数值分析实验上机题

合集下载

研究生数值分析上机试题及解答

研究生数值分析上机试题及解答

东华大学研究生数值分析试题(上机部分)A 卷2008年12月 时间:60分钟班级 学号 机号 姓名 得分 注意:要求写出M 函数(如果需要)、MATLAB 命令和计算结果。

1. 求下列方程组在0<α, β<1中的解⎩⎨⎧-=+=βαββααsin 2.0cos 7.0cos 2.0sin 7.0 命令fun=inline('[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))]','x'); [x,f,h]=fsolve(fun,[0.5 0.5]) 结果α=0.5265,β=0.50792命令>> fun=inline('c(1)+c(2)*x.^2','c','x'); >> x=[1.1 1.3 1.4 1.6 1.8]; >> y=[26 22 23 24 25];>> c=lsqcurvefit(fun,[0 0],x,y) 结果 c =23.7256 0.12873.求解下列微分方程组2(0)2013(0)1x x yx t y x yy '=-=⎧<<⎨'=+=⎩(结果只要求写出t =1时的解) 命令>> fun=inline('[y(1)-2*y(2);3*y(1)+y(2)]','t','y'); >> [t,y]=ode45(fun,[0 1], [2 1]) 结果x(1)=-5.6020, y(1)=2.15634.用定步长Gauss 积分法(课本123页)计算积分31e ln(1)x x dx -+⎰的近似值(等分数取4,每段取2个Gauss 点)。

命令fun=inline('exp(-x).*log(1+x)','x'); nagsint(fun,1,3,4,2) 结果 0.30865.矩阵改进平方根分解(课本25页)的计算公式为: d 1=a 11, 对i =2, 3, ⋯, n ,iki k ik ii i j ij ij j k jk ik ij ij l s a d i j d s l l s a s ∑∑-=-=-=-==-=1111,1,,2,1 ,/ ,试编写矩阵改进平方根分解的程序,并求矩阵1111551514A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的改进平方根分解。

数值分析原理习题答案

数值分析原理习题答案

数值分析原理习题答案数值分析原理习题答案【篇一:数值分析习题】学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为0.5?10,那么近似数0.003400有几位有效数字?(有效数字的计算)2 ??3.14159?具有4位有效数字的近似值是多少?(有效数字的计算)3 已知a?1.2031,b?0.978是经过四舍五入后得到的近似值,问a?b,a?b有几位有效数字?(有效数字的计算)4 设x?0,x的相对误差为?,求lnx的误差和相对误差?(误差的计算)**5测得某圆柱体高度h的值为h?20cm,底面半径r的值为r?5cm,已知5|h?h*|?0.2cm,|r?r*|?0.1cm,求圆柱体体积v??rh的绝对误差限与相对误差限。

(误差限的计算)6 设x的相对误差为a%,求y?xn的相对误差。

(函数误差的计算)7计算球的体积,为了使体积的相对误差限为1%,问度量半径r时允许的相对误差限为多大?(函数误差的计算)128 设in?e1nxx?edx,求证: 0(1)in?1?nin?1(n?0,1,2?)(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。

(计算方法的比较选择)第二章插值法姓名学号班级习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。

1 已知f(?1)?2,f(1)?1,f(2)?1,求f(x)的拉氏插值多项式。

(拉格朗日插值)2 已知y?x,x0?4,x1?9,用线性插值求7的近似值。

(拉格朗日线性插值)3 若xj(j?0,1,...n)为互异节点,且有lj(x)?试证明(x?x0)(x?x1)?(x?xj?1)(x?xj?1)?(x?xn)(xj?x0)(xj?x1)?(xj?xj?1)(xj?xj?1)?(xj?xn)xlj?0nkjj(拉格朗日插值基函数的性质) (x)?xk(k?0,1,...n)。

数值分析上机题目

数值分析上机题目

数值分析上机题目4(总21页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验一实验项目:共轭梯度法求解对称正定的线性方程组 实验内容:用共轭梯度法求解下面方程组(1) 123421003131020141100155x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪=⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 迭代20次或满足()(1)1110k k x x --∞-<时停止计算。

编制程序:储存m 文件function [x,k]=CGmethod(A,b)n=length(A);x=2*ones(n,1);r=b-A*x;rho=r'*r; k=0;while rho>10^(-11) & k<1000 k=k+1; if k==1 p=r; elsebeta=rho/rho1; p=r+beta*p; end w=A*p;alpha=rho/(p'*w); x=x+alpha*p; r=r-alpha*w; rho1=rho;rho=r'*r; end运行程序: clear,clcA=[2 -1 0 0;-1 3 -1 0;0 -1 4 -1;0 0 -1 5]; b=[3 -2 1 5]'; [x,k]=CGmethod(A,b)运行结果: x =(2) Ax b =,A 是1000阶的Hilbert 矩阵或如下的三对角矩阵, A[i,i]=4,A[i,i-1]=A[i-1,i]=-1,i=2,3,..,n b[1]=3, b[n]=3, b[i]=2,i=2,3,…,n-1迭代10000次或满足()()710k k r b Ax -=-≤时停止计算。

