ANSYS关于接触刚度
关于接触刚度的讨论
关于接触刚度的讨论(转载)2008-09-11 10:11 阅读65 评论0字号:大中小BBS 锦城驿站我最近在做接触分析,老觉得不合理。
接触刚度应该是与接触面等材料属性有关,为什么还要自己定义这个刚度?我仿照《使用ANSYS6。
1进行结构力学分析》里面的接触例子,求解时出现real constant2 ha s been referenced by element types element types1 and 2 one of which is contact element.书上说的是通过共享实常数来判别接触对,为什么又出现这样的错误提示呢?请大家帮忙。
决定接触刚度所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。
程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该尽量使渗透到达极小值。
为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。
1、开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的渗透问题要比过高的接触刚度导致的收敛性困难,要容易解决。
2、对前几个子步进行计算3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值可能被高估。
4、按需要调查FKN或FTOLN的值,重新分析。
ANSYS Mechanical 接触分析
--这是一个相对因子,一般变形问题建议使用1.0. 对弯曲支配情况, 如果收敛困难的话,小于 0.1的值可能是有用的。 --接触刚度在求解中可自动调整。如果收敛困难,刚度自动减小。
接触刚度
接触刚度WB-Mechanical系统默认自动设定。
– 用户可以输入“接触刚度因子Normal Stiffness Factor” (FKN) 它是计算刚 度代码的乘子。因子越小,接触刚度就越小。
然而, 值太大会引起收敛困难.
基本概念
如果接触刚度太大, 一个微小的穿透将会产生一个过大的 接触力, 在下一次迭代中可能会将接触面推开。
F
F
F接触
F
迭代 n
迭代 n+1
迭代 n+2
用太大的接触刚度通常会导致收敛振荡, 并且常会发散。
基本概念
接触协调 – Lagrange乘子法
另外一种方法, Lagrange乘子 法, 增加一个附加自由度 (接触压力),来 满足不可穿透条件。
F
基本概念
接触协调 – 增广 Lagrange法
多数 ANSYS 接触单元可以将罚函数法和 Lagrange乘子法结合起来强 制接触协调,称之为增广 lagrange法。 在迭代的开始, 接触协调基于惩罚刚度确定。一旦达到平衡, 检查穿 透容差。此时, 如果有必要, 接触压力增加, 迭代继续。
ANSYS高级接触分析
图3-1
• 接触面和目标面确定准则
• 如凸面和平面或凹面接触,应指定平面或凹面为目标 面;
• 如一个面上的网格较粗而另一个面上的网格较细,应 指定粗网格面为目标面;
• 如一个面比另一个面的刚度大,应指定刚度大的面为 目标面;
• 如一个面为高阶单元而另一面为低阶单元,应指定低 阶单元面为目标面;
• 如一个面比另一个面大,应指定大的面为目标面。
• 接触单元就是掩盖在分析模型接触面上 的一层单元。
• 在 ANSYS 中可以承受三种不同的单元 来模拟接触:
•
面一面接触单元;
•
点一面接触单元;
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。
• 1. 面一面接触单元用于任意外形的两个外表接 触
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制
•
面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触
单元具有很多优点:
•
与低阶单元和高阶单元都兼容
•
供给更好的接触结果〔于后处理接触压力和摩擦应力〕
•
可考虑壳和梁的厚度,以及壳的厚度变化
•
半自动接触刚度计算
•
刚性外表由“把握节点 – pilot node”把握
•
热接触特性
•
众多的高级选项来处理简洁问题。
2、摩擦消耗能量,并且是路径相关行为。 为获得较高的精度,时间步长必需很小〔图2-1〕
图2-1
