电磁场与电磁波课后习题及答案8章习题解答
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。
电磁场与电磁波第四版第八章习题解答
解:当波导内为空气填充时,其工作波长为
当波导内填充以 的介质时。其工作波长为
波导壁的表面电阻
查表得紫铜的电导率 ,于是
矩形波导中传输 波时,由导体引起的衰减为
(1)当波导内为空气填充, ,得
用分贝表示
(2)当波导内填充以 的介质时
用分贝表示
得
即
所以
8.14设计一矩形谐振腔,使在1及1.5GHz分别谐振于两个不同模式上。
解:矩形谐振腔的谐振频率为
若使在1及1.5GHz分别谐振于矩形谐振腔的 及 两个不同模式上,则它们的谐振频率分别为
则
将以上二式相减得
可得
将其代入式(2)得
所以
尺寸b可取为
于是该矩形谐振腔的尺寸为
8.15由空气填充的矩形谐振腔,其尺寸为a=25mm,b=12.5mm,d=60mm,谐振于TE102模式,若在腔内填充介质,则在同一工作频率将谐振一TE103模式,求介质的相对介电常数 应为多少?
(2)求出该最小的驻波比及相应的电压反射系数。
(3)确定距负载最近的电压最小点位置。
解:(1)因为
得
驻波比S要最小,就要求反射系数 最小,而
其最小值可由 求得
故
(2)将 代入反射系数公式,得
最小驻波比为
(3)终端反射系数
由上题的结论,电压的第一个波节点 应满足
即
解得
8.23有一段特性阻抗为 的无损耗线,当终端短路时,测的始端的阻抗为 的感抗,求该传输线的最小长度;如果该线的终端为开路,长度又为多少?
分布电感
(2)
8.17同轴线的外导体半径 ,内导体半径 ,填充介质分别为空气和 的无耗介质,试计算其特性组抗。
《电磁场与电磁波》西安交大出版社 课后答案(全)
球坐标系中的坐标分量表示。 解:在圆柱坐标系中
F1 cos sin 0 Fx1 cos sin 0 1 cos F sin cos 0 F sin cos 0 0 sin 1 y1 F 0 0 1 F 0 0 1 0 0 z1 z1 ˆ sin ˆ F1 ( , , z ) cos F 2 cos sin 0 Fx 2 cos sin 0 0 sin F sin cos 0 F sin cos 0 1 cos 2 y2 F 0 0 1 F 0 0 1 0 0 z2 z2 ˆ cos ˆ F2 ( , , z ) sin
ˆ 2y ˆz ˆ 证明 :因为 A B 2 x
A ( B) C 0
所以三个矢量 A 、B 和 C 形成一个三角形 此三角形的面积为
ˆ x 1 S A B Ax 2 Bx ˆ y Ay By ˆ y ˆ ˆ ˆ z x z Az 5 5 0 5 2 5 2 20 2 / 2 10.6 Bz 3 7 1
(e)A 和 B 之间的夹角 根据 A B AB cos 得
A B 7 cos 0.764 AB 9.163
40.19 0
(f) A 在 B 上的投影
A ˆ B 7 2.86 Ab B 2.45
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章矢量分析 1、如果矢量场得散度处处为0,即,则矢量场就是无散场,由旋涡源所产生,通过任何闭 合曲面得通量等于0。
2、如果矢量场得旋度处处为0,即,则矢量场就是无旋场,由散度源所产生,沿任何闭合 路径得环流等于0。
3、矢量分析中得两个重要立理分别就是散度宦理(高斯理)打斯托克斯立理,它们得表达 式分别就是: 散度(高斯)定理:与 斯托克斯定理:。
4、在有限空间V 中,矢量场得性质由英散度、旋度匚V 边界上所满足得条件唯一得确定。
(V ) 5、描绘物理状态空间分布得标量函数与矢量函数,在时间为一迫值得情况下,它们就是唯一 得。
(J )标量场得梯度运算与矢量场得旋度运算都就是矢量。
C J ) 6、 7、 8、 9、 梯度得方向就是等值而得切线方向。
(X ) 标量场梯度得旋度恒等于0。
( J ) 习题 1、12, 1、16。
第2章 电磁场得基木规律 (电场部分) 静止电荷所产生得电场,称之为静虫场;电场强度得方向与正电荷在电场中受力得方向 相同。
2、 在国际单位制中,电场强度得单位就是V/m (伏特/米)。
3、 静电系统在真空中得基本方程得积分形式就是:与。
4、 静电系统在真空中得基本方程得微分形式就是:与。
5、 电荷之间得相互作用力就是通过虫场发生得,电流与电流之间得柑互作用力就是通过 磁场发生得。
6、在两种媒质分界而得两侧,电场得切向分量E “一囱=2;而磁场得法向分量B|n~B2n —Oa7、在介电常数为得均匀各向同性介质中,电位函数为,则电场强度8、静电平衡状态下,导体内部电场强度、磁场强度等于零•导体表面为等位面;在导体表而只有电场得法向分崑9、电荷只能在分子或原子范帀内作微小位移得物质称为(D )。