编制程序:储存m 文件function [x,k]=CGmethod_1(A,b) n=length(A);x(1:n,1)=0;r=b-A*x;r1=r; k=0;while norm(r1,1)>10^(-7)&k<10^4 k=k+1; if k==1 p=r; elsebeta=(r1'*r1)/(r'*r);p=r1+beta*p; end r=r1; w=A*p;alpha=(r'*r)/(p'*w); x=x+alpha*p; r1=r-alpha*w; end运行程序: clear,clc n=1000; A=hilb(n); b=sum(A')';[x,k]=CGmethod(A,b)实验二1、 实验目的:用复化Simpson 方法、自适应复化梯形方法和Romberg 方法求数值积分。

数值分析上机实验

数值分析上机实验

刘力辉 2010210804011.“画圆为方”问题也是古希腊人所提出几何三大难题中的另一个问题。

即求作一个正方形,使其面积等于已知圆的面积。

不妨设已知圆的半径为 R = 1,试用数值试验显示“画圆为方”问题计算过程中的误差。

(1)MATLAB 程序:y=pi^(1/2); % to generate 15-bit value of square root of pi b=1; d=1; for k=1:8 b=b*10;d=d/10; % b and d combined to control the digit of x x=d*fix(b*y); s(k)=x^3; l(k)=x; endformat long [l',s'](2)误差分析:2. 设,I x xd x n n=+⎰501由 x n = x n + 5 x n – 1 – 5 x n – 1 可得递推式 I n = – 5I n – 1 + 1/ n(1)从 I 0 尽可能精确的近似值出发,利用递推公式:I I nn n =-+-511 ( n = 1,2,…20)计算从 I 1 到 I 20 的近似值;(2)从 I 30 较粗糙的估计值出发,用递推公式:I I nn n -=-+11515 ( n= 30,29, …, 3, 2 )计算从I 1 到 I 20 的近似值;(3) 分析所得结果的可靠性以及出现这种现象的原因。

I 0 =dx x⎰+1051=ln (5+x )10|=ln 6-ln 5 所以I0≈0.18232155679395format longI0=log2(6)/log2(exp(1))-log2(5)/log2(exp(1)) % calculate the value of I0=ln6-ln5 for n=1:20I0=-5*I0+1/n; % recycling equation between I(n+1) and I(n) s(n)=I0; end s'则计算结果为:表1I1 0.0883922160302300 I11 0.0140713362538500 I2 0.0580389198488700 I12 0.0129766520640700 I3 0.0431387340890000 I13 0.0120398166027400 I4 0.0343063295550100 I14 0.0112294884148600 I5 0.0284683522249700 I15 0.0105192245923700 I6 0.0243249055418100 I16 0.0099038770381400 I7 0.0212326151481100 I17 0.0093041442210800 I8 0.0188369242594600 I18 0.0090348344501700 I9 0.0169264898137900 I19 0.0074574066965100 I10 0.0153675509310500I20 0.0127129665174600从计算的数据看出I 20=0.0127129665174600 > I 19=0.0074574066965100又I n 的积分范围为0~1,所以应该有I n >I n+1。

数值分析上机实验题参考

数值分析上机实验题参考

数值分析论文数值积分 一、问题提出选用复合梯形公式,复合Simpson 公式,Romberg 算法,计算I = dx x ⎰-4102sin 4 ()5343916.1≈II =dx x x ⎰1sin ()9460831.0,1)0(≈=I fI = dx xe x⎰+1024 I =()dx x x ⎰++1211ln 二、要求编制数值积分算法的程序;分别用两种算法计算同一个积分,并比较其结果;分别取不同步长()/ a b h -=n ,试比较计算结果(如n = 10, 20等); ﹡给定精度要求ε,试用变步长算法,确定最佳步长﹡。

三、目的和意义深刻认识数值积分法的意义; 明确数值积分精度与步长的关系;根据定积分的计算方法,可以考虑二重积分的计算问题引言一、数值求积的基本思想实际问题当中常常需要计算积分,有些数值方法。

如微分方程和积分方程的求解,也都和积分计算相联系。

依据人们熟悉的微积分基本原理,对于积分I=⎰a b f(x)dx,只要找到被积函数f(x)和原函数F(x),便有下列牛顿-莱布尼茨公式:I=⎰a b f(x)dx=F(b)-F(a).但实际使用这种求积方法往往有困难,因为大量的被积函数,诸如x xsin,2xe-等,其原函数不能用初等函数表达,故不能用上述公式计算。

