《矩形的性质》教案设计
18.2.1矩形矩形的性质教案
三、教学难点与重点
1.教学重点
-核心内容:矩形的定义及其性质。
-重点讲解:
a.矩形的定义:强调矩形的特征是四个角均为直角,这是矩形区别于其他平行四边形的关键。
b.矩形的性质:特别是对边相等、对角相等、对角线互相垂直等性质,这些性质是解决矩形相关问题的关键。
四、教学流程
(ቤተ መጻሕፍቲ ባይዱ)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形矩形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状是矩形的事物?”(如桌子、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形的奥秘。
在课程结束后,我觉得有些地方可以做得更好。比如,在讲解矩形性质的应用时,可以引入更多实际的例子,让学生们看到数学知识是如何在现实世界中发挥作用的。此外,我也应该提供更多的机会让学生们自己尝试解决问题,这样他们才能真正地掌握这些知识点。
实践活动环节,学生们分组讨论和实验操作都非常积极。他们通过实际测量和计算,加深了对矩形周长和面积计算方法的理解。这个环节也让我看到,学生们在团队合作中能够互相学习,共同解决问题。
然而,我也注意到,在小组讨论中,有些学生较为内向,不太愿意表达自己的观点。这让我意识到,在未来的课堂中,我需要更加注意鼓励和引导这些学生,让他们在讨论中更加积极。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形的基本概念、性质、周长和面积的计算方法。同时,我们也通过实践活动和小组讨论加深了对矩形应用的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
矩形的性质教学设计方案
矩形的性质定理和判定定理教学设计方案一、教学目标:(一)、情感态度与价值观:1.通过小组合作展示活动,培养学生的合作精神和学习的自信心;2.通过探究学习,培养学生严谨的推理能力,体会逻辑推理的思维价值。
(二)、过程与方法:1.经历探索矩形的概念和性质的过程,渗透运动联系,从量变到质变的观点;2.通过灵活运用矩形的性质解决有关问题,渗透几何思维方法。
(三)、知识与技能:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别和联系;2.会初步运用矩形的概念和性质来解决有关问题。
二、学习者分析:中学九年级的学生,对矩形已经很熟悉了,知道矩形是特殊的平行四边形,四个角都是直角,矩形既是中心对称图形,也是轴对称图形。
这个年龄段的学生已经具备自主探究和合作学习的能力,他们喜欢动手比比画画,喜欢思考一些有挑战性的问题,喜欢向别人展示自己的成果。
三、教学重点:矩形的性质及其推论;教学难点:矩形的本质属性及性质定理的综合应用;四、复习提问:什么叫平行四边形?它和四边形有什么区别?五、引入新课:我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形.六、讲解新课:制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.矩形性质1:矩形的四个角都是直角.矩形性质2:矩形对角线相等.设问:如何用理论推理的方法来证明矩形的对角线相等呢?(让学生思考并提问回答,再让学生板书)讲矩形判定定理1,对角线相等的平行四边形是矩形。
《矩形的性质》教案设计
《矩形的性质》教案设计第一章:矩形的定义及性质1.1 矩形的定义介绍矩形的定义:矩形是一个四边形,其四个角都是直角,对边平行且相等。
通过实际例子和图形来说明矩形的特征。
1.2 矩形的性质矩形的对边平行且相等:解释矩形的两对对边分别平行且相等。
矩形的对角相等:说明矩形的对角线互相平分且相等。
矩形的对边角相等:展示矩形的相邻角互补,即相邻角的和为180度。
第二章:矩形的角特征2.1 矩形的角性质矩形的四个角都是直角:强调矩形的特点是拥有四个直角。
矩形的角和为360度:解释矩形的四个角的和总是360度。
2.2 矩形的角证明利用三角形内角和定理来证明矩形的角和为360度。
使用平行线的性质来证明矩形的角相等。
第三章:矩形的对角线性质3.1 矩形的对角线长度矩形的对角线相等:说明矩形的两条对角线相等。
利用对角线的长度来判断四边形是否为矩形。
3.2 矩形的对角线平分矩形的对角线互相平分:解释矩形的对角线互相平分对方。
利用对角线的平分性质来证明四边形是矩形。
第四章:矩形的对边性质4.1 矩形的对边平行矩形的对边平行且相等:强调矩形的两对对边分别平行且相等。
利用平行线的性质来证明矩形的对边平行。
4.2 矩形的对边相等矩形的对边相等:解释矩形的两对对边分别相等。
利用对边相等的性质来判断四边形是否为矩形。
第五章:矩形的实际应用5.1 矩形的计算矩形的面积计算:介绍矩形的面积计算公式,即长度乘以宽度。
矩形的周长计算:说明矩形的周长计算公式,即两倍的长度加上两倍的宽度。
5.2 矩形的实际应用案例通过实际例子来展示矩形在现实生活中的应用,如房间、矩形桌子等。
让学生思考并解决与矩形相关的实际问题。
第六章:矩形的对称性质6.1 矩形的轴对称性介绍矩形的轴对称性:说明矩形有两条对称轴,分别是连接对边中点的直线。
利用图形和实际例子来展示矩形的轴对称性。
6.2 矩形的中心对称性解释矩形的中心对称性:指出矩形具有中心对称性,即存在一个中心点,使得矩形的每个点关于这个中心点对称。
矩形性质教学设计
矩形的性质教学设计一、教材分析这节课是人教版八年级下册19.2.1《矩形》第一课时。
矩形是人们日常生活中应用最广泛的几何图形之一,本节课是在学生学习了平行四边形、全等三角形的相关知识的基础上学习的。
是平行四边形知识的延伸,又为学习其它特殊平行四边形提供了研究方法和学习策略,也为今后学习其他相关知识奠定了基础,起承上起下的重要作用。
二、学情分析本节课学习,学生在心理上易受到以下因素影响:一是受日常用语的影响,日常生活中的矩形常被称作长方形,容易给学生造成矩形是另一种图形的错误理解。
二是受平行四边形的影响,学生在学习矩形的性质以前,已经学习了平行四边形的性质和判定,对特殊四边形的性质有了一个初步的感知,但有些学生容易将两种图形的性质混淆,所以,在教学中要注意区别,协助学生抓住图形的本质特征。
三、教学目标1.知识目标:掌握矩形的概念、掌握矩形的相关性质;2.水平目标:培养合情推理水平,养成主动探究习惯,掌握说理的基本方法;3.情感目标:在对矩形特殊性质的探索过程中,使学生感受到图形中的对称美,体会到数学来源于生活又应用于生活,从而增强学生学习数学的兴趣。
四、教学重点和难点重点:矩形的性质及其应用。
难点:矩形性质定理、推论及特殊三角形的性质的综合应用.五、教学方法:探究式教学法、类比法六、教学过程:活动(一)复习引入1、平行四边形有哪些性质?2、我们知道三角形具有稳定性,那四边形呢?平行四边形呢?3、拿出活动的平行四边形教具实行演示,让学生观察平行四边形角的变化。
