数理统计学试题 答案

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

数理统计考试试题及答案

数理统计考试试题及答案

一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。

(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。

五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

硕士生《数理统计》例题及答案

硕士生《数理统计》例题及答案

硕⼠⽣《数理统计》例题及答案《数理统计》例题1.设总体X 的概率密度函数为: 221)(ββx ex f -=)0(>β试⽤矩法和极⼤似然法估计其中的未知参数β。

解:(1)矩法由于EX 为0,πββββββββββββ2002222221][)()2(2)()2(212)(222222222=+-=-=-+-∞+-∞+--∞+-∞++∞∞-dx exeed xx d xedxex dxx f x EX x x x x xπβ22221=-=X E EX DX 令2S DX =得:S πβ2=(2)极⼤似然法∑===-=-∏ni i i x nni x e21111ββββ∑=--=ni ixn L 1221ln ln ββ231ln 2n i i d L n x d βββ==-+∑ 令0ln =βd L d 得∑==n i i x n 122?β2. 设总体X 的概率密度函数为:<≥--=ααβαββαφx x x x ,0),/)(exp(1),;(其中β>0,现从总体X 中抽取⼀组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。

试分别⽤矩法和极⼤似然法估计其未知参数βα和。

解:(1)矩法经统计得:063.0,176.2==S Xβαβαβφαβαααβαα+=-=+-=-===∞+--∞+--∞+----∞+--∞+∞+∞-??x x x x x edx exeexd dx ex dx x x EX ][)(1 )()(222][)(1222222βαβαβαβαβααβαα++=+=+-=-==--∞+∞+----∞+--∞+??EX dx ex ex ed x dx ex EX x x x x222)(β=-=EX EX DX令==2S DX X EX 即==+22SXββα故063.0?,116.2?===-=S S X βα(2)极⼤似然法 )(111),;(αββ===∏X nnX ni eex L i)(ln ln αββ---=X nn L)(ln ,0ln 2αββββα-+-=??>=??X nn L n L 因为lnL 是L 的增函数,⼜12,,,n X X X α≥L所以05.2?)1(==X α令0ln =??βL 得126.0?)1(=-=X X β 3.已知总体ξ的分布密度函数为:+≤≤-=其它,011,21);(θθθx x f(1)⽤矩法估计其未知参数θ;(2)⽤极⼤似然法估计其未知参数θ。

数理统计试题及答案

数理统计试题及答案

数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。

则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。

若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。

随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。

则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。

解答:总共的可能抽取组合数为C(10,3) = 120。

抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。

所以,抽到1个次品的概率为4005/120 = 33.375%。

2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。

问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。

设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。

要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。

首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。

(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。

解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。

数理统计课后题答案完整版

数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以x a c y =+ 成立因为()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为()2211n y i i s y yn ==-∑所以222x ys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()i x P λ: i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i n n i i i i n E X E x Ex n n nn DX D x Dx n n n nλλλλ============∑∑∑∑13.解:(),i x U a b : 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U -: 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i n n i i i i E X E x Ex n n DX D x Dx n n n==========∑∑∑∑14.解:因为()2,iX N μσ: 0i X E μσ-= 1i X D μσ-= 所以 ()0,1i X N μσ-:1,2,,i n =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以()2Y n χ:15. 解:因为()0,1i X N :1,2,,i n =⋅⋅⋅()1230,3X X X N ++:0=1=所以()0,1N :()221χ:同理()221χ:由于2χ分布的可加性,故()222123Y χ=+: 可知13C =16. 解:(1)因为 ()20,i X N σ: 1,2,,i n =⋅⋅⋅ ()0,1i X N σ:所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑: (){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n y n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为()20,i X N σ: 1,2,,i n =⋅⋅⋅()0,1i X N σ:所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑: (){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ:1,2,,i n =⋅⋅⋅()10,1ni N =:所以()22311n i Y n χσ=⎛= ⎝:(){}()()22333210y n Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,i X N σ: 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝::(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为()X t n :存在相互独立的U ,V()0,1U N : ()2V n χ:使X =()221U χ:则 221U X V n=由定义可知 ()21,F n χ:18解:因为()20,i X N σ: 1,2,,i n =⋅⋅⋅()10,1ni N =:()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑: 所以()1nniX Y t m ==:(2)因为()0,1iX N σ: 1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑::所以()221122211,ni n i ii n m n mi i i n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑: 19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2X n χ: 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N : {}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故{}P X c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e λλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=+⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b2()a 4. 解:(1)设12,,n x x x L 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑L (-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。