另外,当f(x)是由测量或数值计算给出的一张数据表时,牛顿-莱布尼茨公式也不能直接运用,因此有必要研究积分的数值计算问题。

二、数值积分代数精度数值求积方法是近似方法,为要保证精度,我们自然希望求积公式能对“尽可能多”的函数准确成立,就提出了所谓代数精度的概念。

如果某个求积公式对次数不超过m的多项式均能准确成立,但对m+1次多项式就不能准确成立,则称该求积公式具有m次代数精度。

三、复合求积公式为了提高精度,通常可以把积分区间分成若干子区间(通常是等分),再在每个子区间用低阶求积公式,即复化求积法,比如复化梯形公式与复化辛普森公式。

数值分析上机实验6

数值分析上机实验6

数值分析上机实验6根据表中数据,预测公元2000年时的世界人口。

问题分析与数学模型设人口总数为N(t),根据人口理论的马尔萨斯模型,采用指数函数N(t) = e a + b t=+,令对数据进行拟合。

为了计算方便,将上式两边同取对数,得ln N a bty = ln N或N = e y变换后的拟合函数为y(t) = a + b t根据表中数据及等式 k k( 1,2,……,9)可列出关于两个未知数、b的9个方程的超定方程组(方程数多于未知数个数的方程组)a + t j b = y j(j= 1,2, (9)可用最小二乘法求解。

算法与数学模型求解算法如下:第一步:输入人口数据,并计算所有人口数据的对数值;第二步:建立超定方程组的系数矩阵,并计算对应的正规方程组的系数矩阵和右端向量;第三步:求解超定方程组并输出结果:a,b;第四步:利用数据结果构造指数函数计算2000年人口近似值N(2000),结束。

MATLAB程序t=1960:1968;t0=2000;N=[29.72 30.61 31.51 32.13 32.34 32.85 33.56 34.20 34.83];y=log(N);A=[ ones(9,1), t' ];d=A\ y' ;a=d(1),b=d(2)N0=exp(a+b*t0)x=1960:2001;yy=exp(a+b*x);plot(x,yy,t,N,'o',2000,N0,'o')计算结果为a =-3,b =6N (2000)所以取五位有效数,可得人口数据的指数拟合函数t e t N 0186.00383.33)(+-=经计算得2000年人口预测值为: (亿)。

例2.温度数据的三角函数拟合问题 洛杉矶郊区在11月8日的温度记录如下在不长的时期内,气温的变化常以24小时为周期,考虑用Fourier 级数的部分和(有限项)做拟合函数。

数值分析韩旭里答案

数值分析韩旭里答案

数值分析韩旭里答案【篇一:数值分析上机题目】>1631110xxxx 材料科学与工程学院一.第2章插值法l2.7 给定数据表2-15.用newton插值公式计算3次插值多项式n3(x).表2-15x f(x)1 1.251.52.500 1.002 5.50a. matlab代码如下,two.m,%第二章,p45,练习题2第七题 clear(); x=[1,1.5,0,2];y(:,1)=[1.25,2.50,1.00,5.50];%已知点集合x和y syms t w; w(1)=1; %计算基函数序列w和差商表y,以及函数序列的权数diag(y),计算的牛顿三次多项式表述为t的函数 for j=2:length(x) fori=j:length(x)y(i,j)=(y(i,j-1)-y(i-1,j-1))/(x(i)-x(i-j+1)); i=i+1; endw(j)=prod(t-x(1:j-1)); j=j+1; enddisp(三次牛顿插值多项式为); disp(collect(w*diag(y)));plot(x,y(:,1),*); hold on;fplot(collect(w*diag(y)),[-0.5,2.5]);legend({已知点集,三次牛顿插值多项式函数},location,northwest,fontsize,14); xlabel(x,fontsize,16);ylabel(y,fontsize,16); hold off;b. 计算结果如下:二.第3章函数逼近与数据拟合a. matlab代码,three.m,%第三章函数逼近与数据拟合,p68练习题,第2题 clear(); syms x;%所使用的非线性基函数序列,用符号表示 y=abs(x);%被逼近函数f=[1,x^2,x^4];%求解法方程的系数矩阵a*gn=b,其中a和b均为行向量gn=ones(length(f),length(f)); for i=1:length(f) for j=1:length(f) gn(i,j)=int(f(i)*f(j),-1,1);j=j+1; endb(i)=int(f(i)*y,-1,1); i=i+1; enda=b/gn;%最佳平方逼近的系数行向量 disp(逼近函数表达式);disp(vpa(f*a));disp(最佳函数逼近得平方误差); disp(vpa(int(y^2,-1,1)-a*b));fplot(y,[-1,1]); hold on; fplot(a*f,[-1,1]);legend({被逼近函数,逼近函数},location,north,orientation,horizontal,fontsize,16,fontweight,b old);xlabel(x,fontsize,20,fontweight,bold);ylabel(y,fontsize,20,fontweight,bold); hold off;b. 运行结果如下:三.第4章数值积分与数值微分例4.9用romberg求积法计算定积分 01sin?(??)??a. matlab代码,four.m%romberg求积公式,外推原理 clear(); clear(); format long; a=0; b=1;t(1,1)=(b-a)/2*(f(a)+f(b));t(2,1)=1/2*t(1,1)+(b-a)/2*f((a+b)/2); t(1,2)=(4*t(2,1)-t(1,1))/(4-1);col=2;while abs(t(1,col)-t(1,col-1))0.5*10^-6%t(1,col)对应的计算的是多少步的值,col→coln关系col=col+1;%此时求得是第n+1次均分后的结果,使用的是第n次的结果,注意在矩阵 %计算的第n斜列是第n-1次均分的结果 for j=1:colif j==1h=(b-a)/2^(col-2);%使用n+1之前的第n次结果【篇二:数值分析a教学】>一、课程基本信息二、课程目的和任务“数值分析”是理工科院校计算数学、力学、物理、计算机软件等专业的学生必须掌握的一门重要的基础课程。