设计意图:从学生的生活实际出发,创设情境,提出问题,激发学生学习的兴趣.4、当一个角恰好为直角时,得到一个怎样的特殊的平行四边形.以图形变化为引入,让学生从变化的平行四边形中体会矩形的形成过程,多媒体动画展示矩形的形成过程——矩形的定义设计意图:通过教具演示,让学生经历了矩形概念的探究过程,自不过然地形成矩形的概念,符合学生的认知规律.——有一个内角是直角的平行四边形是矩形教师引导学生理解:图形的概念具有两方面的含义,它既是图形的一条性质,又是判别图形的条件.平行四边形只要具备了“有1个角是直角”的条件,它就是矩形;反过来,假如四边形是矩形.那么它必定是“有1个角是直角的平行四边形”.5、学生列举生活中矩形的例子多媒体展示更多生活中矩形的应用活动(二)动手实践探索性质1、问题引入:矩形是平行四边形吗?是否具有平行四边形的所有质?还具有哪些自身特有的性质?2、分小组合作探究学生用矩形纸片通过猜一猜,量一量,证一证从边、角和对角线来探索矩形的特殊性质设计意图:本环节发展学生的探究意识.激发学生探究数学问题兴趣,在演示中使学生明确矩形是特殊的平行四边形.3、多名小组代表汇报猜测的结论:(1)矩形四个角都是直角。
矩形的性质教学案
矩形的性质教学案【矩形的性质教学案】1. 引言矩形是初中数学中的基本几何概念之一,它具有独特的性质和特点。
本教学案旨在通过生动有趣的方式介绍矩形的性质,帮助学生深入理解并掌握相关知识。
2. 知识背景矩形是一种特殊的四边形,具有如下性质:- 有四条边,且各边相等成对;- 有四个角,且两两相等;- 相邻角互补,且每个角都是直角。
3. 教学目标通过本节课的学习,学生将能够:- 理解矩形的定义及其性质;- 区分矩形与其他四边形的区别;- 运用矩形的性质解决实际问题。
4. 教学过程(1)引入- 引导学生观察四边形图片,提问:"这是什么图形?有什么特点?"- 学生回答后,可引导他们发现矩形的性质,如边相等、角相等等。
(2)定义与性质讲解- 定义矩形:具有四边相等且两两平行的四边形。
- 介绍矩形的性质:边相等、角相等、相邻角互补、每个角都是直角。
(3)矩形与其他四边形的区别- 导入四边形的定义和分类,引导学生发现矩形与其他四边形的差异。
- 引导学生观察并比较矩形与正方形、菱形、平行四边形等图形的特点。
(4)实例演练- 设计一些实例,让学生运用矩形的性质来解决问题,例如计算矩形的周长和面积。
- 引导学生用数学符号和公式表达解题过程,加深对矩形性质的理解。
(5)探究拓展- 提出一些问题,引发学生对矩形更深层次的思考,如:如果一条对角线被切成两段,这两段的关系是什么?- 鼓励学生借助实物模型、图纸等辅助工具进行探究,培养他们的实践动手能力。
5. 反思总结- 总结学生对矩形的认识和解题经验,让他们形成对知识点的深刻理解。
- 强调矩形的实际应用领域,激发学生对数学的兴趣和学习积极性。
6. 作业布置- 布置相关作业,巩固学生对矩形性质的掌握程度,如练习题、课外拓展等。
7. 扩展拓展- 根据学生对矩形性质的掌握情况,可适当增加难度,介绍更高级的四边形概念、推理题等。
8. 结束语- 强调数学知识的练习和应用的重要性,并鼓励学生勇于面对数学挑战。
矩形的性质课程设计
矩形的性质课程设计一、教学目标矩形的性质课程设计的教学目标分为知识目标、技能目标和情感态度价值观目标。
知识目标:学生能够理解矩形的定义、性质和判定方法,掌握矩形的对角线性质、对边平行等特征。
技能目标:学生能够运用矩形的性质解决几何问题,提高空间想象能力和逻辑思维能力。
情感态度价值观目标:学生能够培养对数学学科的兴趣,增强自信心,培养合作探究的精神。
二、教学内容矩形的性质课程设计以人教版初中数学八年级上册第五章《平行四边形》为基础,重点讲解矩形的性质。
1.矩形的定义和性质2.矩形的判定方法3.矩形的对角线性质4.矩形对边平行的证明5.矩形在实际应用中的举例三、教学方法为了激发学生的学习兴趣和主动性,本课程采用多种教学方法:1.讲授法:教师通过讲解矩形的性质和判定方法,引导学生理解知识点。
2.讨论法:学生分组讨论矩形的性质,培养合作精神和表达能力。
3.案例分析法:教师通过举例分析矩形在实际应用中的作用,提高学生的应用能力。
4.实验法:学生在实验室进行矩形性质的实验,增强实践操作能力。
四、教学资源1.教材:人教版初中数学八年级上册《平行四边形》2.参考书:初中数学教学指导书、矩形性质的相关论文和书籍3.多媒体资料:矩形性质的PPT、动画演示、实况视频等4.实验设备:直尺、三角板、剪刀、透明胶带等五、教学评估本课程的教学评估分为平时表现、作业和考试三个部分,以全面客观地评估学生的学习成果。
1.平时表现:通过观察学生在课堂上的参与度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
2.作业:布置与课程内容相关的练习题,要求学生在规定时间内完成,评估学生的掌握情况。
3.考试:定期进行课程考试,测试学生对矩形性质的掌握程度,包括选择题、填空题、解答题等题型。
六、教学安排本课程的教学安排如下:1.教学进度:按照教材和大纲的要求,合理安排每个知识点的教学顺序和深度。
2.教学时间:每节课安排45分钟,确保在有限的时间内完成教学任务。
矩形的性质教案
矩形的性质教案一、教学目标1. 知识目标:了解矩形的定义和性质,并能应用到解决问题中;2. 技能目标:能够识别和描述矩形的特点、计算和应用矩形的性质;3. 情感目标:培养学生对几何图形的兴趣和探索精神。
二、教学重点1. 矩形的定义和性质;2. 理解和应用矩形的性质。
三、教学难点能够熟练应用矩形的性质解决相关问题。
四、教学准备教材课件、教学实例、刻画矩形的教具等。
五、教学过程Step 1:引入新知1. 背景导入:提问学生熟悉的几何图形,引导学生探讨这些图形的性质;2. 提问:你们知道矩形是什么图形吗?它有什么特点?3. 引入新概念:通过展示矩形的图形,引导学生认识矩形,并给出矩形的定义。
Step 2:揭示矩形的性质1. 让学生观察矩形的图形,并识别出其中的特点,如4个内角都是直角、对边相等等;2. 呈现课件或使用教具,让学生刻画矩形的性质,如四边相等、两两相对边平行等;3. 通过教学实例,引导学生发现并总结矩形的其他性质,如对角线相等、对角线相交于中点等。
Step 3:应用矩形的性质1. 给学生出示一些具体问题,引导他们运用所学的矩形性质进行解决,如计算矩形的面积、判断一个图形是否为矩形等;2. 让学生自主或合作解决问题,并进行讨论和分享。
Step 4:巩固和拓展1. 教师总结矩形的性质,让学生回答相关问题进行巩固;2. 提供拓展问题,让学生思考更复杂的情况,如矩形的旋转和倾斜等;3. 布置作业,让学生进一步应用所学知识解决问题。
六、板书设计矩形的定义和性质:1. 四个内角都是直角;2. 四边相等;3. 两两相对边平行;4. 对角线相等;5. 对角线相交于中点。
七、教学反思通过本课的教学,学生能够了解到矩形的定义和性质,并能够运用矩形的性质进行解决问题。
同时,在教学过程中引导学生进行思考和讨论,培养了学生的探索精神和数学思维能力。
在巩固和拓展环节,通过提供多样化的问题,激发学生的深入思考和拓展思维。
八年级数学下册《矩形的性质定理》教案、教学设计
(一)教学重难点
1.理解并掌握矩形的定义和性质定理,特别是对角线相等、四个角为直角的特点。
2.能够运用矩形性质进行有效的几何证明,解决实际问题。
3.消除学生对几何证明的恐惧心理,提高他们的逻辑思维能力和解决问题的策略。