高校统计学专业数理统计期末试卷及详解

高校统计学专业数理统计期末试卷及详解

高校统计学专业数理统计期末试卷及详解一、选择题1. 在统计学中,数据可分为以下哪两种类型?A.连续型和离散型B. 定量型和定性型C. 正态分布型和偏态分布型D. 样本数据和总体数据答案:B. 定量型和定性型解析:定量型数据是指可用数值表示且具有可比较性的数据,如身高、体重等;定性型数据则是以描述性质的方式呈现,如性别、颜色等。

2. 下列哪个统计指标用来度量数据的集中趋势?A. 标准差B. 方差C. 中位数D. 最大值答案:C. 中位数解析:中位数是将数据按升序排列后,位于中间位置的数值,它可以较好地度量数据的集中趋势。

3. 若两个事件A和B相互独立,则下列说法正确的是:A. P(A并B) = P(A) × P(B)B. P(A或B) = P(A) + P(B)C. P(A|B) = P(A)D. P(A且B) = P(A) + P(B)答案:A. P(A并B) = P(A) × P(B)解析:当事件A和B相互独立时,它们的联合概率等于各自概率的乘积。

4. 假设一组数据的标准差为0,则该组数据的变异程度是?A. 高B. 低C. 无法确定D. 不存在答案:B. 低解析:标准差反映了数据的变异程度,当标准差为0时,数据的变异程度为低。

5. 在一组数据中,75%的数据落在均值两侧的范围内,这个范围可以用以下哪个统计指标来度量?A. 标准差B. 方差C. 百分位数D. 偏度答案:A. 标准差解析:标准差描述了数据的离散程度,当数据的标准差较小时,就说明数据集中在均值附近,75%的数据落在均值两侧可以通过标准差来衡量。

二、填空题1. 在正态分布曲线上,μ代表_______,σ代表_______。

答案:μ代表均值,σ代表标准差。

2. 甲、乙两个班的考试成绩平均数分别为75和80,标准差分别为8和10。

如果将甲、乙两个班的成绩合并,合并后的成绩标准差为_____。

答案:合并后的成绩标准差无法确定。

《数理统计学(第2版)》习题答案及解题步骤

《数理统计学(第2版)》习题答案及解题步骤

"+ !,0)0!"+
!"0,"+(6!>"))0!#!>"">(6!?"06!>/">"),0)0!#!?"
"?(!06!?/"?")
6!!"连续#当 ">,%#"?,%时#有6!>/">",6!>"#6!?/"?",6!?"
2#),!>#?"(:";><,%7!!!)"+!>/"">>",#!"!,?"+!?#?/"?"" "?,%
##!!)"+!>#>/">)##!!,"+!?#?/"?)
即有)0!个观测值小于等于>#一个落入区间 !>#>/">"#,0)0!个落入区间
!>/">#?)#一个落入区间 !?#?/"?)#余下"0,个大于?/"?$
27!!!)"+!>#>/">"#!!,"+!?#?/"?""
(!)0!"+ !+
(!)0!"+
"+ !,0)0!"+
!"0,"+(6!>"))0!(6!?"06!>"),0)0!