A、导体C、液体B、固体D.电介质10、柑同得场源条件下•真空中得电场强度就是电介质中得(C )倍。
As e o£C、 5 B、1/ £ 0 £ rD. 1/e r11、导体电容得大小(C )。
电磁场与电磁波 课后答案(冯恩信 著)
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场与电磁波第四版课后答案
答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波第二版课后练习题含答案
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
《电磁场与电磁波》课后习题解答(第八章)
《电磁场与电磁波》课后习题解答(第⼋章)第8章习题解答【8.1】已知:原⼦质量=107.9,密度=10.53×3310/kg m ,阿佛加德罗常数 =6.02×2610/kg 原⼦质量,电荷量q =1.6×C 1910- 电⼦质量m =9.11×kg 3110-,绝对介电系数(真空中)0ε=8.85×1210/F m - 银是单价元素,由于价电⼦被认为是⾃由电⼦,因⽽单位体积内的电⼦数⽬等于单位体积内的原⼦数⽬。
9.1071002.61053.10263)()(每⽴⽅⽶的原⼦数⽬=即每⽴⽅⽶的⾃由电⼦数⽬:281088.5?=N 可得 s Nq m 1421074.3/-?==στ(对于银)将上述σ、τ和0ε的值代⼊r k =+-)1(/1220τωεστ和l k =+ωτωεσ)1(2/220中可得 52251061.2)1/(1061.21?-=+?-=τωr k 71055.5?=l k则 7461242/122=??++-=lr r i k k k n故 72104.6-?==in c ωδ【8.4】解:良导体αβ== 场衰减因⼦ 2zxzeeeπαβλ---==当传播距离 z λ=时, 220.002zee πλαπλ---===⽤分贝表⽰即为 55dB 。
【8.2】已知:电导率σ=4.6m s /,原⼦质量=63.5,海⽔平均密度=1.025×3310/kg m ,阿佛加德罗常数 =6.02×2610/kg 原⼦质量,电荷量q =1.6×C 1910- ,m 2=δ,电⼦质量m =9.11×kg 3110-,绝对介电系数(真空中)0ε=8.85×1210/F m -解:(1)与8.1题⼀样,可以求出每⽴⽅⽶的⾃由电⼦数⽬:281034.3?=N s Nq m 2121089.4/-?==στ 910545.2-?=r k f k l 101014.4?=则 fk k k k n l lr r i 102/1221014.424?=≈??++-= ⽽δωcn i =所以: k H z f 8.13=(2)依题意,满⾜%0001.0)exp(2=-δz可以求出 m z 8.13=【8.3】解:当法向⼊射时,1cos ,0==i i θθ,012=-=ωεm Nq n r 所以,20221ωεπm Nq f c =,其中参数的解法与8.1、8.2题公式相同。
电磁场与电磁波第八章习题及参考答案
第八章 电磁辐射与天线8.1 由(8.1-3)式推导(8.1-4)及(8.1-5)式。
解)sin ˆcos ˆ(4θθθπμ-=-rrIdle A jkrρ (8.1-3) 代入A H ρρ⨯∇=μ1,在圆球坐标系ˆsin ˆˆsin 112θ∂ϕ∂∂θ∂∂∂ϕθθθμμrA A rr r rr A H r=⨯∇=ρρ)]cos ()sin ([4ˆ])([sin sin ˆ2r e e r r Idl A rA r r r jkr jkr r θθθπϕθθμθϕθ--∂∂--∂∂=∂∂-∂∂=可求出H ρ的3个分量为jkre kr kr j Idl k H -+=))(1(sin 422θπϕ (8.1-4) 0==θH H r将上式代入E j H ρρωε=⨯∇,可得到电场为H j E ρρ⨯∇=ωε1ϕθ∂ϕ∂∂θ∂∂∂ϕθθθωεH r rr r rr j sin 0ˆsin ˆˆsin 12=代入ϕH 得jkrr e kr kr j Idl k j E -+-=))(1)((cos 2323θπωε jkr e kr jkr kr j Idl k E --+=))()(1(sin 4323θπωεθ (8.1-5) 0=ϕE8.2 如果电流元yIl ˆ放在坐标原点,求远区辐射场。