(二)教学设想
1.教学导入:
-通过生活中常见的矩形物体,如门、窗户等,引导学生观察和思考矩形的特征,激发学生的学习兴趣。
2.教学目标:
-培养学生的合作意识和团队精神,提高交流沟通能力。
-深化学生对矩形性质定理的理解,提高他们的几何证明能力。
(四)课堂练习
1.教学活动设计:
-设计不同难度的练习题,包括选择题、填空题和证明题,让学生独立完成。
-教师对学生的解答进行批改,及时反馈,纠正错误。
-对学生普遍存在的问题进行讲解,巩固矩形性质定理的相关知识。
4.能够运用矩形性质解决实际生活中的问题,如计算矩形面积、周长等。
(二)过程与方法
在教学过程中,采用以下方法引导学生学习:
1.采用直观演示法,通过动态图示、实物模型等方式,让学生直观地感受矩形的性质,提高学生的空间想象力。
2.运用探究法,引导学生通过观察、实践、讨论等途径,发现并总结矩形的性质定理,培养学生的观察力和归纳能力。
-使学生掌握矩形的性质定理,并了解其在实际问题中的应用。
-培养学生的空间想象力和几何直观能力。
(三)学生小组讨论
1.教学活动设计:
-将学生分成小组,每组探讨一个矩形性质定理,如对边相等、对角线相等等。
-每组选出一名代表汇报讨论成果,其他组成员可以补充。
-教师巡回指导,解答学生的疑问,引导学生深入探讨矩形性质定理的本质。
-布置具有挑战性的课后作业,鼓励学生在课后继续探索矩形的相关性质。
矩形的性质教案
矩形的性质教案主题:矩形的性质目标:1. 了解矩形的定义及其性质2. 能够根据已知条件判断一个四边形是否为矩形3. 探索矩形的面积和周长教学步骤:一、引入:1. 展示一张矩形的图片,引发学生对矩形的认识和兴趣。
2. 提问:你们觉得什么样的四边形才是矩形?请举例说明。
二、讲解矩形的定义:1. 定义:矩形是一种四边形,它的四边都是直角,且对角线相等。
2. 解释:四边都是直角意味着矩形的四个内角都是直角(90°),对角线相等意味着矩形的两条对角线的长度相等。
三、探索矩形的性质:1. 讲解矩形的性质:a. 对边相等:矩形的相对边(即相对的两条边)长度相等;b. 对角线相等:矩形的两条对角线长度相等;c. 直角四个:矩形有四个直角(内角为90°);d. 对角平分:矩形的两条对角线相交于一个点,且将对角线分成两段长度相等的部分;e. 互为补角:矩形的内角相互补角,即一对内角和为180°;f. 对边平行:矩形的相对边互相平行。
2. 练习判断矩形:a. 准备一些练习题,给出一些四边形的信息,要求学生判断该四边形是否为矩形,并解释判断的依据。
四、矩形的周长和面积:1. 计算矩形的周长:a. 提问:大家知道如何计算矩形的周长吗?请举例说明计算方法。
b. 引导学生发现矩形的周长为两条相等的长边和两条相等的短边之和。
c. 给出一个矩形的例子,让学生自己计算周长。
2. 计算矩形的面积:a. 提问:大家知道如何计算矩形的面积吗?请举例说明计算方法。
b. 引导学生发现矩形的面积为长边乘以短边。
c. 给出一个矩形的例子,让学生自己计算面积。
五、总结:1. 总结矩形的定义及其性质,强调矩形的四个直角角度、两条对角线相等、对边平行等重要性质。
2. 强调矩形的面积和周长计算方法。
六、作业:1. 完成课堂练习题,巩固对矩形的判断能力。
2. 给出一些矩形的长和宽的数值信息,要求学生计算出矩形的周长和面积。
扩展活动:1. 制作一个探索矩形性质的小实验,用纸张或建模材料制作不同形状的四边形,让学生观察它们的性质并判断是否为矩形。
矩形的性质公开课教案+说课稿
矩形的性质》教学设计对角线:对角线互相平分对称性:中心对称图形2. 但矩形是特殊的平行四边形,它还具有一些特殊性质。
下面我们来进一步研究矩形的其他性质。
活动:(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;(2)根据测量的结果,猜想结论。
当矩形的大小不断变化时,发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等.活动:请同学们拿出准备好的矩形纸片,折一折,观察并思考。
①矩形是不是中心对称图形? 如果是,那么对称中心是什么?②矩形是不是轴对称图形?如果是,那么对称轴有几条? 结论:矩形是轴对称图形,它有两条对称轴。
3. 请你总结一下矩形有哪些性质?归纳概括矩形的性质:从边来说,矩形的对边平行且相等;从角来说,矩形的四个角都是直角;从对角线来说,矩形的对角线相等且互相平分;从对称性来说,矩形既是轴对称图形,又是中心对称图形。
4. 问题:矩形具有而一般平行四边形不具有的性质是( C )A. 对角相等B. 对边相等C. 对角线相等D.对角线互相平分第三环节:层层递进,推理论证提问:怎样证明你的猜想?形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量,动脑思考, 动口讨论, 自主发现矩形的性质。
学生完全可以通过自己的操作、观察、猜想,最终得到矩形的对称特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。
教师写出定理1、2 的已知、求证,请同学分析思路,写出证明过程后互相订正交流。
该环节重在训练学生规范写出推理过程。
(2) AC=BD答案参考课本例题) 第四环节:建构新知,发展问题2)在 Rt △ABC 中,点 O 是 AC 的中点,线第六环节:反思交流,反馈提高1. 本节课你学到了什么?矩形的性质矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条 对角线把矩形分成两对全等的等腰三角形。
八年级数学下册《矩形的性质》教案、教学设计
5.使学生认识到数学知识在实际生活中的广泛应用,体会数学的价值,增强学生的应用意识。
二、学情分析
八年级的学生已经具备了一定的几何基础,掌握了平行四边形的基本性质,对于图形的认识和性质的探究有了一定的经验。在此基础上,学生对矩形的性质的学习将更加深入和具体。然而,学生在解决实际问题时,可能还未能熟练运用矩形性质,需要教师在教学过程中进行引导和指导。此外,学生的空间想象力、逻辑思维能力以及合作交流能力等方面还存在一定差异,因此,在教学过程中,应关注个体差异,因材施教,提高学生的学习效果。在此基础上,教师要注重激发学生的学习兴趣,引导学生主动参与课堂,培养学生的自主学习能力,使学生在探究矩形性质的过程中,提升几何素养,增强数学应用意识。
(二)教学设想
1.创设情境,引入新课:通过展示生活中的矩形实例,如窗户、书本、电视屏幕等,引导学生观察和思考这些图形的共同特征,从而引出矩形的定义和性质。
2.自主探究,合作交流:给予学生足够的时间和空间,让他们通过画图、测量、计算等方式自主探究矩形的性质。在此基础上,组织学生进行小组讨论,分享各自发现,共同归纳总结矩形的性质。
2.学生自主总结,用自己的话复述矩形性质,提高记忆效果。
3.强调矩形性质在实际生活中的应用,激发学生学习数学的兴趣。
4.布置课后作业,巩固所学知识,为下一节课的学习做好准备。
五、作业布置பைடு நூலகம்
1.完成课本上与本节课相关的练习题,巩固矩形性质的基本知识,特别是对边平行且相等、对角线相等、四个角为直角等特性的理解。
人教版八年级下册数学第1课时 矩形的性质教案