3、ANSYS 中,摩擦承受库仑模型,并有附加选项可 处理简洁的粘着和剪切行为。 库仑法则是宏观模型,表述物体间的等效剪力 FT 不能超过正压力 FN 的一局部: FT <= μ× FN 式中: μ- 摩擦系数 一旦所受剪力超过 FT,两物体将发生相对滑动。
ANSYS接触问题
接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
Ansys接触分析和设置
Ansys非线性接触分析和设置设置实常数和单元关键选项程序利用20个实常数和数个单元关键选项,来操纵面─面接触单元的接触。
参见《ANSYS Elements Reference》中对接触单元的描述。
实常数在20个实常数中,两个(R1和R2)用来概念目标面单元的几何形状。
剩下的用来操纵接触面单元。
R1和R2 概念目标单元几何形状。
FKN 概念法向接触刚度因子。
FTOLN 是基于单元厚度的一个系数,用于计算许诺的穿透。
ICONT 概念初始闭合因子。
PINB 概念“Pinball"区域。
PMIN和PMAX 概念初始穿透的允许范围。
TAUMAR 指定最大的接触摩擦。
CNOF 指定施加于接触面的正或负的偏移值。
FKOP 指定在接触分开时施加的刚度系数。
FKT 指定切向接触刚度。
COHE 制定滑动抗力粘聚力。
TCC 指定热接触传导系数。
FHTG 指定摩擦耗散能量的热转换率。
SBCT 指定 Stefan-Boltzman 常数。
RDVF 指定辐射观看系数。
FWGT 指定在接触面和目标面之间热散布的权重系数。
FACT 静摩擦系数和动摩擦系数的比率。
DC 静、动摩擦衰减系数。
命令: RGUI:main menu> preprocessor>real constant对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既能够概念一个正值,也能够概念一个负值。
程序将正值作为比例因子,将负值作为绝对值。
程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。
例如 ICON = 说明初始闭合因子是“*基层单元的厚度”。
但是,ICON = 那么表示真实调整带是单位。
若是下伏单元是超单元,那么将接触单元的最小长度作为厚度。
参见图5-8。
图5-8 基层单元的厚度在模型中,若是单元尺寸转变专门大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,那么可能会显现问题。
ansys-workbench-接触的总结
①下面对非对称行为接触表面的正确选择给出选择指导:–如果一凸的表面要和一平面或凹面接触,应该选取平面或凹面为目标面.–如果一个表面有粗糙的网格而另一个表面网格细密,则应选择粗糙网格表面为目标面.–如果一个表面比另一个表面硬,则硬表面应为目标面.–如果一个表面为高阶而另一个为低阶,则低阶表面应为目标面.–如果一个表面大于另一个表面,则大的表面应为目标面.②法向刚度WB-Mechanical系统默认自动设定。
–用户可以输入“法向刚度因子Normal Stiffness Factor” (FKN) 它是计算刚度代码的乘子.因子越小,接触刚度就越小。
•默认 FKN =10 (对于绑定和不分离的接触)•默认 FKN=10(其他形式接触) 默认 FKN1.0 (其他形式接触)•接触问题法向刚度选择一般准则:–体积为主的问题: 用“Program Controlled”或手动输入“Normal Stiffness Factor”为“1”–弯曲为主的问题: 手动输入“Normal Stiffness Factor”为“0.01”到“0.1”之间的数值。
-在大变形问题的无摩擦或摩擦接触中建议使用“Augmented Lagrange”法向接触刚度 knormal是影响精度和收敛行为最重要的参数.–刚度越大,结果越精确,收敛变得越困难.–如果接触刚度太大,模型会振动,接触面会相互弹开。
- 其中update stifness 设置可以控制计算收敛与否。
③-刚度增加, 渗透减少,而最大压力增加. 并且通常会有更多的迭代和更长运行时间④ 不管使用了何种接触行为 (对称或反对称), 模型的变形和等效应力本质是相同的. 对称行为可以提高收敛. 但对称接触结果不容易解释,为接触面与目标面结果的平均值。
0.0032902 0.0033033 0.0033052 0.0033055 0.0033053565.05Mp a 774.12Mp a 811.34Mp a 816.26Mp a 812.78Mp a0.011864 0.0016253 0.0017035 0.000017138 0.00001998417 17 20 24 57⑤在详细窗口中用户可以选择“Adjusted to Touch”或“AddOffset”-“AdjstedtoToch”让Simlation 决定需要多大的接触偏移量来闭合缝隙建立初始接触。