解 解1 电流元yIl ˆ的矢量磁位为 jkr e rIl y A -=πμ4ˆρ 在圆球坐标系中jkry r e rIl A A -==πϕθμϕθ4sin sin sin sinjkry e rIl A A -==πϕθμϕθθ4sin cos sin cosjkry e rIl A A -==πϕμϕϕ4cos cos由A H ρρ⨯∇=μ1,对远区辐射场,结果仅取r1项,得jkre rIl jH -=λϕθ2cos jkre r Il j H --=λϕθϕ2sin cos根据辐射场的性质,E r ZH ρρ⨯=ˆ1得 jkre r Il jZ E --=λϕθθ2sin cosjkre r Il jZ E --=λϕϕ2cos解2 根据 jkR e RRl Id jH -⨯=λ2ˆρρ (8.1-13) RH Z E ˆ⨯=ρρ (8.1-14) ϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆˆ++==r y lr Rˆˆ≈ ϕθϕθϕcos ˆsin cos ˆˆˆ+-=⨯rl ϕϕϕθθcos ˆsin cos ˆˆ)ˆˆ(--=⨯⨯r rl jkRer Idl j H -=λ2ρ)cos ˆsin cos ˆ(ϕθϕθϕ+- jkR erIdl jZ H -=λ2ρ)cos ˆsin cos ˆ(ϕϕϕθθ--8.3 三副天线分别工作在30MHz,100MHz,300MHz,其产生的电磁场在多远距离之外主要是辐射场。
《电磁场与电磁波》课后习题解答(全)
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第四版课后答案
电磁场与电磁波第四版课后答案第一章:电磁场与电磁波简介1.电场与磁场是电磁场的两个基本概念。
电磁场是由电荷和电流产生的。
第二章:静电场2.静电场是指电荷分布不随时间变化的电场。
3.庞加莱定理:在任意封闭曲面内,电场的通量等于该曲面内的电荷代数和除以介电常数。
第三章:电磁场的数学描述4.麦克斯韦方程组是描述电磁场的基本方程组。
5.麦克斯韦方程组包括4个方程,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
第四章:静磁场6.静磁场是指磁场随时间不变的情况。
7.安培环路定律描述了静磁场中的磁场强度与电流的关系。
第五章:电磁波的产生与传播8.电磁波是由振荡的电场和磁场组成的波动现象。
9.麦克斯韦方程组的解可以得到电磁波的传播方程,即波动方程。
第六章:电磁波谱10.电磁波谱是按照电磁波的频率或波长划分的。
第七章:矢量分析与场11.矢量分析是用来描述场的数学工具。
12.二、三维坐标系下的矢量分析公式包括梯度、散度、旋度等概念。
第八章:电磁波在介质中的传播13.介质中的电磁波传播速度小于真空中的光速。
14.介质中的电磁波受到折射和反射的影响。
第九章:光的偏振与吸收15.光的偏振是指电磁波在传播方向上的振动方向。
16.介质对电磁波的吸收会产生能量损耗。
总结本文简要介绍了《电磁场与电磁波第四版》课后习题答案。
通过对电磁场与电磁波的基本概念、静电场、电磁场的数学描述、静磁场、电磁波的产生与传播、电磁波谱、矢量分析与场、电磁波在介质中的传播以及光的偏振与吸收等内容的讨论,我们对电磁场与电磁波的相关知识有了更深入的了解。
理解这些知识对于学习和应用电磁场与电磁波有着重要的意义。
希望本文的内容能够帮助读者更好地掌握《电磁场与电磁波第四版》的相关知识。
电磁场与电磁波课后习题及答案
电磁场与电磁波课后习题解答给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)2222314141412(3)A x y z+-===-++-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 6453x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=1417238==⨯A B A B ,得 1cos AB θ-=(135.5238= (5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波课后习题答案全-杨儒贵
第一章矢量分析第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy z y xz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅c o s B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即 βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
电磁场与电磁波第四版课后答案
电磁场与电磁波第四版课后答案本文为电磁场与电磁波第四版的课后答案,包括章节练习和习题的详细解答。
第一章矢量分析章节练习1.什么是矢量?答:矢量是具有大小和方向的物理量。