18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质教学设计课题矩形的性质授课人素养目标1.理解矩形的概念,明确矩形与平行四边形的区别和联系,体会特殊与一般之间的关系.2.探究矩形的性质和识别条件,提高学生的推理能力.3.利用矩形的性质定理进行证明和计算.4.掌握直角三角形斜边上的中线的性质,会用它解决求线段长或线段倍分关系的问题..教学重点矩形性质定理和直角三角形斜边上的中线的性质的理解与运用.教学难点矩形性质定理和直角三角形斜边上的中线的性质的探究与证明.教学活动教学步骤师生活动活动一:动态演示,导入新课设计意图动态演示平行四边形变成矩形的过程,使学生了解矩形的概念.【情境导入】拿一个活动的平行四边形教具,轻轻拉动一个点,它还是平行四边形吗?使一个角是直角,这时它是什么图形?(动画演示拉动过程如图)概念引入:有一个角是直角的平行四边形叫做矩形,也就是长方形.仔细观察下列实际生活中的图片,你觉得哪些是矩形的形象?矩形是生活中很常见的图形,你还能列举出矩形在生活中应用的其他例子吗?我们一起来探讨一下矩形的性质吧!【教学建议】学生根据生活经验及图片思考矩形的概念,教师总结矩形的概念.活动二:动手操作,探究新知设计意图通过动手操作,让学生在活动中得出矩形的性质,印象更加深刻.探究点1矩形的性质如图,取一张矩形纸片,用直尺画出它的对角线.1.矩形是特殊的平行四边形,它和平行四边形相比,有什么特殊之处?答:有一个角是直角.2.平行四边形的对角相等,邻角互补,那么矩形的四个角会有怎样的关系呢?答:矩形的四个角都相等,都是直角.3.测量我们刚刚折纸时的两条对角线长度,这两个长度有什么关系?答:两条对角线长度相等.下面我们一起来验证一下:1.如图,在矩形ABCD 中,∠A =90°.求证:∠A =∠B =∠C =∠D =90°.证明:∵矩形ABCD 是特殊的平行四边形,∴AB ∥CD ,∠A =∠C.∵∠A =90°,∴∠C =90°,∠D =180°-90°=90°.同理∠B =90°.∴∠A =∠B =∠C =∠D =90°.【教学建议】告诉学生:矩形作为特殊的平行四边形,除了具有平行四边形的所有性质外,还有一些特殊性质.注意结合教材P53练习第3题让学生熟悉矩形的对称性.教学步骤师生活动设计意图引导学生发现直角三角形斜边上的中线的性质.2.如图,四边形ABCD 是矩形.求证:AC =BD.证明:∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AB =DC.又BC =CB ,∴△ABC ≌△DCB(SAS ).∴AC =BD.归纳总结:矩形的四个角都是直角;矩形的对角线相等.【对应训练】1.矩形具有而一般平行四边形不具有的性质是(D )A .对边平行B .对边相等C .对角相等D .对角线相等2.如图,在矩形ABCD 中,E 是AB 的中点,连接DE ,CE.求证:△ADE ≌△BCE.证明:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠B =90°.∵E 是AB 的中点,∴AE =BE.∴△ADE ≌△BCE(SAS ).3.教材P 53练习第3题.探究点2直角三角形斜边上的中线的性质如图,矩形ABCD 的对角线AC ,BD 相交于点O.我们观Rt △ABC ,在Rt △ABC 中,BO 是斜边AC 上的中线,BO 与AC 有什么关系?1.矩形ABCD 的对角线AC 把矩形分成了两个三角形,在△ABC 中∠ABC 是什么角?答:直角.2.AO 与CO 有什么关系?BO 与DO 有什么关系?答:AO =CO ,BO =DO.3.BO 与BD 有什么关系?与AC 又有什么关系?答:BO =12BD ,BO =12AC.归纳总结:直角三角形斜边上的中线等于斜边的一半.例1(教材P 53例1)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,∠AOB =60°,AB =4,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的性质.根据矩形的这个性质和已知条件,可得△OAB 是等边三角形,因此可求对角线的长度.解:∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分.∴OA =OB.又∠AOB =60°,∴△OAB 是等边三角形.∴OA =AB =4.∴AC =BD =2OA =2×4=8.【对应训练】1.如图,在△ABC 中,∠ACB =90°,AD =BD ,CD =4,则AB 的长为(A )A .8B .6C .4D .2教学步骤师生活动2.如图,O是矩形ABCD 对角线的交点,∠AOD =120°,AE 平分∠BAD ,则∠EAC =15°.3.教材P 53练习第2题.活动三:运用新知,巩固理解设计意图巩固学生对矩形性质的认知,同时要注意直角三角形斜边上的中线的性质.例2如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,且BE ∶ED =1∶3,AD =6cm .求AE 的长.解:∵四边形ABCD 是矩形,∴BO =OD =12BD =12AC =OA ,∠BAD =90°.∵BE ∶ED =1∶3,∴BE =OE.又AE ⊥BD ,∴AB =AO =BO.∴△ABO 是等边三角形.∴∠ABO =60°.∴∠ADE =90°-60°=30°.∴AE =12AD =12×6=3(cm ).【对应训练】1.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,连接EF.若AB =6cm ,BC =8cm ,则EF 的长是(D )A .2.2cm B .2.3cm C .2.4cm D .2.5cm2.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若AB =5,AD =12,求四边形ABOM 的周长.解:∵四边形ABCD 是矩形,∴BC =AD =12,CD =AB =5,∠ABC =90°.∴AC =AB 2+BC 2=52+122=13.∵O 是AC 的中点,∴OB =12AC =6.5.∵M 是AD 的中点,∴OM 是△ACD 的中位线.∴OM =12CD =2.5,AM =12AD =6.∴四边形ABOM 的周长为AB +OB +OM +AM =5+6.5+2.5+6=20.【教学建议】提醒学生:矩形的两条对角线将矩形分成两对全等的等腰三角形,在解题时常用到等腰三角形的性质.活动四:随堂训练,课堂总结【随堂训练】相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:矩形作为特殊的平行四边形,它的概念是什么?矩形有哪些特殊的性质?直角三角形斜边上的中线的性质是什么?【知识结构】【作业布置】1.教材P 50习题18.1第5,11题,教材P 62习题18.2第16题.2.相应课时训练.教学步骤师生活动板书设计18.2.1矩形解题方法(1)矩形是特殊的平行四边形,它的特殊性主要表现为四个角都是直角和两条对角线相等.