数理统计试题及答案

数理统计试题及答案

一、 (满分12分)X X X n ,,,12是总体X 的随机样本, X 的密度函数为)( ⎩≥⎨=><<∞⎧-λλλx f x e x x 0,0()0,0(1) 求X 的特征函数;(2) 利用X 的特征函数,求EX D X ,(); (3) 求∑==S X k k n1的概率密度函数. 二、(满分8分))(>X X X n n ,,,1122是总体μσN (,)2的随机样本,记 ,∑∑∑∑+--===-=-=-==+==+S S n n n n Y X Y X S X Y S X Y Z n Y Y k k n k k n k k k k n n n n 11,,(),()1111()121111*2*212112212*22*2222求统计量Z 的分布.三、 (满分14分)总体X 服从均匀分布θU (0,), X X X n ,,,12为其样本,(1) 证明,==+=+θθθn X n X X n n ,(1)2ˆˆˆ11()2(1)3都是未知参数θ的无偏估计; (2) 比较这三个估计量的优劣性.四、(满分14分)测得两批电子器材的电阻值(单位:Ω)分别为:A 批: 30, 32, 34, 36, 38, 42, 48, 52, 52, 56B 批: 31, 33, 37, 42, 46, 48, 53, 55, 56, 59设A 批器材的电阻μσX N ~(,),112B 批器材的电阻μσY N ~(,)222,而且总体相互独立.在显著性水平=α0.05下,能否认为两批器材的电阻的分布相同? 五、(满分14分)X X X n ,,,12是总体X 的随机样本,X 的密度函数为他其)( ⎩⎪⎨=>⎪<<⎧-θθθθf x x x 0,(;)0,01111(1)求未知参数θ的极大似然估计量θˆ; (2)证明θˆ是未知参数θ的UMVUE .六、(满分8分)将一颗骰子掷了120次,所得结果如下: 点数i 1 2 3 4 5 6 出现次数νi232718221416试在显著性水平=α0.05下,检验一颗骰子是否均匀、对称?七、 (满分16分)假定在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 对应的数据如下:x s / 1 2 3 4 5 6 7 8 9 10 μy m /7101316182123252730应用线性模型⎩⎨⎧=++εσεεεεN y a bx n ~(0,),,,,212为其样本.(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)预测腐蚀时间为=x s 6.50时,腐蚀深度y 0的范围-=a (10.95); (4) 若要使腐蚀深度在20-26μm 之间,腐蚀时间应该如何控制(=α0.05).八、 (满分14分) 某种型号的电池4批,分别为四个工厂所生产.各随机抽取5只电池样品,得它们的寿命如下:A 140 48 40 42 45 A 2 26 34 30 28 32 A 339 40 41 50 50 A 43634404035试在显著性水平=α0.05下,检验各批电池的平均寿命有无显著性的差异. 附注:计算中可能用到的数据如下:,,,,,,)(======Φ===χF F F r F t t (99) 4.03(1,8) 5.32,(3,16) 3.24.511.071(8)0.6319(99) 3.18(1.96)0.975,(18) 2.101,(8) 2.306,0.9750.950.950.950.050.9520.9750.975一、(满分12) 解:(1)X 的特征函数为())1)00()()|1()it xitxit xX e itt f x e dx edx it λλλφλλλ---∞∞---∞-∞====---⎰⎰(((2)21222222221()1(0)(0)222()1(0)(0)1()X X X X X X i it i t EX i it t EX i DX EX EX φφφλλλλφφφλλλλλ----⎛⎫'''=-=== ⎪⎝⎭--⎛⎫''''''=-=== ⎪⎝⎭=-=,,;,,;.(3)S 的特征函数为S ()[()](1/)n n X t t it φφλ-==-所以),(λn Γ~ S ,其密度函数为.0,00,!1)(1S ⎪⎩⎪⎨⎧≤>-=--y y n e y y f yn n )(λλ 二、(满分8)解:根据抽样分布定理得,*2*22222121222*2*21212(1)(1)11~(,),~(,),~(1)~(1),,n S n S Y N Y N n n n n Y Y S S μσμσχχσσ----,并且,,相互独立.于是,212*2*212*2*2122~(0,)~(0,1)(1)(1)2~(22)21)(1)2Y Y N N n n S n S n n S n S σχσσ--+---+-,,相互独立. 由t 分布的定义得 ,~(16)~(22)t Z t n =-,即. 三、(满分14分)解: (1)X 的密度函数为X 的分布函数为 0,0(),01,x F x x x x θθθθ≤⎧⎪=<<⎨⎪≥⎩;)(n X 的密度函数为()11,0()[()]()0,n n n nX n x x f x n F x f x θθθθ--⎧<<⎪==⎨⎪⎩;;其他 ()1()01ˆ.1nn n nx n n EX n dx E E X n n θθθθθ+⎡⎤====⎢⎥+⎣⎦⎰, (1)X 的密度函数为(1)11(),0()[1()]()0,n n n X n x x f x n F x f x θθθθθ--⎧-<<⎪=-=⎨⎪⎩;;其他 1(1)2(1)0()ˆ(1)1n nx x EX n dx E E n X n θθθθθθ--⎡⎤===+=⎣⎦+⎰,. 3ˆ(2)2E E X EX θθ===. 所以,1()2(1)31ˆˆˆ,(1),2n n X n X X nθθθ+==+=都是θ的无偏估计量. 2)122222()()()()2()()2(2)(1)n n n n n nx n n EXn dx D X EX EX n n n θθθθ+===-=+++⎰, ()2122222(1)(1(1)(1)2()2()(2)(1)(2)(1)n nx x n EX n D X EX EX n n n n θθθθθ--===-=++++⎰,.10()0,x f x θθθ⎧<<⎪=⎨⎪⎩,;其他()()2221()2(1)31ˆˆˆ()()()(1)()2(2)23n n n D D X D D n X D D X n n n n nθθθθθθ+===+===++,,所以,当1n >,132ˆˆˆ()()()D D D θθθ<<, 132ˆˆˆθθθ最有效,次之,效果最差. 