ANSYS高级接触分析
§2 面-面接触单元
• §1 概述
• 面-面接触单元,是模拟任意两个表面间接触的方法。表面可以具有任意形 状。是 ANSYS 中最通用的接触单元。精度高、特性丰富还可使用接触向导, 建模方便。(其它接触单元目前尚不能用向导)。
•
面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触
单元具有很多优点:
• 库仑法则是宏观模型,表述物体间的等效剪力 FT 不能超过正压力 FN 的一部分:
FT <= μ× FN 式中: μ- 摩擦系数 • 一旦所受剪力超过 FT,两物体将发生相对滑动。 4、弹性库仑摩擦模型:允许粘着和滑动。
§3 自动时间步、控制
接触单元的 Keyopt(7)选项控制时间步的预报。 • 0-无控制:不影响时间步尺寸。当自动时间步开关
和土壤的接触
§2 接触单元
§3 关于耦合和约束方程的应用
• 如果接触模型没有摩擦,接触区域始终粘在一起,并且分 析是小挠度、小转动问题,那么可以用耦合或约束方程代 替接触。
• 使用耦合或约束方程的优点是分析还是线性的
接触问题的一般特性
• §1 接触刚度
• 1、所有的 ANSYS 接触单元都采用罚刚度(接触刚度)来 保证接触界面的协调性
• 接触单元就是覆盖在分析模型接触面上的一层 单元。
• 在 ANSYS 中可以采用三种不同的单元来模拟 接触:
◦
面一面接触单元;
◦
点一面接触单元;
◦
点一点接触单元。
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。
• 1. 面一面接触单元用于任意形状的两个表面接 触
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制
ANSYSWorkbench常用接触属性及选项设置方法介绍
ANSYSWorkbench常⽤接触属性及选项设置⽅法介绍在之前发布的ANSYS Workbench定义部件接触关系的三种⽅式⼀⽂中,已经向读者介绍了在ANSYS Workbench中指定接触关系的三种⽅法。
⽆论采⽤此⽂中何种⽅式创建接触关系,都会在Project树的Connection分⽀下建⽴⼀个Contacts分⽀,在Contacts分⽀下列出具体的接触对分⽀Contact Region。
对于每⼀个Contact Region分⽀,需要在其Details中设置相关的属性选项如下图所⽰。
常⽤的接触属性包括⽬标⾯和接触⾯设置、Type(接触类型)、Behavior(⾏为)、Formulation(算法)、Normal Stiffness(法向刚度)、Pinball Region(接触影响范围)等。
下⾯对这些接触属性或选项的意义进⾏讲解。
(1)接触⾯与⽬标⾯对于⾃动创建的接触⽆需再指定接触⾯和⽬标⾯,⽽对于⼿⼯创建的接触,在其Details列表中的Contact和Target区域中需要分别选择要创建接触关系的两侧部件的表⾯,并分别点Apply确认。
(2)接触类型属性接触的类型通过Type选项来指定,⽬前常见的接触类型有bonded(绑定)、No Separation(法向不分离)、Frictionless(光滑)、Frictional(有摩擦)、Rough(粗糙)等。
这些可以在Type选项中进⾏指定,其中后⾯三种类型属于⾮线性接触类型。
(3)接触⾏为属性接触⾏为可通过Behavior进⾏设置,主要是Asymmetric(⾮对称接触)、Symmetric(对称接触)、Automatic Asymmetric(⾃动⾮对称接触)。
⼀个Contact Region包含⼀个⽬标⾯和⼀个接触⾯,如果接触界⾯的两侧互为接触⾯和⽬标⾯,即所谓接触是对称的,否则是⾮对称的。
(4)接触的算法接触的算法通过Formulation选项设置,可选择的算法包括Augmented Lagrange、PurePenalty、MPC、Normal Lagrange等,对于连接多个部件的装配体接触⼀般多采⽤MPC算法。
ansys 瞬态结构 接触刚度
ANSYS是一款广泛使用的有限元分析软件,它在工程领域被用来模拟各种复杂的结构和系统的行为。
其中,瞬态结构分析是ANSYS的一个重要功能,它可以用来分析结构受到外部载荷作用时的动态响应。