(2)矩形的性质是解决求线段的长度、角度等问题的常用工具,它可以用来验证两条线段是否相等,两条直线是否平行,两个角是否相等.(3)由于矩形的四个角都是直角,则常把关于矩形的问题转化为直角三角形的问题来解决.(4)矩形的两条对角线将矩形分成两对全等的等腰三角形,并且分成的四个等腰三角形的面积相等,因此在解决相关问题时,常常用到等腰三角形的性质.(5)矩形的两条对角线的交点到四个顶点的距离相等.例1如图,在矩形ABCD 中,AB =4,AD =6.在边AD上取一点E ,使BE =BC ,过点C 作CF ⊥BE ,垂足为F ,则BF 的长为2 5.解析:∵四边形ABCD 是矩形,∴BC =AD =6,∠A =∠ABC =90°.又BE =BC ,∴BE =6.∴AE =BE 2-AB 2=62-42=2 5.∵CF ⊥BE ,∠ABC =90°,∴∠BFC =90°,∠ABE =90°-∠EBC =∠FCB.∴∠A =∠BFC.又BE =CB ,∴△ABE ≌△FCB(AAS ).∴BF =AE =2 5.故答案为2 5.例2如图,∠MO n =90°,矩形ABCD 的顶点A ,B 分别在边OM ,O n 上,当点B 在边O n 上运动时,点A 随之在边OM 上运动,矩形ABCD的形状保持不变,其中AB =6,BC =2,则运动过程中点D 到点O 的最大距离是3+13.解析:如图,取线段AB 的中点E ,连接OE ,DE ,OD.∵E 是AB 的中点,∠AOB =90°,∴OE =AE =BE =3.∵四边形ABCD 是矩形,∴AD =BC =2,∠DAB =90°.∴DE =AE 2+AD 2=32+22=13.∵OD≤OE +DE ,∴当点D ,E ,O 共线时,OD 的长最大.∴点D 到点O 的最大距离=OE +DE =3+13.故答案为3+13.例1如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 相交于点O ,E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为F ,G ,则EF +EG =6013.分析:连接OE ,根据矩形的性质得到BC =AD =12,AO =CO =BO =DO ,∠ABC =90°,再根据勾股定理得到AC =AB 2+BC 2=13,求得OB =OC =132,再根据三角形的面积公式即可求解.第1课时矩形的性质一、矩形的概念.二、矩形的性质:1.边;2.角;3.对角线.三、直角三角形斜边上的中线的性质.教学反思本节课的主要教学任务是矩形的性质及其推论,教学中让学生充分经历从实际生活中抽象数学图形到深入认识图形特征的过程,更好地理解平行四边形与矩形之间的从属关系和内在联系,在适度的方法训练中加强知识的灵活运用,使学生对于常见的转化方法也能灵活应用.解析:如图,连接OE.∵四边形ABCD 是矩形,∴∠ABC =90°,BC =AD =12,AO =CO =BO =DO.∴AC =AB 2+BC 2=52+122=13.∴OB =OC =132.∴S △BOC =S △COE +S △BOE =12OC·EF +12OB·EG =12S △ABC =12×12AB·BC.∴12×132EF +12×132EG =12×12×5×12.∴EF +EG =6013.故答案为6013.例2如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,连接DE ,M ,n 分别是BC ,DE 的中点,连接M n .(1)求证:M n ⊥DE ;(2)若∠A =60°,判断△EMD 的形状,并说明理由.(1)证明:如图,连接EM ,DM ,∵CE ⊥AB ,BD ⊥AC ,∴△BCE 和△BCD 都是直角三角形.又M 是BC 的中点,∴EM =12BC ,DM =12BC.∴EM =DM.又n 是DE 的中点,∴M n⊥DE.(2)解:△EMD 是等边三角形.理由如下:∵∠A =60°,∴∠ABC +∠ACB =180°-60°=120°.由(1)可知EM =DM =12BC.又M 是BC 的中点,∴EM =BM =DM =CM.∴∠ABC =∠BEM ,∠ACB =∠CDM.∴∠BEM +∠CDM =∠ABC +∠ACB =120°.∴∠BME +∠CMD =360°-(∠ABC +∠ACB)-(∠BEM +∠CDM)=120°.∴∠EMD =180°-(∠BME +∠CMD)=60°.又EM =DM ,∴△EMD 是等边三角形.。
矩形的性质优秀教案
矩形的性质优秀教案矩形是一种有着特殊性质的二维图形,在数学的学习中起着重要的作用。
在教学中,教师需要把矩形的基本性质与应用进行深入讲解,帮助学生掌握关于矩形的知识。
一、矩形的基本性质首先,矩形是一种四边形,它有四个顶点和四条边。
其中,相邻两条边长度相等,并且相互垂直。
其次,矩形的对边也相等,也就是矩形两组相对的边长度相等,例如AB=CD,BC=DA。
其三,矩形的对角线互相垂直,而且长度相等。
也就是说,矩形的对角线都是相等的,且互相垂直。
二、矩形应用的基础1. 小学阶段在小学阶段,学生学习的重点在于熟悉矩形的基本属性,例如矩形对角线的长度和垂直等。
教师可以使用多种形式让学生理解矩形的性质,例如用实际的物体让学生进行测量,通过对物体不同部位的测量来确定矩形的相关性质。
2. 初中阶段在初中阶段,学生将开始学习计算矩形面积和周长的问题。
教师可以从以下几个方面进行讲解:a. 矩形的周长公式矩形的周长是所有边长的和,也就是L=2a+2b。
b. 矩形的面积公式矩形的面积是长和宽的乘积,也就是S=ab。
在教学中,教师可以通过实例让学生来理解这个公式的背后含义。
c. 使用变量求解矩形面积和周长教师可以给学生讲解如何使用变量求解矩形面积和周长。
例如:假设矩形的长为L,宽为W,则矩形的周长可以表示为L+L+W+W或者2L+2W,矩形的面积可以表示为L×W。
三、矩形的相关应用1. 矩形的投影矩形的投影在实际应用中有着非常重要的作用。
例如在图形设计中,通过合理使用矩形的投影,可以制作出非常好看和生动的设计效果。
教师可以给学生介绍几种矩形的投影,例如平面投影、斜面投影和等轴测投影等,让学生对不同的投影模型进行了解和熟悉。
2. 矩形的剖析在实际生活中,我们经常需要对矩形进行剖面分析,例如在工业制造中,需要对金属板选择合适的切割方式来获得所需的形状。
教师可以以工业制造为例让学生了解矩形的剖析,并掌握基本的测量方法。
3. 矩形的角度在实际生活中,矩形的角度有时候也是非常重要的。
《矩形的性质》教案设计
《矩形的性质》教案设计一、教学目标:1. 知识与技能:(1)理解矩形的定义及基本性质;(2)学会运用矩形的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力;(2)学会运用图形计算器或几何画板等工具,动态展示矩形的性质。
3. 情感态度与价值观:(1)激发学生对几何学的兴趣,培养学生的审美观念;(2)培养学生合作交流、自主探究的学习习惯。
二、教学重点与难点:1. 教学重点:(1)矩形的定义及基本性质;(2)运用矩形的性质解决实际问题。
2. 教学难点:(1)矩形性质的证明及应用;(2)灵活运用矩形性质解决复杂几何问题。