四、(满分14)解:首先检验 2222012112:,:H H σσσσ=≠ 当0H 成立时, *21*22~(9,9)S F F S =拒绝域为 0,975(9,9) 4.03F F ≥= 或0.0251(9,9)0.2484.03F F ≤== 得 *2*21242,88,46,99.3333x S y S ====*21*220.8859S F S ==由于0.2480.8859 4.03F <=<,所以接受0H ,即认为两批器材的电阻的方差没有显著性差异.在此基础上检验012112:,:H H μμμμ=≠ 当0H 成立时,~(18)t t =拒绝域为 0.975||(18) 2.101t t ≥= 计算可得0.9242t ==- 由于||0.9242 2.101t =<,所以接受0H ,即认为两批器材的电阻的均值没有显著性的差异.综合以上,可以认为两批器材的电阻的分布相同. 五、(满分14分)解:(1) 11111()(;)()0nnk kn k k L f x x θθθθθ-====>∏∏,取对数得,11ln ()ln 1ln nk k L n x θθθ=⎛⎫=-+- ⎪⎝⎭∑令211ln ()ln 0n k k d n L x d θθθθ==--=∑ 解得 =11ˆln nkk x n θ=-∑ 所以,未知参数θ的极大似然估计量 11ˆln n k k X n θ-=-∑. (2) :(;)0f x θθ>{}=(0,1)与未知参数θ无关.[]11101211222202111(ln )ln 1(ln )ln 2ln 11ˆˆln ,()ln ttn nk k k k tE X xx dx e dt t E X xx dx e dt D X E E X D D X n n n θθθθθθθθθθθθθθθ--∞--∞==-===-===-=⎡⎤⎡⎤=-==-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰∑∑,,,,,2223222121ln 21);(ln )(θθθθθθθθ=+-=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡∂∂-=X E X f E I 由于 21ˆ()()D nnI θθθ==, 所以,=11ˆln nkk X n θ=-∑是未知参数θ的有效估计量,也是未知参数θ的UMVUE . 六、(满分8分)解: 0111:(1,2,,6),:(1,2,,6)66i i H p i H p i ===不全是当0H 成立时, 26221()(5).k k k k np np νχχ=-=∑近似服从 拒绝域为 22210.95(5)=(5)11.071αχχχ-≥=经计算得 2621() 5.911.071k k k knp np νχ=-==<∑ 所以接受0H ,可以认为这个骰子是均匀、对称的. 七、(满分16)解:(1)21112111155,()82.5,19,()512,205.n nn k xx k k k k k n nyy k xy k k k k x x L x x y y n n L y y L x y nx y ========-====-==-⨯=∑∑∑∑∑.设a 和b 的最小二乘估计分别为aˆ和b ˆ,则 205ˆˆˆ 5.3333, 2.484882.5xy xx L ay bx b L =-==== 回归方程为 ˆˆˆ 5.3333 2.4848ya bx x =+=+. (2)0:,0:10≠=b H b H当0H 成立时, )2(~ˆˆ-=n t L bt xx e σ拒绝域为 1-/20.975||(2)(8) 2.306t t n t α≥-==计算可得,ˆ0.570839.541e t σ====,由于||39.541 2.306t =>,所以,拒绝0H ,认为回归效果显著.(3)当0 6.5x =时,ε++=00bx a y ,00ˆˆˆ21.4848y a bx =+= 由于, )2(~)(11ˆˆ2000--++-=n t Lxxx x n y yt e σ得到, αα-=-<-1)}2(|{|21n tt P所以,成本0y 的置信水平为α-1的预测区间为120012ˆˆˆˆ(2)(2).yt n y t n αασσ--⎛--+- ⎝代入数据计算可得,001122ˆ20.1ˆˆˆ((22.870e e y t n y t n αασσ----+-=,所以,当06x =.5,腐蚀深度0y 的置信水平为95.0的预测区间为20.10,22.87().(4)当腐蚀深度在20-26m μ之间,近似地有0.97511ˆˆ'(')(200.5708 1.96 5.3333) 6.35ˆ 2.4848e x y u a b σ=+-=+⨯-=0.97511ˆˆ''('')=(260.5708 1.96 5.3333)7.87ˆ 2.4848e x y u a bσ=---⨯-= 所以,腐蚀时间控制6.35~7.87s ,可以使腐蚀深度在20-26m μ之间. 八(满分14)、解:20,5,44321======n n n n n r)4,,2,1(:,:143210 ====k H H k μμμμμ不全相同.当0H 成立时, ),1(~1r n r F rn S r S F e A----=拒绝域为 10.95(1,)(3,16) 3.24F F r n r F α-≥--== . 计算可得,1122111111111143,()48n n k k k k x x n S x x n =====-=∑∑2222222222112130,()40n n kk k k x xn S x x n =====-=∑∑3322333333113144,()122n n k k k k x x n S x x n =====-=∑∑4422444444114137,()32n n kk k k x xn S x x n =====-=∑∑24212==∑=rk kk e S n S 42211()5()625rA k k k k k S n x x x x ===-=-=∑∑由于 113.77 3.24Ae S r F S n r-==>-,所以拒绝0H ,即认为不同厂家的电池的平均寿命有显著性差异.。