在瞬态结构分析中,接触刚度是一个重要的参数,它对结构的动态响应具有重要影响。
本文将通过对ANSYS的瞬态结构分析和接触刚度的探讨,来探讨这一重要参数的作用和影响。
1. ANSYS瞬态结构分析ANSYS的瞬态结构分析功能可以用来模拟结构在受到瞬态载荷作用时的动态响应。
这种分析适用于求解结构在振动、撞击、爆炸等动态载荷下的响应情况。
瞬态结构分析需要考虑结构的惯性、阻尼和刚度等因素,以求解结构的位移、应变、应力等动态响应。
2. 接触刚度的概念在瞬态结构分析中,结构的接触关系是一个重要的考虑因素。
当结构的不同部分之间存在接触关系时,接触刚度可以用来描述接触面之间的约束关系和力学行为。
接触刚度越大,接触面之间的变形约束越严格,接触面之间的力学行为越稳定。
3. 接触刚度在瞬态结构分析中的作用在进行瞬态结构分析时,结构的接触刚度会对结构的动态响应产生影响。
较大的接触刚度会导致接触面之间的变形约束增强,从而减少结构在动态载荷下的位移和变形。
相反,较小的接触刚度则会导致接触面之间的变形约束减弱,增加结构的位移和变形。
在瞬态结构分析中,合理选择接触刚度是十分重要的。
4. 调整接触刚度的方法在ANSYS中,可以通过修改接触刚度参数来调整结构的接触行为。
在接触面定义中可以设置接触刚度系数,通过增加或减小接触刚度系数的数值来调整接触面之间的变形约束和力学行为。
还可以通过修改接触面之间的材料特性和几何约束等因素来影响接触刚度的大小和分布。
5. 接触刚度的影响分析在具体的工程实例中,接触刚度的大小会对结构的动态响应产生重要影响。
在模拟碰撞、摩擦或接触的情况下,适当设置接触刚度会增强结构的约束和稳定性,有利于减少结构的位移和变形。
然而,如果接触刚度设置过大,可能会导致结构受力不均衡,出现局部过载或损伤的情况。
浅谈ANSYS Workbench接触设置
浅谈ANSYS Workbench接触设置0、引言ANSYS中的接触可涉及位移、电压、温度、磁场等自由度,在这些接触中,涉及位移自由度的接触是比较复杂的。
本文大概介绍了ANSYS中接触求解的原理,并使用ANSYS Workbench计算了两圆柱接触和轮齿接触的接触应力并与赫兹公式进行了对比,最后给使用ANSYS Workbench求解接触时提供了一些建议。
鉴于作者水平有限,难免会存在一些错误,希望广大读者批评指正。
1、ANSYS接触公式理论接触处理往往是复杂的。
可能的话推荐使用程序默认的设置。
因为现实接触体之间不会相互穿透,程序必须在两个表面之间建立一种关系,在分析中阻止彼此穿透。
程序阻止相互穿透的行为被称之为强制“接触兼容性”。
图1 接触穿透示意图为了在接触界面上强制执行兼容性,Workbench Mechanical通常提供了几个接触公式。
这些公式定义了使用的求解方法。
图2 接触算法设置界面•纯罚函数法•增广拉格朗日法•常规拉格朗日法•多点约束(MPC)法•梁(beam)如果穿透在一个接触容差(FTOLN*下层单元的深度)范围内,接触兼容性则是满足的。
接触深度是一个接触对中每个接触单元深度的平均值。
如果程序检测到任意穿透大于这个容差,全局求解仍然认为是不收敛的,即使残余力和位移增量达到了收敛准则。
图3 下层单元深度示意图2、纯罚函数法和增广拉格朗日法接触公式对于非线性实体接触面,可使用纯罚函数公式或者增广拉格朗日法公式。
这两个都是基于罚函数接触公式:F Normal=K Normal*X Penetration有限接触力F Normal,是接触刚度K Normal的函数。
接触刚度越高,接触穿透X Penetration越小,如下图说明:图4 接触刚度与接触穿透的示意图理想的,对于一个无限大的接触刚度K Normal,可以获得一个0穿透。
在基于罚函数方法下这在数值上是不可能的,但是,如果只要X Penetration足够小或者可以忽略,则认为求解结果是精确的。
ANSYS高级接触问题处理
• -开始估计时,选用 • FKN = 1.0 大面积实体接触 • FKN = 0.01-0.1 较柔软(弯曲占主导的)部分 • -另外,也可以指定一个绝对刚度值,单位:(力/长度)
/ 面积。 • ·点一点(除CONTA178)和点-面接触单元需要为罚刚
度KN输入绝对值: • -初始估计时: • 对于大变形: 0.1*E < KN < 1.0*E • 对于弯曲: 0.01*E < KN < 0.1*E • E 为弹性模量
ANSYS 高级接触问题
• 接触问题概述 • 在工程中会遇到大量的接触问题,如齿轮的啮合、法兰
联接、机电轴承接触、卡头与卡座、密封、板成形、冲 击等等。接触是典型的状态非线性问题,它是一种高度 非线性行为。接触例子如图1:
• 分析中常常需要确定两个或多个相互接触 物体的位移、接触区域的大小和接触面上 的应力分布。
触
• 3. 点-点接触单元用于模拟单点和另一个确定点 之间的接触。
• -建立模型时必须事先知道确切的接触位置;
• -多个点-点接触单元可以模拟两个具有多个单 元表面间的接触;
• ·每个表面的网格必须是相同的; • ·相对滑动必须很小; • ·只对小的转动响应有效。
• 例如: 点一点接触可以模拟一些面的接触。如地 基和土壤的接触
• 3、选取接触刚度的指导:
• Step 1.开始采用较小的刚度值 • Step 2.对前几个子步进行计算 • Step 3.检查穿透量和每一个子步中的平衡迭代次数
• ·在粗略的检查中,如以实际比例显示整个模型时就能观察到穿透, 则穿透可能太大了,需要提高刚度重新分析。
• ·如果收敛的迭代次数过多(或未收敛),降低刚度重新分析。 • 注意:罚刚度可以在载荷步间改变,并且可以在重启动中调整。 • 牢记:接触刚度是同时影响计算精度和收敛性的最重要的参数。如
ansys接触问题!牛人的经验之谈!
接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。
?? 法向关系:?? 在法向,必须实现两点:1)接触力的传递。
2)两接触面间没有穿透。
??A N S Y S通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
?? 1.罚函数法?? 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:?? &n b s p;&n b s p;&n b s p;&n b s p;接触刚度*接触位移=法向接触力?? 对面面接触单元17*,接触刚度由实常数FKN来定义。
穿透值在程序中通过分离的接触体上节点间的距离来计算。
接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。
但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
?? 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。
并不改变总刚K的大小。
这种罚函数法有以下几个问题必须解决:?? 1)接触刚度F K N应该取多大??? 2)接触刚度F K N取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
?? 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适??? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。
当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。
?? 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。
它们会需要更多的迭代次数,并有可能不收敛。
可以使用直接法求解器,例如稀疏求解器等。
这些求解器可以有效求解病态问题。
ANSYS中的接触分析教程
一般的接触分类 (2)ANSYS接触能力 (2)点─点接触单元 2点─面接触单元 2面─面的接触单元 3执行接触分析 (3)面─面的接触分析 4接触分析的步骤: 4步骤1:建立模型,并划分网格 (4)步骤2:识别接触对 (4)步骤2:指定接触面和目标面 4步骤4:定义刚性目标面 (5)步骤5:定义柔性体的接触面 (8)步骤6:设置实常数和单元关键字 (9)步骤7:控制刚体目标的运动 (19)步骤8:给变形体单元加必要的边界条件 (20)步骤9:定义求解和载荷步选项20第十步:检查结果 (21)点─面接触分析 (23)点─面接触分析的步骤 (24)点-点的接触 (32)接触分析实例(GUI方法) (34)非线性静态实例分析(命令流方式) (37)接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。
ANSYS接触问题
接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
ansys接触分析讲解
关于使用节点对表面接触单元的详细信息请参看 ANSYS结构分析指 南 (ANSYS Structural Analysis Guide) .