三、教学过程:1. 导入新课:(1)复习相关几何知识,如平行四边形的性质;(2)提问:平行四边形的性质有哪些?如何判断一个四边形是矩形?2. 自主探究:(1)学生分组讨论,总结矩形的基本性质;(2)每组派代表分享结论,教师点评并总结。
3. 课堂讲解:(1)详细讲解矩形的定义及基本性质;(2)结合实例,讲解如何运用矩形性质解决实际问题。
4. 互动环节:(1)学生分组进行矩形性质的证明练习;(2)各组展示成果,教师点评并指导。
5. 练习巩固:(1)发放练习题,让学生独立完成;(2)教师讲解答案,分析解题思路。
四、课后作业:1. 复习矩形的性质,总结心得体会;2. 完成课后练习题,巩固所学知识。
五、教学反思:1. 学生对矩形的性质掌握情况;2. 教学过程中存在的问题及改进措施;3. 学生课堂参与度、作业完成情况等。
六、教学策略与手段:1. 采用问题驱动的教学方法,引导学生主动探究矩形的性质;2. 利用多媒体课件、图形计算器或几何画板等工具,动态展示矩形的性质,增强学生直观感受;3. 组织小组讨论、互动环节,培养学生的合作交流能力;4. 注重个体差异,给予学生个性化的指导与评价。
七、教学评价:1. 课堂问答:检查学生对矩形性质的理解程度;2. 练习巩固:评估学生运用矩形性质解决实际问题的能力;3. 课后作业:检查学生对课堂内容的复习与巩固情况;4. 小组讨论:评价学生在团队合作中的表现及创意性思维。
数学《矩形的性质》教案
数学《矩形的性质》教案【教学主题】矩形的性质【教学目标】通过本节课的学习,学生能够:1.正确理解矩形的定义和性质。
2.掌握矩形边长相等、对角线相等、四个直角等若干个特性。
3.发现矩形的对称性和特殊的面积、周长关系。
4.在日常生活中学会应用矩形的性质解决问题。
【教学重点】矩形的定义、边长相等、对角线相等、四个直角等性质。
【教学难点】矩形的对称性和面积、周长的特殊关系。
【教学方法】讲授、示范、练习、提问、讨论。
【教学过程】一、导入:1.板书“矩形”二字,问学生是否知道矩形是什么?2.教师指向教室的黑板和窗户,问学生这些图形有什么共同之处?通过与学生的互动,导入本节课的话题——矩形的性质。
二、呈现:1.出示矩形的图像,并根据其定义解释“矩形”这一名称的来源。
2.教师用板书呈现矩形的定义。
矩形是边相交,四个角都是直角的四边形。
3.出示一张长方形和一张正方形的图片,问学生它们是否是矩形?引导学生思考长方形和正方形都是矩形的一种特殊情况。
4.出示一张示意图,帮助学生理解矩形的边长、对角线、角度等概念。
三、解释:1.教师用板书呈现矩形的性质,如对角线相等、四个直角等等。
2.针对每个性质,教师都要给出有效的说明或证明,让学生深入理解。
例如:a.对角线相等:对角线AC和BD相等。
已知∠BAC=∠BDC=90°,∠ABD=∠ACD=90°。
因此,△ABC≌△DCB。
根据三角形的等边性质,AC=BD。
b.四个直角:(1)证明∠A、∠B、∠C、∠D都是直角。
(2)任取三角形ABC,证明∠A+∠B+∠C=180°。
(3)以此类推,得出所有三角形的和等于360°。
3.教师让学生观察矩形在旋转、翻折等操作下的不变性,引导学生发现矩形的对称性。
四、练习:1.随堂小测验(1)在一个折起来的正方形的对角线上,可以发现几个直角?(2)矩形的四个角都是直角,并且对角线相等,那么这样的四边形是什么?2.练习题(1)在一个矩形中,两条对角线的长度分别是10cm和15cm,矩形的长和宽各是多少?(2)一个矩形的宽为4cm,面积为28cm²,那么长是多少?(3)一个中心差4的矩形的面积是54cm²,那么较短的一条边长是多少?五、讨论:1.教师将几个学生请到黑板前,让他们划出一个面积相等的矩形。
教学设计《矩形的性质》精编完整版
矩形的性质一、教学目标:(一)知识与能力目标: 掌握矩形的概念与有关性质,并会利用这些知识进行简单的推理与计算。
(二)过程与方法目标:通过观察、折叠、合作交流、推理证明等方法得出矩形的定义与性质,并把它运用到解决问题中去。
(三)情感态度目标:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,让学生增强学习信心,体验探索与创造的快乐。
二、教学重点:(一)矩形概念的理解;(二)掌握、运用矩形的性质。
三、教学难点:(一)了解矩形与平行四边形的联系与区别。
(二)运用矩形的性质进行简单的推理与计算。
四、教学用具:(一)学生:矩形纸。
(二)教师:平行四边形活动木框、多媒体课件。
五、教学过程:(一)复习引入1.实物演示:展示平行四边形活动木框。
问题:它具有什么性质(平行四边形的性质:①中心对称图形;②两组对边平行且相等;③对角相等;④对角线互相平分)2.推动平行四边形活动木框。
问题:你发现什么(提问)(1)木框随四个内角大小发生变动,但仍保持平行四边形形状。
(为什么)(2)在推动过程中,当一个内角变为直角时,木框形状为特殊的平行四边形,即为小学已学过的长方形,现称为矩形。
(二)探究新知1. 矩形与平行四边形的联系由上面教学过程知:有一个角是直角的平行四边形是矩形。
2.矩形的性质(1)矩形既然为特殊的平行四边形,则它必然是中心对称图形,故具备平行四边形的所有性质。
(2)问题:矩形除了上述的性质外,本身还有什么独有的性质呢①它是否为轴对称图形动手操作:(学生用矩形纸片折叠,发现它是轴对称图形,有两条对称轴,即两条通过对边中点的直线)(学生操作,教师演示)②通过折叠得到矩形独有性质:四个角是直角;对角线相等且互相平分。
(3)总结出矩形性质:①既是中心对称图形,又是轴对称图形;②两组对边平行且相等;③四个角都为直角;③对角线相等且互相平分。
(4)探索直角三角形的性质,直角三角形斜边上的中线等于斜边的一半。
(5)你能证明这个定理吗先讨论再写步骤。
矩形的性质教案设计
《矩形的性质》教案设计一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.3.难点的突破方法:矩形是在平行四边形的前提下定义的.从定义出发,首先应该肯定,矩形是平行四边形,但它是特殊的平行四边形特殊之处就是有一个角是直角.因此在教学在我们采用运动方式探索矩形的概念及性质,如用多媒体或教具演示,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.通过教学还要使学生明确:(1)矩形是特殊的平行四边形,(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的行四边形是矩形”来定义矩形;(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性).从边、角、对角线方面(可继续演示教具),让学生观察或度量猜想矩形的特殊性质.(1)边:对边与平行四边形性质相同,邻边互相垂直(与性质1等价);(2)角:四个角是直角(性质1);(3)对角钱:相等且互相平分(性质2).引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质及推论.并指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质,在求线段长或求线段倍分关系时,常用到这个结论.矩形ABCD的两条对角线AC,BD把矩形分成四个等腰三角形,即△AOB,△BOC,△COD和△DOA.