数值分析上机题

数值分析上机题

数值剖析上机题习题 117.(上机题)舍入偏差与有效数N11 3 11设S N2,其精准值为 。

2 2 NN 1j 2j1(1)编制按从大到小的次序S N111,计算 S N 的通用程序。

1 32 1L22N 21(2)编制按从小到大的次序S N111,计算 S N 的通用程序。

1(N L22N 2 1)2 11(3)按两种次序分别计算 S2 ,S 4 , S 6,并指出有效位数。

(编制程序时用单精度)1010 10(4)经过本上机题你理解了什么?按从大到小的次序计算 S N 的通用程序为: 按从小到大的次序计算 S N 的通用程序为:#include<iostream.h> #include<iostream.h> float sum(float N) float sum(float N) {{float j,s,sum=0; float j,s,sum=0; for(j=2;j<=N;j++) for(j=N;j>=2;j--) {{s=1/(j*j-1); s=1/(j*j-1); sum+=s;sum+=s;}}return sum;return sum;}}从大到小的次序的值从小到大的次序的值精准值有效位数从大到小从小到大65 S 10244S 10436S 106经过本上机题, 看出按两种不一样的次序计算的结果是不同样的,按从大到小的次序计算的值与精准值有较大的偏差, 而按从小到大的次序计算的值与精准值符合。

从大到小的次序计算获得的结果的有效位数少。

计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低, 我们在计算机中进行同号数的加法时,采纳绝对值较小者先加的算法,其结果的相对偏差较小。

习题 220.(上机题) Newton 迭代法(1)给定初值x0及允许偏差,编制Newton法解方程f ( x)0 根的通用程序。

(2)给定方程 f ( x) x3 / 3 x 0 ,易知其有三个根x1 3 , x20 , x3 3 。

贵州大学数值分析上机实验答案

贵州大学数值分析上机实验答案

数值分析上机实验报告课程名称:数值分析上机实验学院:机械工程学院专业:机械制造姓名:******* 学号:********** 年级:12级任课教师:***老师2012年12月30日一.已知A 与b12.38412 2.115237 -1.061074 1.112336 -0.1135840.7187191.7423823.067813 -2.031743 2.11523719.141823 -3.125432 -1.012345 2.189736 1.563849-0.784165 1.112348 3.123124 -1.061074 -3.125A =43215.5679143.123848 2.0314541.836742-1.056781 0.336993 -1.010103 1.112336 -1.012345 3.12384827.108437 4.101011-3.741856 2.101023 -0.71828 -0.037585 -0.1135842.189736 2.031454 4.10101119.8979180.431637-3.111223 2.121314 1.784317 0.718719 1.563849 1.836742 -3.741856 0.4316379.789365-0.103458 -1.103456 0.238417 1.742382 -0.784165 -1.056781 2.101023-3.111223-0.10345814.7138465 3.123789 -2.213474 3.067813 1.112348 0.336993-0.71828 2.121314-1.103456 3.12378930.719334 4.446782 -2.031743 3.123124 -1.010103-0.0375851.7843170.238417-2.213474 4.44678240.00001[ 2.1874369 33.992318 -25.173417 0.84671695 1.784317 -86.612343 1.1101230 4.719345 -5.6784392]TB ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=(2)用超松弛法求解Bx=b (取松弛因子ω=1.4,x (0)=0,迭代9次)。

数值分析上机作业1-1解析

数值分析上机作业1-1解析

数值计算方法上机题目11、实验1. 病态问题实验目的:算法有“优”与“劣”之分,问题也有“好”和“坏”之别。

所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。

希望读者通过本实验对此有一个初步的体会。

数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。

病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。

问题提出:考虑一个高次的代数多项式∏=-=---=201)()20)...(2)(1()(k k x x x x x p (E1-1)显然该多项式的全部根为l ,2,…,20,共计20个,且每个根都是单重的(也称为简单的)。