October 20, 2000
8-20
接触刚度
• 点对点(接触12单元和接触52单元)和节点对表面(接触48单元和接 触49单元)接触单元都要求给出罚刚度.
• 注意点对点接触只能用于低次单元.
October 20, 2000
8-14
节点对节点接触过程
接触12单元和接触52单元既能用直接生成法创建, 也能在重合节点 处创建单元.
前处理器 -> 创建 -> 单元 -> 在重合节点 ( Preprocessor -> Create -> Elements -> At Coincid Nd)
8-9
接触协调条件
将罚函数法和拉格朗日乘子法结合起来施加接触协调条件合称为增 强的拉格朗日法. 在迭代的开始, 接触协调条件基于惩罚刚度决定. 一旦达到平衡, 就检 查许可侵入量. 这时, 如果有必要, 接触压力增大, 继续进行迭代.
F
October 20, 2000
许可侵入量
8-10
October 20, 2000
接触问题提出两个重要的挑战:
• 在多数接触问题中接触区域是未知的. 表面与表面会突然接触 或突然不接触, 这会导致系统刚度的突然变化.
• 多数接触问题包括摩擦. 摩擦是与路径有关的现象, 这要求精 确的加载历史. 摩擦的响应还可能是杂乱的, 使求解难以收敛.
October 20, 2000
8-2
关于耦合和约束方程的注释
用于罚刚度, 可以这样估算: k = fE
ansys接触原则
ansys接触原则:
ANSYS的接触原则主要包括以下几个方面:
1.接触类型选择:ANSYS提供了多种接触类型,如绑定(Bonded)、不分离(No
Separation)、无摩擦(Frictionless)和无穷粗糙(Rough)等。
选择合适的接触类型对于模拟结果的准确性和收敛性至关重要。
2.接触面和目标面选择:在定义接触时,需要选择接触面和目标面。
通常,接触面是
指与目标面接触的表面,而目标面则是与接触面相互作用的面。
确保选择的接触面和目标面匹配是获得准确结果的重要步骤。
3.接触刚度和阻尼:在ANSYS中,可以通过设置接触刚度和阻尼来模拟接触行为。
接
触刚度决定了接触面的刚性,而阻尼则用于控制能量的吸收和耗散。
选择合适的刚度和阻尼参数对于获得准确的模拟结果至关重要。
4.接触算法选择:ANSYS提供了多种接触算法,如罚函数法、拉格朗日乘子法和增广
拉格朗日法等。
选择合适的算法对于确保模拟结果的准确性和收敛性至关重要。
5.初始条件和边界条件:在定义接触时,需要考虑初始条件和边界条件。
初始条件是
指接触状态在开始时的状态,而边界条件则用于限制模拟的边界条件。
确保初始条件和边界条件的正确设置对于获得准确的模拟结果至关重要。
《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中变得越来越重要。
ANSYS软件作为一款强大的工程仿真软件,其在接触问题上的分析和处理能力得到了广泛应用。
本文将介绍基于ANSYS软件的接触问题分析及在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种典型的非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。
在ANSYS中,接触问题主要通过定义接触对、设置接触面参数、定义接触刚度等方式进行模拟。
2. ANSYS软件接触问题处理流程(1)建立模型:在ANSYS中建立涉及接触问题的物理模型。
(2)定义材料属性:设置模型中各部分的材料属性,包括弹性模量、密度、泊松比等。
(3)划分网格:对模型进行网格划分,以便更好地进行后续的数值分析和计算。
(4)定义接触对:根据实际需求,定义接触对,并设置相应的接触面参数。
(5)求解设置:设置求解器、求解参数等。
(6)结果分析:对求解结果进行分析,包括应力分布、位移变化等。
三、ANSYS软件在工程中的应用1. 机械工程领域在机械工程领域,ANSYS软件被广泛应用于分析各种机械零件的接触问题。
例如,齿轮传动中齿轮与齿轮之间的接触问题、轴承中滚动体与内外圈的接触问题等。
通过ANSYS软件的分析,可以有效地预测机械零件的应力分布、疲劳寿命等,为机械产品的设计和优化提供有力支持。
2. 土木工程领域在土木工程领域,ANSYS软件被广泛应用于分析土与结构之间的接触问题。
例如,桥梁、大坝等结构物与地基之间的相互作用、地震作用下建筑结构的动力响应等。
通过ANSYS软件的分析,可以有效地评估结构的稳定性和安全性,为土木工程的设计和施工提供有力支持。