让学生证明后熟记这个结论,以便在复杂图形中尽快找到解题的思路.三、例题的意图分析例1是教材P104的例1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.四、课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.五、例习题分析例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD =2OA=2×4=8(cm).例2(补充)已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:2)422x,解得x=6.则AD=6cm.=+x(8+(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×DB=AD×AB,解得AE=4.8cm.例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.六、随堂练习1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.《矩形》教学设计数学系王晓晶E-mail::一、教材分析:(一)教材的地位和作用:所用教材:九年义务教育三年制初中几何第二册§4.5 P147-148(两课时)本课要研究的是矩形的概念及性质和判定,是在学生已经学过四边形、平行四边形的概念及性质和判定的基础上进行的,是这一章的重点内容之一。
《矩形的性质》教案设计
《矩形的性质》教案设计第一章:矩形的定义与性质1.1 矩形的定义解释矩形的概念,给出矩形的标准方程。
通过实际例子,让学生理解矩形的形状和特征。
1.2 矩形的性质介绍矩形的四个角都是直角,四条边都相等的性质。
解释矩形的对角线互相平分且相等的性质。
通过几何图形和证明,让学生理解和掌握矩形的性质。
第二章:矩形的对角线2.1 矩形对角线的定义解释矩形对角线的概念,给出对角线的性质。
通过实际例子,让学生理解矩形对角线的特点。
2.2 矩形对角线的性质介绍矩形对角线互相平分且相等的性质。
解释矩形对角线的长度与矩形边长的关系。
通过几何图形和证明,让学生理解和掌握矩形对角线的性质。
第三章:矩形的面积3.1 矩形面积的定义解释矩形面积的概念,给出面积的计算公式。
通过实际例子,让学生理解矩形的面积计算方法。
3.2 矩形面积的性质介绍矩形面积与边长的关系,给出面积的计算公式。
解释矩形对角线与面积的关系。
通过几何图形和证明,让学生理解和掌握矩形面积的性质。
第四章:矩形的对称性4.1 矩形对称性的定义解释矩形对称性的概念,给出对称性的性质。
通过实际例子,让学生理解矩形的对称性质。
4.2 矩形对称性的性质介绍矩形关于对角线对称和关于中心对称的性质。
解释矩形对称性与矩形性质的关系。
通过几何图形和证明,让学生理解和掌握矩形对称性的性质。
第五章:矩形的应用5.1 矩形在几何图形中的应用介绍矩形在几何图形中的各种应用,如求解几何图形的面积、角度等。
通过实际例子,让学生理解矩形在几何图形中的应用方法。
5.2 矩形在日常生活中的应用解释矩形在日常生活中的各种应用,如矩形形的纸张、电视屏幕等。
通过实际例子,让学生理解矩形在日常生活中的重要性。
第六章:矩形的判定6.1 矩形判定的条件介绍判定一个四边形为矩形的条件,包括角度条件和边长条件。
通过几何图形和证明,让学生理解和掌握矩形的判定条件。
6.2 矩形的判定方法解释如何利用直角三角板和尺规作图等工具来判定一个四边形为矩形。
八年级《矩形的性质》教学设计
八年级《矩形的性质》教学设计八年级《矩形的性质》教学设计教学设计是实现教学目标的计划性和决策性活动。
下面是店铺为大家搜索整理的八年级《矩形的性质》教学设计,希望对大家有所帮助。
八年级《矩形的性质》教学设计篇1教学目标:1、理解矩形的定义,能根据定义探究矩形的性质。
2、经历探索矩形有关性质的过程,在直观操作活动中学会简单说理,发展初步的合情推理能力和主动探究习惯,逐步掌握说理的基本方法。
3、在应用矩形的性质的过程中培养独立思考的习惯,在数学学习的活动中获得成功的体验。
教学重点:矩形的性质的探究及应用。
教学难点:理解和掌握矩形的性质,发展合情推理能力和主动探究习惯。
教学过程:一、创设情境、导入新课:教师演示自己做的平行四边形模型,请学生观察这是一个什么图形。
生:这是平行四边形。
师:我们都学过平行四边形的哪些性质呢?学生从边、角、对角线的角度进行分类回答。
师:由于平行四边形具有不稳定性,当将平行四边形转到有一个角为直角时,此时平行四边形就转化为我们非常熟悉的什么图形?生:长方形。
师:当平行四边形的一个内角为直角时,这种特殊的平行四边形在初中数学里把它叫做矩形。
本节课我们一同学习矩形的有关知识----矩形的性质(师板书课题)二、新课探究:1、矩形定义:有一个角是直角的平行四边形叫做矩形。
强调:两个条件——平行四边形;一个直角2、合作探究矩形的性质:(1)矩形是特殊的平行四边形,它应具有平行四边形的一切性质。
学生回答:矩形的一般性质(2)矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪些特殊性质呢?你发现了吗?学生小组合作探究,归纳总结,从而得出猜想:(1)矩形的四个角都是直角。
(2)矩形的对角线相等我们能否给出证明呢?(学生先根据命题写出已知,求证,尝试自己证明)求证:矩形的四个角都是直角已知:如图,四边形ABCD是矩形求证:∠A=∠B=∠C=∠D=90°证明:∵四边形ABCD是矩形∴ ∠A=90° A B又矩形ABCD是平行四边形∴ ∠A=∠C ∠B = ∠D∠A ∠B = 180°∴ ∠A=∠B=∠C=∠D=90° D C即矩形的四个角都是直角求证:矩形的对角线相等已知:如图,四边形ABCD是矩形求证:AC = BD证明:在矩形ABCD中∵∠ABC = ∠DCB = 90°又∵AB = DC , BC = CB∴△ABC≌△DCB∴AC = BD 即矩形的对角线相等※ 矩形的特殊性质及数学语言:矩形的四个角都是直角∵四边形ABCD是矩形∴∠A=∠B=∠C=∠D=90°矩形的`两条对角线相等.∵四边形ABCD是矩形∴AC=BD议一议:矩形是不是轴对称图形?如果是它有几条对称轴?(学生思考后回答)3、平行四边形性质与矩形性质的对比:边角对角线对称性平行四边形对边平行且相等对角相等、邻角互补对角线互相平分中心对称图形矩形对边平行且相等四个角都是直角对角线互相平分且相等中心对称图形轴对称图形三、慧眼识别:如图,在矩形ABCD中,(1)找出相等的线段与相等的角;(2)图中还有哪些特殊的三角形?(3)在Rt△ABC中,你能发现CO与AB的数量关系吗?点拨:根据矩形对角线的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《矩形的性质》教案设计一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.3.难点的突破方法:矩形是在平行四边形的前提下定义的.从定义出发,首先应该肯定,矩形是平行四边形,但它是特殊的平行四边形特殊之处就是有一个角是直角.