矢量用箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
2.矢量的叉乘运算有什么特点?答:矢量的叉乘运算满足右手定则:将右手的食指指向第一个矢量的方向,中指指向第二个矢量的方向,那么拇指的方向就是叉乘结果的方向。
3.请推导出矢量叉乘的定义式。
答:矢量叉乘的定义式为:$\\mathbf{A} \\times \\mathbf{B} = |\\mathbf{A}| |\\mathbf{B}| \\sin \\theta \\mathbf{n}$,其中$\\mathbf{A}$ 和 $\\mathbf{B}$ 是两个矢量,$\\theta$ 是两个矢量之间的夹角,$\\mathbf{n}$ 是垂直于平面的单位矢量。
习题1.已知两个矢量 $\\mathbf{A} = 2\\mathbf{i} +3\\mathbf{j} - 4\\mathbf{k}$ 和 $\\mathbf{B} = -\\mathbf{i} + 2\\mathbf{j} + 5\\mathbf{k}$,求两个矢量的点积和叉积。
答:首先计算点积:$\\mathbf{A} \\cdot \\mathbf{B} = (2)(-1) + (3)(2) + (-4)(5) = -2 + 6 - 20 = -16$。
然后计算叉积:$\\mathbf{A} \\times \\mathbf{B} =(3)(5)\\mathbf{i} + (-4)(-1)\\mathbf{j} +(2)(2)\\mathbf{k} = 15\\mathbf{i} - 4\\mathbf{j} +4\\mathbf{k}$。
2.已知一个矢量 $\\mathbf{A} = 3\\mathbf{i} -2\\mathbf{j} + \\mathbf{k}$,求该矢量的模。
电磁场与电磁波 第八章答案
c sin 1
2 1
11 , 12 , 0 等效介电常数: 21 , 22 , 0 0 33 0
式中
2 j 2 p 0 p 0 0 , 11 0 12 2 2 2 2 0 ( 0 ) 2 p 0 , , 21 12 22 11 33 0 2
T
2Z 2 cos i Z 2 cos i Z1 cos t
若 1 2 , 则 平 行 极 化 波 无 反 射 时 布 鲁 斯 特 角 :
B sin 1 2 1 2
,
2 sin i 1
若 1 2 , 则 全 反 射 时 临 界 角 , 等离子体中的平面波:
总反射系数: 任意方向传播的平面波: 传播矢量:
R
Z in (l ) Z c1 Z in (l ) Z c1
E E0e jk r
k e x k cos e y k cos e z k cos
k kxex k ye y kzez
2 2 kx ky k z2 k 2
e n H1 (0, t ) H 2 (0, t ) J s
E1 (0, t ) E 2 (0, t )
式 中 e n e z 。 考 虑 到
E1 ( z,t) Z 0 H1 ( z,t) e z ; E 2 ( z,t) Z 0 H 2 ( z,t) (e z )
1
重要公式
波动方程: 非齐次波动方程:
2 2 E (r , t ) J (r , t ) 1 E ( r , t ) ( r , t ) 2 t t 2 2 H (r , t ) H (r , t ) J (r , t ) t 2
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九章习题解答9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到时,电台的位置偏离正南多少度? 解:元天线(电基本振子)的辐射场为j k rθ-=E e 可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最大电场强度。
由sin θ=得 045θ=此时接收台偏离正南方向045±。
9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。
解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。
如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。
当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。
9.3 如题9.3图所示一半波天线,其上电流分布为()11cos 22m I I kz z ⎛⎫=-<< ⎪⎝⎭ (1)求证:当0r l >>时,020cos cos 22sin jkrm z I e A kr πθμπθ-⎛⎫ ⎪⎝⎭=⋅(2)求远区的磁场和电场;(3)求坡印廷矢量; (4)已知220cos cos 20.609sin d ππθθθ⎛⎫ ⎪⎝⎭=⎰,求辐射电阻; (5)求方向性系数。