现考虑该多项式方程的一个扰动0)(19=+xx p ε (E1-2)其中ε是一个非常小的数。

这相当于是对(E1-1)中19x 的系数作一个小的扰动。

我们希望比较(E1-1)和(E1-2)根的差别,从而分析方程(E1-1)的解对扰动的敏感性。

实验内容:为了实现方便,我们先介绍两个 Matlab 函数:“roots ”和“poly ”,输入函数u =roots (a )其中若变量a 存储1+n 维的向量,则该函数的输出u 为一个n 维的向量。

设a 的元素依次为121,...,,+n a a a ,则输出u 的各分量是多项式方程0...1121=++++-n n n n a x a x a x a的全部根,而函数b=poly(v)的输出b 是一个n +1维变量,它是以n 维变量v 的各分量为根的多项式的系数。

可见“roots ”和“Poly ”是两个互逆的运算函数.ve=zeros(1,21); ve(2)=ess;roots(poly(1:20))+ve)上述简单的Matlab 程序便得到(E1-2)的全部根,程序中的“ess ”即是(E1-2)中的ε。

实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。

数值分析计算实习题

数值分析计算实习题

1.下列数据点的插值x 0 1 4 9 16 25 36 49 64y 0 1 2 3 4 5 6 7 8可以得到平方根函数的近似,在区间[0,64]上作图.(1)用这9个点作8次多项式插值Ls(x).(2)用三次样条(第一边界条件)程序求S(x).从得到结果看在[0,64]上,哪个插值更精确;在区间[0,1]上,两种插值哪个更精确?解:(1)拉格朗日插值多项式,求解程序如下syms x l;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];n=length(x1);Ls=sym(0);for i=1:nl=sym(y1(i));for k=1:i-1l=l*(x-x1(k))/(x1(i)-x1(k));endfor k=i+1:nl=l*(x-x1(k))/(x1(i)-x1(k));endLs=Ls+l;endLs=simplify(Ls) %为所求插值多项式Ls(x).输出结果为Ls =-/*x^2+95549/72072*x-1/00*x^8-2168879/0*x^4+19/0*x^7+657859/*x^3+33983/ 0*x^5-13003/00*x^6(2)三次样条插值,程序如下x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];x2=[0:1:64];y3=spline(x1,y1,x2);p=polyfit(x2,y3,3); %得到三次样条拟合函数S=p(1)+p(2)*x+p(3)*x^2+p(4)*x^3 %得到S(x)输出结果为:S =/6464-2399/88*x+/1984*x^2+2656867/624*x^3(3)在区间[0,64]上,分别对这两种插值和标准函数作图,plot(x2,sqrt(x2),'b',x2,y2,'r',x2,y3,'y')蓝色曲线为y=函数曲线,红色曲线为拉格朗日插值函数曲线,黄色曲线为三次样条插值曲线可以看到蓝色曲线与黄色曲线几乎重合,因此在区间[0,64]上三次样条插值更精确。

数值分析实验(参考答案)

数值分析实验(参考答案)

数值分析上机实验学生姓名: 学号: 教师:实验1:1. 实验项目的性质和任务通过上机实验,使学生对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。

2.教学内容和要求 1)对高阶多多项式201()(1)(2)(20)()k p x x x x x k ==---=-∏编程求下面方程的解 19()0p x x ε+=并绘图演示方程的解与扰动量ε的关系。

Matlab 程序:x=1:20;y=zeros(1,20); ve=zeros(1,21); plot(x,y,'o') hold on ; pause; for x=1:5ve(2)=10^(-x);e=roots(poly(1:20)+ve);plot(e,'*') hold on pause; end0510152025303540-20-15-10-5051015202)对2~20n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组 n H x b =最后,用矩阵分解方法求解方程组,并分析计算结果。

Matlab 程序:for n=2:20; H=hilb(n); ca=cond(H,2) x=(1:n)'; b=H*x; [L,U]=lu(H); y=L\b;x1=U\yplot(x,x,'o',x1,x1,'*') hold on pause; end-500-400-300-200-100100200300400500-500-400-300-200-10001002003004005003)对函数 21()[1,1]125f x x x=∈-+的Chebyshev 点 (21)cos()1,2,...,12(1)kk x k n n π-==++编程进行Lagrange 插值,并分析插值结果。