数理统计考试题及答案

数理统计考试题及答案

数理统计考试题及答案一、选择题1. 下列哪个选项是中心极限定理的主要内容?A. 样本均值的分布趋近于正态分布B. 样本方差的分布趋近于正态分布C. 样本中位数的分布趋近于正态分布D. 样本最大值的分布趋近于正态分布答案:A2. 假设检验中的两类错误是什么?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 测量误差和估计误差D. 抽样误差和非抽样误差答案:A二、填空题1. 总体均值的估计量是_________。

答案:样本均值2. 在进行假设检验时,如果原假设被拒绝,则我们犯的是_________错误。

答案:第一类三、简答题1. 简述什么是置信区间,并说明其在统计分析中的作用。

答案:置信区间是指在一定置信水平下,用于估计总体参数的一个区间范围。

它的作用是在统计分析中提供对总体参数估计的不确定性度量,帮助我们了解估计值的可信度。

2. 解释什么是点估计和区间估计,并给出它们的区别。

答案:点估计是用样本统计量来估计总体参数的单个值。

区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。

它们的区别在于点估计提供了一个具体的数值,而区间估计提供了一个包含该数值的区间,反映了估计的不确定性。

四、计算题1. 某工厂生产的零件长度服从正态分布,样本均值为50mm,样本标准差为1mm,样本容量为100。

求95%置信水平下的总体均值的置信区间。

答案:首先计算标准误差:\( SE = \frac{\sigma}{\sqrt{n}} =\frac{1}{\sqrt{100}} = 0.1 \)。

然后根据正态分布的性质,95%置信水平下的置信区间为:\( \bar{x} \pm 1.96 \times SE \)。

计算得到:\( 50 \pm 1.96 \times 0.1 = (49.84, 50.16) \)。

2. 假设某公司员工的日均工作时长服从正态分布,样本均值为8小时,样本标准差为0.5小时,样本容量为36。

数理统计 期末试题及答案

数理统计 期末试题及答案

数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。

以下为试题及答案的详细内容。

一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。

设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。

已知甲队共投篮20次,乙队共投篮30次。

问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。

设投资额构成一个等比数列,求该公司的总投资额。

A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。

如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。

答案:要求P(45≤X≤55),可以使用标准正态分布表计算。

先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。

查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。

故P(45≤X≤55)≈0.6825。

2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。

数理统计期中考试试题及答案

数理统计期中考试试题及答案

数理统计期中考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是描述数据集中趋势的度量?A. 方差B. 标准差C. 平均值D. 极差答案:C2. 在统计学中,正态分布曲线的对称轴是什么?A. 均值B. 中位数C. 众数D. 标准差答案:A3. 以下哪个不是描述数据离散程度的统计量?A. 方差B. 标准差C. 平均值D. 极差答案:C4. 假设检验中,拒绝原假设意味着什么?A. 原假设是正确的B. 原假设是错误的C. 无法确定原假设的正确性D. 需要更多的数据答案:B5. 以下哪个统计量用于衡量两个变量之间的相关性?A. 