求得AC =CD OC OD =,32AD =,60COD ∠=︒,然后根据扇形的面积和三角形的面积公式即可得到结论. 【详解】解:连接OD ,CD ,在ABC 中,90ACB ∠=︒,60B ∠=︒, ①9030A B ∠=︒-∠=︒, 又①1BC =, ①22BA BC ==,①AC =AC 为O 的直径,90ADC ∴∠=︒,12OA AC =,又①30A ∠=︒,12CD AC ∴==①32AD , ①30A ∠=︒,260COD A ︒∴∠=∠=,∴阴影部分的面积()()ABC AOD AOD COD COD S S S S S S ∆∆=++--+△半圆扇形扇形 122ABC ACD COD S S S S ⎛⎫=+-+ ⎪⎝⎭△△半圆扇形22601111321222360222ππ⎛⋅ =⨯⋅-+⨯⨯⎪⎝⎭38π+=, 故答案为:38π+.9.(2022·河南九年级期末)如图,在ABC 中,AB BC =,以AB 为直径的①O 交BC 于点D ,交AC 于点F ,过点C 作//CE AB ,且CAD CAE ∠=∠. (1)求证:AE 是①O 的切线; (2)若5AB =,4=AD ,求CE 的长.【答案】(1)见解析;(2)2 【分析】(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明AEC △和ADC 全等即可得到结论;(2)由勾股定理求出2CD =,根据全等三角形的性质可得出答案. 【详解】(1)证明:AB BC =,BAC BCA ∴∠=∠,//CE AB ,BAC ACE ∴∠=∠,ACB ACE ∴∠=∠,在AEC △和ADC 中,CAD CAE AC ACACB ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADC AEC ASA ∴≅△△,ADC E ∴∠=∠, AB 是O 的直径,90ADB ADC ∴∠=∠=︒,90E ∴∠=︒,//AB CE ,180BAE E ∴∠+∠=︒,90BAE ∴∠=︒,AE ∴是O 的切线;(2)解:90ADB ∠=︒,5AB =,4=AD ,3BD ∴==,532CD BC BD ∴=-=-=,①ADC AEC ≅△△,2CE CD ∴==.10.(2022·安庆市第四中学九年级)如图,①O 是①ABC 的外接圆,FH 是①O 的切线,切点为F ,FH ①BC ,连结AF 交BC 于E ,①ABC 的平分线BD 交AF 于D ,连结BF .(1)求证:AF平分①BAC;(2)若EF=4,DE=3,求AD的长.【答案】(1)证明见详解;(2)AD =214.【分析】(1)连结OF,由FH是①O的切线,可得OF①FH,由FH∥BC,可得OF垂直平分BC,根据垂径定理可得BF FC=,根据圆周角性质可得①1=①2即可;(2)根据①ABC的平分线BD,可得①4=①3,可证①FDB=①FBD,可得BF=FD,再证①BFE①①AFB,根据性质可得BF AFFE BF=,再求BF=DF= 7,可求494FA=,即可求AD.【详解】(1)证明:连结OF,①FH是①O的切线,①OF①FH,①FH∥BC,①OF垂直平分BC,①BF FC=,①①1=①2,①AF平分①BAC,(2)解①①ABC 的平分线BD 交AF 于D , ①①4=①3,①1=①2,①①1+①4=①2+①3,①①5=①2,①①1+①4=①5+①3 ,①①FDB =①FBD ,①BF =FD ,在①BFE 和①AFB 中,①①5=①2=①1,①AFB =①EFB , ①①BFE ①①AFB , ①BF AF FE BF=, ①2BF FE FA =⋅, ①2BF FA FE= , ①BF =DF =EF +DE =7,①274944FA ==, ①AD=AF -DF =4974-=214.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。
连结OD,
作BE⊥CD于点E,交半圆O于点F。
已知CE=12,BE=9
(1)求证:△COD∽△CBE;(2)求半圆O的半径r的长
2.如图,已知RtΔABC,∠C=90°,D为BC的中点.以AC为直径的圆O交AB于点E.
(1)求证:DE是圆O的切线.
(2)若AE:EB=1:2,BC=6,求AE的长.
3.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
4.如图,在菱形ABCD 中,点P 在对角线AC 上,且PA PD =,
O 是PAD ∆的外接圆. (1)求证:AB 是O 的切线;
(2)若28,tan ,AC BAC =∠=
求O 的半径.
5.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交
OD 的延长线于点E ,连接BE .
(1)求证:BE 与⊙O 相切;
(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.
6.(2017福建第21题)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD ∠=.
(Ⅰ)若4AB =,求弧CD 的长;
(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O 的切线.
7.如图,已知BC是O
⊙的直径,点D为BC延长线上的一点,点A为圆上一点,且AB AD,AC CD.