3. 汽车工程领域在汽车工程领域,ANSYS软件被广泛应用于分析汽车零部件的接触问题。
例如,汽车发动机的缸体与缸盖之间的密封问题、汽车轮胎与地面的摩擦问题等。
ANSYS关于接触刚度
2.拉格朗日乘子法与扩展拉格朗日乘子法
拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。
从这些图可知,当接触单元的刚度为10e6时,可获得合理精确的结果。任何大于该值的刚度对下梁的偏移量没有什么影响,而求解所需的迭代数却显著的增加。对于这个题目,10e6的刚度是很适合的。但是,如果改变边界条件、网格密度、两梁之间的相对位置、材料特性或梁的几何形状,能获得满意结果的接触刚度值将是不同的。比如,如果网格密度增加,则接触单元数将增加,每一个单元上的载荷将降低。如果接触单元数增加两倍,一个合适的接触单元刚度值应为原来的一半。
2、对前几个子步进行计算
3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值可能被高估。
接触单元刚度问题仅仅是一个例子,即对于分析工程师来说,总是置疑于分析结果的正确与否是非常重要的,并要意识到数值仿真的局限性和潜在的假设及他们怎样影响所分析问题的结果。
这是接触问题的计算方法。
接触问题的关键在于接触体间的相互关系(废话 ),此关系又可分为在接触前后的法向关系与切向关系。
法向关系:
在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、对前几个子步进行计算
3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值可能被高估。
在扩展拉格朗日乘子法里,程序按照罚函数法开始,与纯粹拉格朗日法类似,用TOLN来控制最大允许穿透值。如果迭代中发现穿透大于允许的TOLN值,(对178单元是TOLN,而对面面接触单元171-174则是FTOLN)则将各个接触单元的接触刚度加上接触力乘以拉格朗日乘子的数值。因此,这种扩展拉格朗日法是不停更新接触刚度的罚函数法,这种更新不断重复,直到计算的穿透值小于允许值为止。
接触单元刚度问题仅仅是一个例子,即对于分析工程师来说,总是置疑于分析结果的正确与否是非常重要的,并要意识到数值仿真的局限性和潜在的假设及他们怎样影响所分析问题的结果。
这是接触问题的计算方法。
接触问题的关键在于接触体间的相互关系(废话 ),此关系又可分为在接触前后的法向关系与切向关系。
法向关系:
在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。
real,1
mat,1
!mesh
type,2 !defined 2 as a target element
real,1
mat,1
!mesh
在有限元分析中,接触单元通常用来描述两物体相互接触或滑动的界面。近年来,ANSYS开发了一系列的接触单元。刚开始有节点对节点单元CONTAC12和CONTAC52,接着有节点对地单元CONTAC26,然后有节点对面单元CONTAC48和CONTAC49。最近几年,我们引入一类面对面接触单元CONTA169和CONTA174,同时还有一种新的节点对节点单元CONTA178。
2)由于增加了额外的自由度,刚度阵变大了。
3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制这种chattering,是纯粹拉格朗日法所难以解决的。
因此,为控制chattering,ANSYS采用的是罚函数法与拉格朗日法混合的扩展拉格朗日乘子法。在扩展拉格朗日法中,可以采用实常数TOLN来控制最大允许穿透值。还有最大允许拉力FTOL。这两个参数只对扩展拉格朗日乘子法有效。
Kx=F+Fcontact
从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项:
1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。
穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。
尽管与拉格朗日法相比,扩展拉格朗日法的穿透并不是零,与罚函数法相比,可能迭带次数会更多。扩展拉格朗日法有下列优点:
1)较少病态,个接触单元的接触刚度取值可能更合理。
2)与罚函数法相比较少病态,与单纯的拉格朗日法相比,没有刚度阵零对角元。因此在选择求解器上没有限制,PCG等迭代求解器都可以应用。