均值B. 标准差C. 相关系数D. 方差答案:C6. 以下哪个选项是描述数据分布形状的度量?A. 平均值B. 方差C. 偏度D. 峰度答案:C7. 以下哪个选项是描述数据分布中心位置的度量?A. 方差B. 标准差C. 中位数D. 众数答案:C8. 以下哪个选项是描述数据分布集中程度的度量?A. 极差B. 方差C. 标准差D. 偏度答案:B9. 以下哪个选项是描述数据分布的峰值的度量?A. 方差B. 标准差C. 峰度D. 偏度答案:C10. 以下哪个选项是描述数据分布的偏斜程度的度量?A. 方差B. 标准差C. 偏度D. 峰度答案:C二、填空题(每题3分,共15分)1. 一组数据的均值是50,标准差是10,则这组数据的方差是______。

答案:1002. 如果一组数据服从正态分布,那么它的均值和中位数是______。

答案:相等的3. 相关系数的取值范围是______。

答案:-1到14. 在进行假设检验时,如果p值小于显著性水平α,则我们______原假设。

答案:拒绝5. 一组数据的偏度为0,说明这组数据是______。

答案:对称的三、简答题(每题5分,共20分)1. 请简述什么是置信区间,并给出其计算方法。

答案:置信区间是用于估计一个未知参数的区间,它表明了在给定的置信水平下,参数值落在这个区间内的概率。

数理统计学试题 答案

数理统计学试题 答案

第一学期成人本科数理统计学试题一、选择题(每题1分,共30分)1、样本是总体中:(D)A、任意一部分B、典型部分C、有意义的部分D、有代表性的部分E、有价值的部分2、参数是指:(C)A、参与个体数B、研究个体数C、总体的统计指标D、样本的总和E、样本的统计指标3、抽样的目的是:(E)A、研究样本统计量B、研究总体统计量C、研究典型案例D、研究误差E、样本推断总体参数4、脉搏数(次/分)是:(B)A、观察单位B、数值变量C、名义变量D.等级变量E.研究个体5、疗效是:(D)A、观察单位B、数值变量C、名义变量D、等级变量E、研究个体6、抽签的方法属于(D)A、分层抽样B、系统抽样C、整群抽样D、单纯随机抽样E、二级抽样7、统计工作的步骤正确的是(C)A、收集资料、设计、整理资料、分析资料B、收集资料、整理资料、设计、统计推断C、设计、收集资料、整理资料、分析资料D、收集资料、整理资料、核对、分析资料E、搜集资料、整理资料、分析资料、进行推断8、实验设计中要求严格遵守四个基本原则,其目的是为了:(D)A、便于统计处理B、严格控制随机误差的影响C、便于进行试验D、减少和抵消非实验因素的干扰E、以上都不对9、对照组不给予任何处理,属(E)A、相互对照B、标准对照C、实验对照D、自身对照E、空白对照10、统计学常将P≤0.05或P≤0.01的事件称(D)A、必然事件B、不可能事件C、随机事件D、小概率事件E、偶然事件11、医学统计的研究内容是(E)A、研究样本B、研究个体C、研究变量之间的相关关系D、研究总体E、研究资料或信息的收集.整理和分析12、统计中所说的总体是指:(A)A、根据研究目的确定的同质的研究对象的全体B、随意想象的研究对象的全体C、根据地区划分的研究对象的全体D、根据时间划分的研究对象的全体E、根据人群划分的研究对象的全体13、概率P=0,则表示(B)A、某事件必然发生B、某事件必然不发生C、某事件发生的可能性很小D、某事件发生的可能性很大E、以上均不对14、总体应该由(D)A、研究对象组成B、研究变量组成C、研究目的而定D、同质个体组成E、个体组成15、在统计学中,参数的含义是(D)A、变量B、参与研究的数目C、研究样本的统计指标D、总体的统计指标E、与统计研究有关的变量16、调查某单位科研人员论文发表的情况,统计每人每年的论文发表数应属于(A)A、计数资料B、计量资料C、总体D、个体E、样本17、统计学中的小概率事件,下面说法正确的是:(B)A、反复多次观察,绝对不发生的事件B、在一次观察中,可以认为不会发生的事件C、发生概率小于0.1的事件D、发生概率小于0.001的事件E、发生概率小于0.1的事件18、统计上所说的样本是指:(D)A、按照研究者要求抽取总体中有意义的部分B、随意抽取总体中任意部分C、有意识的抽取总体中有典型部分D、按照随机原则抽取总体中有代表性部分E、总体中的每一个个体19、以舒张压≥12.7KPa为高血压,测量1000人,结果有990名非高血压患者,有10名高血压患者,该资料属(B)资料。