(1)求证:ACD BAD
△∽△;
(2)求证:AD是O
⊙的切线.
8.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE 平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:BC是⊙F的切线;
(2)若点A、D的坐标分别为A(0,-1),D(2,0),求⊙F的半径;
(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.
9、.如图,ABC △内接于O ⊙,BC 是O ⊙的直径,弦AF 交BC 于点E ,延长BC 到点D ,
连接OA ,AD ,使得FAC AOD ∠∠,D BAF ∠∠.
(1)求证:AD 是O ⊙的切线;
(2)若O ⊙的半径为5,2CE ,求EF 的长.
10.如图,已知直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点.
(1)求证:PT 2=P A •PB ;
(2)若PT =TB =3,求图中阴影部分的面积.
11.如图,⊙O 与Rt △ABC 的直角边AC 和斜边AB 分别相切于点C 、D ,与边BC 相交于点
F ,OA 与CD 相交于点E ,连接FE 并延长交AC 边于点
G .
(1)求证:DF ∥AO ;
(2)若AC=6,AB=10,求CG的长.
12.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=32,求弦AD的长.
13.如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.
(1)求证:BE是⊙O的切线;
(2)当BE=3时,求图中阴影部分的面积.
14.如图,AB 是O 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作
O 的切线交CE 的延长线于点D .
(1)求证:DB DE =;
(2)若12,5AB BD ==,求O 的半径.
15、.如图,ABC ∆内接于O ,,AB AC CO =的延长线交AB 于点D .
(1)求证AO 平分BAC ∠; (2)若36,sin 5BC BAC =∠=
,求AC 和CD 的长.
16、如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作
//CF AB ,与过点B 的切线交于点F ,连接BD .
(1)求证:BD BF =; (2)若10AB =,4CD =,求BC 的长.
17、如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CD CE =.
(1)求证:OB OA =;
(2)已知34=AB ,4=OA ,求阴影部分的面积.
18、如图,BAC ∠的平分线交ABC 的外接圆于点D ,ABC ∠的平分线交AD 于点E .
(1)求证:DE DB =;
(2)若90BAC ∠=︒,4BD =,求ABC 外接圆的半径.
19、如图,⊙O 与ABC Rt ∆的直角边AC 和斜边AB 分别相切于点;,D C 与边BC 相交于
点F ,OA 与CD 相交于点E ,连接FE 并延长交AC 边于点G .
(1)求证:DF AO ,10,6==AB AC CG
20、如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交△ABC 的外接圆⊙O 于点
D ;连接BD ,过点D 作直线DM ,使∠BDM =∠DAC .
(1)求证:直线DM 是⊙O 的切线;
(2)求证:DE 2=DF ·DA .
21、如图,在ABC ∆中,以BC 为直径的O 交AC 于点E ,过点E 做EF AB ⊥于点F ,延
长EF 交CB 的延长线于点G ,且2ABG C ∠=∠.
(1)求证:EF 是O 的切线;
(2)若3sin 5
EGC ∠=,O 的半径是3,求AF 的长.
22、如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接PA 交⊙O 于点C .连接BC .
(1)求证:CBP BAC ∠=∠;
(2)求证:PA PC PB ⋅=2;
(3)当3,6==CP AC 时,求PAB ∠sin 的值.
23、如图,已知:AB 是O 的直径,点C 在O 上,CD 是O 的切线,AD CD ⊥于
点,D E 是AB 延长线上的一点,CE 交
O 于点F ,连接,OC AC . (1)求证:AC 平分DAO ∠.
(2)若105DAO ∠=,30E ∠=.
①求OCE ∠的度数. ②若O 的半径为22EF 的长.
24、如图,O 为Rt C ∆AB 的直角边C A 上一点,以C O 为半径的O 与斜边AB 相切于点
D ,交OA 于点
E .已知C 3B =,C 3A =.
(1)求D A 的长;
(2)求图中阴影部分的面积.
25、 如图已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与,B C 重合),PE 是ABP ∆的外接圆⊙O 的直径.
(1)求证:APE ∆是等腰直角三角形;
(2)若⊙O 的直径为2,求22PC PB +的值.
26、如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中
点,连接D E并延长交AC的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若CF=2,DF=4,求⊙O直径的长.
27、如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.
(1)求证:直线AE是⊙O的切线.
(2)若∠BAC=30°,BC=4,cos∠BAD=
3
4
,CF=
10
3
,求BF的长.
如图,在Rt△ABC中,∠ABC=90O,AB是⊙O的直径,连接OC,过A作AD∥OC交⊙O于点D,连接CD。
(1)求证:CD是⊙O的切线;
(2)延长CD,BA交于点E,若AE:DE=3:4,求tan∠ACB的值
E
D
C
B
A
O。