Matlab 程序:function y=lagrangen(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i);s=0;for k=1:nL=1;for j=1:nif j~=kL=L*(z-x0(j))/(x0(k)-x0(j));endends=s+L*y0(k);endy(i)=s;endy;for n=5:20x=-1:0.01:1; y=1./(1+25*x.^2);plot(x,y,'r')hold onk=n+1:-1:1;x0=cos((2*k-1)*pi./(2*(n+1))),y0=1./(1+25*x0.^2);x=-1:0.01:1; y1=lagrangen(x0,y0,x);plot(x0,y0,'o',x,y1), pausehold off end-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2-1-0.8-0.6-0.4-0.200.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.81。

东南大学数值分析上机题c语言版

东南大学数值分析上机题c语言版

数值分析上机报告姓名:学号:专业:2013年10月27日第一章舍入误差与有效数 设2211NN j S j ==-∑,其精确值为1311221N N ⎛⎫-- ⎪+⎝⎭。

(1)编制按从大到小的顺序22211121311N S N =+++--- ,计算N S 的通用程序。

(2)编制按从小到大的顺序2221111(1)121N S N N =+++---- ,计算NS 的通用程序。

(3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。

(编制程序时用单精度) (4)通过本上机题,你明白了什么?解: (1)、(2)题程序见电子版(3)按从大到小顺序:210S =0.740049 有效位数6位 410S =0.749852 有效位数3位 610S =0.749852 有效位数3位 按从小到大顺序:210S =0.740050 有效位数5位 410S =0.749900 有效位数6位610S =0.749999 有效位数6位(4)通过上述实验数据可以看出此次算法使用从小到大的顺序进行得到的数据相对而言更精确,可以得到这样的启示:在计算数值时,要先分析不同算法对结果的影响,避免大数吃小数的现象,找出能得到更精确的结果的算法。

第二章(上机题)Newton 迭代法(1)给定初值0x 及容许误差ε,编制Newton 法解方程()0f x =根的通用程序。

(2)给定方程3()/30f x x x =-=,易知其有三个根1x *=,20x *=,3x *=1.由Newton 方法的局部收敛性可知存在0δ>,当0(,)x δδ∈-时,Newton 迭代序列收敛于根2x *。

试确定尽可能大的δ。

2.试取若干初始值,观察当0(,1)x ∈-∞-,(1,)δ--,(,)δδ-,(,1)δ,(1,)∞时Newton 序列是否收敛以及收敛于哪一个根。

(3)通过本上机题,你明白了什么? 解:(2)1 取esp=0.1,即步长为0.1时,由程序(见电子版)算出max δ=0.78。

数值分析上机题

数值分析上机题

上机题1舍入误差与有效数: 设2211N N j S j ==-∑,其精确值为1311()221N N --+。

(1) 编制按从大到小的顺序222111+2131N 1N S =++---…,计算N S 的通用程序; (2) 编制按从小到大的顺序222111+N 1N-1121N S =++---…(),计算N S 的通用程序; (3) 按两种顺序分别计算246101010S ,S ,S ,并指出有效位数(编制程序时用单精度);(4) 通过本上机题你明白了什么?Matlab 代码:Sb=single(0); %定义数据类型为单精度Ss=single(0);y=single(0);Y=single(0);N=single(2);a=1000000;while(1) %从大到小相加Y=1/(N^2-1);Sb=Sb+Y;if(N>=a)break;endN=N+1;endfprintf('Sb[%d]=%10.9f\n',N,Sb)n=single(a);while(1) %从小到大相加y=1/(n^2-1);Ss=Ss+y;if(n<=2)break;endn=n-1;endfprintf('Ss[%d]=%10.9f\n',a,Ss)St=(3/2-1/a-1/(1+a))/2; %准确值fprintf('St[%d]=%10.9f\a',a,St)分别计算246101010S ,S ,S 值为:Sb[100]=0.740049481Ss[100]=0.740049541St[100]=0.740049505从大到小S 计算有效位数为6位,从小到大为7位;Sb[10000]=0.749852121Ss[10000]=0.749899983St[10000]=0.749900005从大到小S 计算有效位数为3位,从小到大为3位;Sb[1000000]=0.749852121Ss[1000000]=0.749999046St[1000000]=0.749999000从大到小S 计算有效位数为3位,从小到大为7位;心得:按从小到大计算的有效数字要多与按从大到小计算所得。

数值分析第五版上机实验答案实验一~实验六

数值分析第五版上机实验答案实验一~实验六

实验一Lagrange插值算法实验目的:掌握拉格朗日(Lagrange)插值算法的基本原理,理解插值基函数的性质,掌握基本的误差概念。

学习用计算机语言编写程序实现算法。

[参考程序]#include "stdio.h"//定义插值节点及所求点数据,根据题目不同而修改double x[]={0.32,0.34,0.36};double y[]={0.314567,0.333487,0.352274};double xx=0.3367;// Lagrange插值算法函数,利用循环计算具有对称性的基函数和最终结果double Lagrange(double xxx,int n){int i;double result=0,temp;for(i=0;i<=n;i++){temp=1;for(int j=0;j<= n;j++){if(j!=i){temp=temp*(xxx-x[j])/(x[i]-x[j]);}}result=result+temp*y[i];}return result;}void main(){int n;printf("Please input n:");scanf("%d",&n);printf("Sin(%f) = %f \n",xx,Lagrange(xx,n));}实验二Newton均差插值算法实验目的:掌握Newton均差插值算法的基本原理,理解均差的概念,掌握均差表的计算方法。