题9.3(1)图解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为()/2/2,4l jkr z z l I e A r dz r μθπ--=⎰假设0r l >>,则 1020cos cos r r z r r z θθ≈-⎧⎨≈+⎩120111r r r ≈≈ 将以上二式代入()0,z A r θ的表示式得()()()()()()()()12000/2000000/2cos cos /20000/2cos cos 00cos cos ,4cos cos 4cos 4l jkr jkr mz l jk r z jk r z l m l jkr jkz jkz m kz e kz e IA r dz dz r r kz ekz e I dzr r I e kz e e dz r θθθθμθπμπμπ------+--⎧⎫⎡⎤⎡⎤⎪⎪=+⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎡⎤=+⎣⎦⎰⎰⎰⎰()()()()(){}()()000/2000/200022000,2cos cos cos 4cos 1cos cos 1cos 41cos cos cos 1cos cos cos 224sin sin cos 2l jkr m z l jkr m jkr m jkrm I A r e kz kz dz r I e kz kz dz r I e r I e kr μθθπμθθπππθθθθμπθθπμπ----=⎡⎤⎣⎦=++-⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤⎛⎫⎛⎫-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭=+⎢⎥⎢⎥⎢⎥⎣⎦=⎰⎰2cos 2sin θθ⎛⎫ ⎪⎝⎭ 由此得证。
(2)远区的磁场和电场为002000001sin 11sin sin rrr r r r A r A r A θφθφμθμθθφθ=∇⨯∂∂∂=∂∂∂H Ae e e而 cos sin 0r z z A A A A A θφθθ==-=得()0000001sin cos cos 22sin zjkr m H r A r r I e j r ϕθμπθπθ-∂=∂⎛⎫ ⎪⎝⎭=⋅ 0,0r H H θ==由麦克斯韦方程 1j ωε=∇⨯E H得000cos cos 22sin jkr m E H I e jr θφηπθηπθ-=⎛⎫⎪⎝⎭=⋅0,0r E E φ==由远区场的表示式,可得其方向性函数为 ()cos cos 2sin f πθθθ⎛⎫ ⎪⎝⎭=在极坐标系下E 面和H 面的方向图如题9.3(2)图所示。
E 面方向图 E 面方向图 题9.3(2)图(3)平均坡印廷矢量为1Re 2av *⎡⎤=⨯⎣⎦S E H222022201122cos cos 28sin m E H E I r θφθηπθηπθ==⎛⎫ ⎪⎝⎭=⋅S(2) 由总辐射功率yy2220022200022002cos cos 2sin 8sin cos cos 24sin 12m m m r I r d d r I d I R πππθηθθφπθπθηθπθ ⎪⎝⎭=⋅⎛⎫ ⎪⎝⎭==⎰⎰⎰故辐射电阻2002/2cos cos 22sin cos cos 222sin r R d d πππθηθπθπθηθπθ⎛⎫ ⎪⎝⎭=⎛⎫⎪⎝⎭=⎰⎰由题给条件 2/20cos cos 20.609sin d ππθθθ⎛⎫ ⎪⎝⎭=⎰所以 ()00.60973r R ηπ=⨯=Ω (5)方向系数 0P D P=(最大辐射方向考察点的电场强度相等) 式中0P 表示理想无方向性天线的辐射功率,P 表示考察天线的辐射功率,于是 0222max00002020000020442cos cos9012422sin 902jkr m m EP r r I e r j r I ππηπηπηπηπ-=⋅=⋅⎡⎤⎛⎫ ⎪⎢⎥⎝⎭=⋅⋅⋅⎢⎥⎢⎥⎢⎥⎣⎦=S2220022200022002/2200cos cos 2sin 8sin cos cos 24sin cos cos 22sin m m mI r d d r I d I d ππππθηθθϕπθπθηθπθπθηθπθ⎪⎝⎭=⋅⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭=⎰⎰⎰⎰则2/20111.640.609cos cos 2sin P D Pd ππθθθ====⎛⎫ ⎪⎝⎭⎰用分贝表示 ()1010log 1.64 2.15dB D ==9.4 半波天线的电流振幅为1A ,求离开天线1km 处的最大电场强度。