因此在教学在我们采用运动方式探索矩形的概念及性质,如用多媒体或教具演示,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.通过教学还要使学生明确:(1)矩形是特殊的平行四边形,(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的行四边形是矩形”来定义矩形;(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性).从边、角、对角线方面(可继续演示教具),让学生观察或度量猜想矩形的特殊性质.(1)边:对边与平行四边形性质相同,邻边互相垂直(与性质1等价);(2)角:四个角是直角(性质1);(3)对角钱:相等且互相平分(性质2).引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质及推论.并指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质,在求线段长或求线段倍分关系时,常用到这个结论.矩形ABCD的两条对角线AC,BD把矩形分成四个等腰三角形,即△AOB,△BOC,△COD和△DOA.让学生证明后熟记这个结论,以便在复杂图形中尽快找到解题的思路.三、例题的意图分析例1是教材P104的例1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.四、课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形). 矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.① 随着∠α的变化,两条对角线的长度分别是怎样变化的?② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.五、例习题分析例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).例2(补充)已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:2)422x,解得x=6.则AD=6cm.=+x(8+(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×DB=AD×AB,解得AE =4.8cm.例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.六、随堂练习1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.《矩形》教学设计数学系王晓晶E-mail:******************.cn电话:131****5225一、教材分析:(一)教材的地位和作用:所用教材:九年义务教育三年制初中几何第二册§4.5 P147-148(两课时)本课要研究的是矩形的概念及性质和判定,是在学生已经学过四边形、平行四边形的概念及性质和判定的基础上进行的,是这一章的重点内容之一。
因为矩形是特殊的平行四边形,而后继课要学的正方形又是特殊的矩形,所以它既是前面所学知识的应用,又是后面学习正方形的基础,具有承上启下的作用。
另外,本节课的内容还渗透着转化、对比的数学思想,重在训练学生的逻辑思维能力和分析、归纳、总结的能力,因此,这节课无论在知识上,还是在对学生能力培养上都起着非常重要的作用。
(二)教学目标:在学生已有的认知基础上,依据课程标准,结合本课在教材中的地位、作用,确定本节课的教学目标为:1、知识目标:(1)知道什么是矩形(2)理解矩形与平行四边形的关系(3)能说出矩形的性质及推论(4)掌握矩形的判定方法(5)能综合运用矩形的知识解决有关问题2、能力目标:(1)会运用矩形的性质及推论进行有关的论证和计算(2)会运用矩形的判定定理解决有关问题(2)会观察、会比较、会分析、会归纳3、德育目标:初步具有把感性认识上升到理性认识的辩证唯物主义观点。
4、情感目标:养成有良好的学习习惯,有浓厚的学习兴趣。
(三)、教学重点、难点、关键及依据:重点:矩形的概念、性质和判定定理难点:矩形与平行四边形的关系关键:加强概念教学是突破难点的关键依据:本课在教材中的地位和作用及教学目标和学生的实际情况。
二、教学方法和手段:(一)教学方法:根据本课的内容和初二学生的特点以及目标教学的要求,采用边启发、边分析、边推理,层层设疑,讲练结合的要求。
通过演示平行四边形模型,激发学生的学习兴趣。
教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师为主导,学生为主体,得到充分体现。
学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”使能力得到锻炼。
(二)教学手段:为提高课堂效率和质量,借助于多媒体信息技术进行教学。
(三)教具:三角板,平行四边形模型,多媒体教学设备。
三、教材处理:(一)学生状况分析:1、知识方面:学生已掌握了四边形及平行四边形的概念、性质等知识。
2、方法方面:学生已积累了学习特殊四边形性质的方法,即按“角、边、对角线”的思路进行学习。
3、思维方面:学生的思维还依赖于具体、形象、易模仿的特点,因此逻辑思维能力需要加强。
4、对策:(1)注意问题情境的教学。
(2)使用启发诱导的方法。
(3)贯彻循序渐进的原则。
(二)教材处理:基本按照教材的意图讲授,适当补充练习四、教学过程及设计:第一课时(一)用运动方式探索矩形的概念及性质1.复习平行四边形的有关概念及边、角、对角线方面的性质.2.复习平行四边形和四边形的关系.3.用教具演示如图4-29中,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.分析:(1)矩形的形成过程是平行四边形的一个角由量变到质变的变化过程.(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的平行四边形是矩形”来定义矩形.(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性).(4)从边、角、对角线方面,让学生观察或度量猜想矩形的特殊性质.①边:对边与平行四边形性质相同,邻边互相垂直(与性质定理1等价).②角:四个角是直角(性质定理 1).③对角钱:相等且互相平分(性质定理2).4.证明矩形的两条性质定理及推论.引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质定理及推论.指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质.(二)应用举例例1已知:如图 4-30,矩形 ABCD,AB长8 cm ,对角线比 AD边长4 cm.求 AD的长及A到BD的距离AE的长.分析:(1)矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,在此可以让学生作一个系统的复习,在直角三角形中,斜边大于直角边边:勾股定理斜边中线等于斜边的一半角:两锐角互余.边角关系:30°角所对的直角边等于斜边的一半。