数理统计试卷及答案

数理统计试卷及答案

数理统计考试试卷一、填空题(本题15分,每题3分)1、设是取自总体的样本,则________。

2、设总体,是样本均值,则________。

3、设总体,若未知,已知,为样本容量,总体均值的置信水平为的置信区间为,则的值为________。

4、设总体,已知,在显著性水平0.01下,检验假设,拒绝域是________。

5、设总体为未知参数,是来自的样本,则未知参数的矩估计量是______。

二、选择题(本题15分,每题3分)1、设随机变量和都服从标准正态分布,则()(A)服从正态分布(B)服从布(C)都服从分布(D)都服从分布2、设,为取自总体X的一个样本,则有()。

(A)(B)(C)(D)3、设服从参数为的(0-1)分布,是未知参数,为取自总体的样本,为样本均值,,则下列说法错误的是()。

(A)是的矩估计(B)是的矩估计(C)是的矩估计(D)是的矩估计4、设总体,由它的一个容量为25的样本,测得样本均值,在显著性水平0.05下进行假设检验,,则以下假设中将被拒绝的是()。

(A)(B)(C)(D)5、设总体,样本容量为n,已知在显著性水平0.05下,检验,的结果是拒绝,那么在显著性水平0.01下,检验的结果()。

(A)一定接受(B)一定拒绝(C)不一定接受(D)不一定拒绝三、(本题14分)设灯泡寿命服从参数为的指数分布,其中未知,抽取10只测得寿命(单位:h),求:(1)的极大似然估计量;(2)的矩估计值。

四、(本题14分)假设0.50,1.25,0.80,2.00是来自总体的样本值,已知。

(1)求的置信水平为0.95的置信区间;(2)求的置信水平为0.95的置信区间;(,)。

五、(本题10分)为了考查某厂生产的水泥构件的抗压强度(kg/cm2),抽取了25件样品进行测试,得到平均抗压强度为415(kg/cm2),根据以往资料,该厂生产的水泥构件的抗压强度,试求的置信水平为0.95的单侧置信下限;(,)。