学习用计算机语言编写程序实现算法。

[参考程序]#include "stdio.h"#define N 10double f[N][N];//定义插值节点及所求点数据,根据题目不同而修改double x[]={0.4,0.55,0.65,0.80,0.90,1.05};double y[]={0.41075,0.57815,0.69675,0.88811,1.02652,1.25382};double fx(int i,int j);double S(int start,int end,double xx);main(){int loopi,loopj,n;double result,xx;scanf("%d",&n);scanf("%lf",&xx);for(loopi=0;loopi<=n;loopi++){//零阶均差作为均差表二维数组的第0列f[loopi][0]=y[loopi];}//循环计算均差表中的所有数据for(loopi=1;loopi<=n;loopi++){for(loopj=1;loopj<=loopi;loopj++){f[loopi][loopj]=fx(loopi,loopj);}}result=S(0,n,xx);printf("Result is: %f",result);return 1;}//求均差的函数double fx(int i,int j){if(j==0){return f[i][j];}else{//这种表示方法需要注意两个x的下标return (fx(i,j-1)-fx(i-1,j-1))/(x[i]-x[i-j]);}}//用秦九韶算法计算插值多项式结果double S(int start,int end,double xx){if(start==end){return f[end][end];}else{return (S(start+1,end,xx)*(xx-x[start])+f[start][start]);}}实验三Newton差分插值算法实验目的:掌握Newton差分插值算法的基本原理,理解差分的概念,掌握差分表的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析 课程实验指导书实验一 非线性方程求根一、问题提出设方程3()310f x x x =--=有三个实根**121.8793,0.34727,x x ==-*3 1.53209x =-现采用下面六种不同计算格式,求 f(x)=0的根*1x 或*2x1、 231x x x += 2、 313x x -=3、 x =4、 213x x =-5、 x =6、 32131()31x x x x x --=--二、要求1、编制一个程序进行运算,最后打印出每种迭代格式的敛散情况;2、用事后误差估计1k k x x ε+-<来控制迭代次数,并且打印出迭代的次数;3、初始值的选取对迭代收敛有何影响;4、分析迭代收敛和发散的原因。

三、目的和意义1、通过实验进一步了解方程求根的算法;2、认识选择计算格式的重要性;3、掌握迭代算法和精度控制;4、明确迭代收敛性与初值选取的关系。

四、实验学时:2学时五、实验步骤:1.进入matlab 开发环境;2.根据实验容和要求编写程序; 3.调试程序; 4.运行程序; 5.生成报告实验二 线方程组的直接解法一、问题提出给出下列几个不同类型的线性方程组,请用适当算法计算其解。

1、 设线性方程组123456789104231210000865365010042213210310215131194426167332386857172635021342530116101191734212246271392012400183248631x x x x x x x x x x --⎡⎡⎤⎢⎢⎥--⎢⎢⎥⎢⎢⎥---⎢⎢⎥---⎢⎢⎥⎢⎢⎥---⎢⎢⎥--⎢⎢⎥⎢⎢⎥--⎢⎢⎥---⎢⎥⎢⎥-⎢⎥⎢⎥-----⎣⎦⎣5123234613381921⎤⎡⎤⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥=⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎦(1,1,0,1,2,0,3,1,1,2)T x *=--2、 设对称正定阵系数阵线方程组12345678424024000221213206411418356200216143323218122410394334411142202531011421500633421945x x x x x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢---⎢⎥⎢⎥⎢--⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦⎥⎥⎥⎥(1,1,0,2,1,1,0,2)T x *=--3、 三对角形线性方程组123456789104100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014x x x x x x x x x x -⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎢⎥--⎢⎢⎥⎢⎢⎥-⎣⎦⎣⎦7513261214455⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥-⎣⎦*(2,1,3,0,1,2,3,0,1,1)Tx =---二、要求1、 对上述三个方程组分别利用Gauss 顺序消去法与Gauss 列主元消去法;平方根法与改进平方根法;追赶法求解(选择其一);2、 应用结构程序设计编出通用程序;3、 比较计算结果,分析数值解误差的原因;4、 尽可能利用相应模块输出系数矩阵的三角分解式。

三、目的和意义1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、 通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。

四、实验学时:2学时五、实验步骤:1.进入matlab 开发环境;2.根据实验容和要求编写程序; 3.调试程序; 4.运行程序; 5.生成报告实验三 解线性方程组的迭代法一、问题提出对实验四所列目的和意义的线性方程组,试分别选用Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 方法计算其解。