解:半波天线的电场强度为00cos cos 22sin jkrm I e E r θπθηπθ-⎛⎫ ⎪⎝⎭=⋅可见,当090θ=,时电场为最大值。
将()03090,110r m θ==⨯代入上式,得()30max 30606010V/m 210m I E r ηπ-===⨯ 9.5 在二元天线阵中,设0,904d λα==,求阵因子方向图。
解:在如题9.5图中,天线0和天线1为同类天线。
其间距为d ,它们到场点P 的距离分别为0r 和1r 。
天线0和天线1上的电流关系为10j I mI e α-=题9.5图),φy当考察点远离天线计算两天线到P 点的距离采用10r r ≈,计算两天线到P 点的相位差采用10sin cos r r d θϕ≈-。
则天线1的辐射场到达P 点时较天线0的辐射场超前相位 s i n c o s kd θϕαψ=- 天线0和天线1在P 点产生的总的辐射场为()0101j meψ=+=+E E E E其摸为()()01001,j me f θφψ=+=+===E E E E E E E式中 (),f θφ=9.6 两个半波天线平行放置,相距2λ,它们的电流振幅相等,同相激励。
试用方向图乘法草绘出三个主平面的方向图。
:解:由上题结论可知,二元阵的方向性函数为 ()()()0,,,F F f θφθφθφ= 其中()0,F θφ为单元天线的方向性函数,(),fθφ为阵因子,对于半波天线,0cos cos 2sin F πθθ⎛⎫⎪⎝⎭=(其方向图由题9.3给出)阵因子(由上题结论)(),f θφ=当两天线相距2d λ=,其上的电流振幅相等,同相激励时有1,0m α==代入上式,得(),sin cos 2cos 2f θφπθφ=⎛⎫= ⎪⎝⎭在三个主平面内的单元天线方向性函数和阵因子方向性函数分别为()2x y πθ=平面:01,2cos cos 2F fπφ⎛⎫== ⎪⎝⎭()0x z φ= 平面:0cos cos 2,2cos sin sin 2F f πθπθθ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭()2y z πφ= 平面:0cos cos 2,2sin F f πθθ⎛⎫ ⎪⎝⎭== 方向图见题9.6图()2x y πθ=平面F(),f θφ (),F θφ()0x z φ= 平面()0,F θφ (),f θφ (),F θφ()2y z πφ=平面()0,Fθφ (),f θφ (),F θφ题9.6图zyxyy9.7 均匀直线式天线阵得元间距2d λ=,如要求它得最大辐射方向在偏离天线阵轴线060±的方向,问单元之间的相位差应为多少,?解:均匀直线式天线阵的阵因子为 ()sin2sin2N f ψψ=ψ 其最大辐射条件可由()0df d ψ=ψ求得 0ψ=即 sin cos 0kd θφαψ=-= 式中α为单元天线上电流的相位差考虑090θ=的平面,当060φ=±时有 0cos600kd α-= 所以 002cos60cos6022kd πλπαλ=== 9.8 求半波天线的主瓣宽度。
)点之间的夹角0.52,θ如题9.8图所示。
题9.8图半波天线的方向性函数为 ()cos cos 2sin F πθθθ⎛⎫ ⎪⎝⎭=)时所对应的角度θ可由下列公式求得 ()cos cos 2sin F πθθθ⎛⎫ ⎪⎝⎭==解得 051θ=于是主瓣宽度为 ()()00000.522902905178θθ=-=-=9.9 用方向图乘法求图示[题9.9(1)图]的由半波天线组成的四元侧射式天线阵在垂直于半波天线轴线平面内的方向图。
解:四元天线阵如题9.9(1)图其合成波场强为()()()012323020111j j j j j e e e e e ψψψψψ=+++=+++=++E E E E E E E式中sin cos kd θφαψ=-其方向性函数为 ()()()()123,,,,F F F F θφθφθφθφ= 其中()1,F θφ为半波天线的方向性函数()1cos cos 2,sin F πθθφθ⎛⎫⎪⎝⎭=()2,F θφ为相距/2λ的天线1和天线2(或天线3和天线4)构成的二元天线阵I (或二元天线阵II )的阵因子方向性函数,设各单元天线上电流同相,则()2,2cos sin cos 2F πθφθφ⎛⎫= ⎪⎝⎭()3,F θφ为相距λ的天线阵I 和天线阵II 构成的阵列天线的方向性函数()()3,2cos sin cos F θφπθφ= 在垂直于半波天线轴线的平面内(2πθ=)()()()123,,,,,F F F θφθφθφ的方向图如题9.9(2)图所示。