3)用户可以自由控制允许的穿透值TOLN。(如果输入了TOLN,而使用罚函数法,则程序忽略它)
ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法
是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:
接触刚度*接触位移=法向接触力
对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的器可以有效求解病态问题。
FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。
2.拉格朗日乘子法与扩展拉格朗日乘子法
拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。
我认为唯一的方法就是我们必须试用不同的值直到找到正确的值。也就是刚开始我们应该使用一个较小的值,然后稳步的增加直到分析的结果不再有什么变化。那么对于我们这一特定分析的问题,这一点就是我们所想要的合适值。
我们可举例说明,如图1所示,平行放置两个悬臂梁,并有少许的交迭,下面的左边固支,上面的右边固支,当在上面梁的自由端施加一个向下位移时,梁变形弯曲并接触下面的梁,然后一起向下运动。用SOLID45单元划分梁,用TARGE170和CONTA174面面接触单元来描述相互作用。在此基础上,把CONTA174单元的刚度从非常低变到非常高,从而来观察它对结果的影响和收敛的迭代次数。图2说明了下梁自由端的偏移随接触单元刚度的变化情况,当刚度增加时,偏移量接近一个常数值(我们可以假定它是一个"正确"的结果。)图3说明求解所需的迭代次数,当接触单元刚度增加时,求解所需的迭代次数也是增加的,并服从指数关系。如果刚度过高,问题很有可能根本就不收敛。图4说明在上梁自由端接触单元的渗透量,当刚度增加时,渗透量降低。
由于每个题目都是不一样的,所以在求解之前并没有通用的方法来确定接触单元刚度的最佳值。我们不得不试算一个我们认为合适的值然后查看计算结果。一个有经验的分析工程师可能只查看一个计算结果来判定所取值的合适度,但对于大多数情况而言,最好用一个合理而不过度精确的刚度值进行第一次求解,然后用10倍于该值的刚度进行第二次求解,如果两者结果相差很小,而迭代数增加很多,那么我们则正好取得了曲线上的突变点,从而获得相当好的结果。
虽然接触单元的参数具有多样性,但我们在使用他们时可谨记重要的一点,他们具有一个共同的特点,即除了CONTA178的KEYOPT(2)=0或1外,所有的接触单元都有接触刚度。在现实中实际上相邻结构之间只是一种空隙,但在有限元分析中,这种空隙是一带有刚度的接触单元,这是因为通过刚度矩阵来实现接触算法的。一些接触单元要求使用者输入刚度值,同时另外的接触单元若没有输入则使用缺省值。分析工程师所面对的问题就是针对给定的条件确定一个合理的刚度值。如果过高,问题将会不收敛,如果过低,可能得到错误的结果。那么我们所面对的问题是怎样才能找到一个正确的刚度值?
4、按需要调查FKN或FTOLN的值,重新分析。(ANSYS公司的资料)
我的理解:接触刚度与接触面等材料属性无关,理论上接触刚度越大越好,尽量小的接触渗透。但难收敛。
通过共享实常数来判别接触对。要注意使用一个contact element和一个target element共享实常数。
如:
type,1 ! defined 1 as a contact element
【原创】为什么在接触分析中要自己定义接触刚度呢?
决定接触刚度
所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。
程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该尽量使渗透到达极小值。
为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。
1、开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的渗透问题要比过高的接触刚度导致的收敛性困难,要容易解决。
以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决:
1)接触刚度FKN应该取多大?
2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?