二、要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如34510,10,10ε---=由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。

三、目的和意义1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法比较;2、运用所学的迭代法算法,解决各类线性方程组,编出算法程序;3、体会上机计算时,终止步骤(1)k kxx ε+∞-<或k >(予给的迭代次数),对迭代法敛散性的意义;4、 体会初始解0x ,松弛因子的选取,对计算结果的影响。

四、实验学时:2学时五、实验步骤:1.进入mablab 开发环境;2.根据实验容和要求编写程序; 3.调试程序; 4.运行程序; 5.生成报告实验四 函数插值方法一、问题提出对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==L 。

试用Lagrange 公式求其插值多项式或分段线性插值。

数据如下: (1)求五次Lagrange 多项式5L ()x ,和分段线性插值,计算(0.596)f ,(0.99)f 的值。

(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈ ) (试构造Lagrange 多项式6,计算的,值。

(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ )二、要求1、 利用Lagrange 插值公式00,()n ni n k k i i k k i x x L x y x x ==≠⎛⎫-= ⎪-⎝⎭∑∏编写出插值多项式程序;2、 给出插值多项式或分段三次插值多项式的表达式;3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;4、 对此插值问题用Newton 插值多项式其结果如何。

Newton 插值多项式如下:110,()()[,,]()k nnj kk j j kN x f x f x x x x -==≠=+•-∑∏L其中: 00,0()()[,,]ki ki i j j j ikf x x x f x x ==≠-=∑∏L三、目的和意义1、 学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、 明确插值多项式和分段插值多项式各自的优缺点;3、 熟悉插值方法的程序编制;4、 如果绘出插值函数的曲线,观察其光滑性。

四、实验学时:2学时五、实验步骤:1.进入matlab 开发环境;2.根据实验容和要求编写程序; 3.调试程序; 4.运行程序; 5.生成报告实验五 函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。

二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为23123()t a t a t a t ϕ=++;3、打印出拟合函数()t ϕ,并打印出()j t ϕ与()j y t 的误差,1,2,,12j =L ;4、另外选取一个近似表达式,尝试拟合效果的比较;5、* 绘制出曲线拟合图。

三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系。

四、实验学时:2学时五、实验步骤:1.进入matlab 开发环境;2.根据实验容和要求编写程序; 3.调试程序; 4.运行程序; 5.生成报告实验六 数值积分与数值微分一、问题提出选用复合梯形公式,复合Simpson 公式,Romberg 算法,计算(1)0I=( 1.5343916)I ≈⎰(2)1sin I=((0)1,0.9460831)xdx f I x =≈⎰(3) 12I=4xe dx x +⎰ (4) 12ln(1)I=1x dx x ++⎰二、要求1、 编制数值积分算法的程序;2、 分别用两种算法计算同一个积分,并比较其结果;3、 分别取不同步长()/h b a n =-,试比较计算结果(如n = 10, 20等);4、 给定精度要求ε,试用变步长算法,确定最佳步长。

三、目的和意义1、 深刻认识数值积分法的意义;2、 明确数值积分精度与步长的关系;3、 根据定积分的计算方法,可以考虑二重积分的计算问题。

四、实验学时:2学时 五、实验步骤:1.进入matlab 开发环境;2.根据实验容和要求编写程序; 3.调试程序; 4.运行程序; 5.生成报告实验七 矩阵特征值问题计算一、问题提出利用冪法或反冪法,求方阵()ij n n A a ⨯=的按模最大或按模最小特征值及其对应的特征向量。

设矩阵A 的特征分布为:1231n n λλλλλ-≥≥≥≥≥L 且j j j Ax x λ=试求下列矩阵之一(1) 121241116A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦求1λ,及1x 取(0)5(1,1,1),10T υε-==结果116.42106,(0.046152,0.374908,1)Tx λ≈-≈--(2) 427318251147717235312651143532875124A --⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦求16,λλ及1x 取(0)5(1,0,1,0,0,1),10Tυε-==结果:16121.30525, 1.62139,(0.8724,0.5401,0.9973,0.5644,0.4972,1.0)Tx λλ≈≈≈(3) 2112112112112A -⎡⎤⎢⎥--⎢⎥⎢⎥=--⎢⎥--⎢⎥⎢⎥-⎣⎦求1λ及1x 取(0)4(1,1,1,1,1),10T υε-==结果 3.7321λ≈(4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1254261351314312A取()()T 1,1,1,10=υ210-=ε这是一个收敛很慢的例子,迭代1200次才达到510-结果02857835.81-≈λ ()T x 564212.2,757730.0,501460.2,11--≈(5)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=611142121A有一个近似特征值42.6-,试用幂法求对应的特征向量,并改进特征值(原点平移法)。

相关文档
最新文档