数理统计期末考试试题答案

数理统计期末考试试题答案

1. Let n X X X ,,,21 be a random sample from the ),(βαGamma distributionβααβαβαxe x xf --Γ=1)(1),|(, 0>x , 0>α, 0>β.(a) ( 8 %) Find the method of moment estimates of α and β. (b) ( 7 %) Find the MLE of β, assuming α is known.(c) ( 7 %) Giving 0>α, find the Cramer-Rao lower bound of estimates of β. (d) ( 8 %) Giving 0>α, find the UMVUE of β.2. Suppose that n X X X ,,,21 are iid ~),2(p B , )1,0(∈p . Let )1(2)(p p p -=τ.(a) ( 5 %) Show that ∑==ni i X T 1 is a sufficient statistic for p .(b) ( 5 %) Let ⎩⎨⎧≠==1 if ,01if ,111X X Y . Show that Y is an unbiased estimate of )(p τ.(c) (10%) Find the UMVUE W of )(p τ.3. Let n X X X , , ,21 be a random sample from a )(λPoisson ,0>λ, distribution. Consider testing 1:0=λH vs 3:1=λH . (a) (10%) Find a UMP level α test, 10<<α.(b) ( 7 %) For 3=n , the test rejects 0H , if 5321≥++X X X .Find the power function )(λβ of the test.(c) ( 8 %) For 3=n , the test rejects 0H , if 5321≥++X X X .Evaluate the size and the power of the test.4. (10%) Let n X X X , , ,21 be iid )(ΛPoisson distribution, and let the priordistribution of Λ be a ),(βαGamma distribution, 0>α, 0>β. Find the posterior distribution of Λ.5. Let n X X X , , ,21 be a random sample from an exponential distribution with meanθ,0>θ. (a) ( 5 %) Show that ∑==ni i X T 1 is a sufficient statistic n for θ.(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR. (c) ( 5 %) Find a UMP level α test of 10:0≤<θH vs 1:1>θH by theKarlin-Rubin Theorem shown below.[Definition] A family of pdfs or pmfs }|)|({Θ∈θθt g has a monotone likelihood ratio,MLR, if for every 12θθ>, )|()|(12θθt g t g is a monotone function of t .[Karlin-Rubin Theorem] Suppose that T is a sufficient statistic for θ and the pdfs orpmfs }|)|({Θ∈θθt g has a non-decreasing monotone likelihood ratio. Consider testing 00:θθ≤H vs 01:θθ>H . A UMP level α test rejects 0H if and only if 0t T >, where )(00t T P >=θα.數理統計期末考試試題答案1. (a) Since αββαβαβαααβαα=Γ+Γ=Γ=+∞-⎰)()1()(1)(10dx e x X E xand22012)1()()2()(1)(βααβαβαβαααβαα+=Γ+Γ=Γ=+∞-+⎰dx e xX E x,Let αβ=1m and 22)1(βαα+=m ⇒αα1212+=m m ⇒ 21221~m m m -=α, 12121~~m m m m -==αβ. Furthermore, X m =1,2122212212)1()(11S nn X X n X X n m m ni i ni i -=-=-=-∑∑==, The MME of α.and β are 22)1(~Sn X n -=α, X n S n 2)1(~-=β(b) βααβααβαβααβ∑--=--==∏Γ=Γ∏=ni iix i ni n x i ni ex e x x L 1)(])([1])(1[)~,|(1111⇒ βαβαααβ∑∑==--+-Γ-=ni ni i x x n n x L 111ln )1(ln )(ln )~,|(lnLet 01)~,|(ln 12=+-=∂∂∑=n i i x n x L ββααββ ⇒ ααβx x n ni i ==∑=11ˆ. Furthermore, 32132222ln 2)~,|(ln ββαββααββx n n x n x L n i i -=-=∂∂∑= ⇒02ˆ2ˆ)~,|ˆ(ln 233222<-=-=-=∂∂x n x x n x n x n n x L ββααββ, So, αβX =ˆ is the MLE of β. (c) 232132222)2()]~,|(ln [βαβαββαββααββββn n n X n E x L E n i i =+-=+-=∂∂-∑=⇒ CRLB =αβαβββn x L E 222)]~,|(ln [1=∂∂- (d) Since βααβα==)(XE , αβX =ˆ is an unbiased estimate of β, and===αβαβααn nXVar 2221)(CRLB, αβX =ˆ is the UMVUE of β. [Or] βααβαβαxe x x I xf --∞Γ=1),0()()(1),|()]1(exp[)()(11),0(ββααα-Γ=-∞x x x I⇒ Given α, )}|({βx f is an exponential family in β.⇒ ∑==ni i X T 1is a sufficient statistic for β.Since ααβn T X ==ˆ is an unbiased estimate of β and a function of sufficient statistics T , by Rao-Blackwell Theorem, αβX =ˆ is the UMVUE of β.2. (a) ∏∏==--⎪⎪⎭⎫⎝⎛==ni n i x x ii i n i i p p x I x p x f p x x x f 112}2,1,0{21])1()(2[)|()|,,,( n x n i i i n i x i i p p p x I x p p p x I x ni i i 21}2,1,0{12}2,1,0{)1()1]()(2[])1()1)((2[1--⎪⎪⎭⎫⎝⎛=--⎪⎪⎭⎫ ⎝⎛=∑===∏∏ Let n x T p p p p x T g 2)~()1()1()),~((--= and )(2)(}2,1,0{1i n i i x I x x h ∏=⎪⎪⎭⎫ ⎝⎛=. By factorization theorem, ∑==ni i X T 1is a sufficient statistic for p .[Or] )]1ln(exp[)1()(2)1()(2)|(2}2,1,0{2}2,1,0{p p x p x I x p p x I x p x f x x --⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎭⎫ ⎝⎛=- ⇒ )}|({p x f is an exponential family ⇒ ∑==ni i X T 1is a sufficient statistic.(b) )1(2)1(12)1(0)1(1)(12111p p p p X P X P Y E -=-⎪⎪⎭⎫ ⎝⎛=≠⋅+=⋅=-, so Y is an unbiased estimate of )(p τ. (c) If n X X X ,,,21 , N n ∈, are iid ~),2(p B , then ),2(~1p n B X T ni i ∑==.⇒ )()1 & 1()()& 1()()& 1()|(211t T P t X X P t T P t T X P t T P t T Y P t T Y E ni i =-============∑=t n t t n t ni i p p t n p p t n p p t T P t X P X P ----=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---==-===∑212121)1(2)1(122)1(2)()1()1( )12()2()!2()!2(!)!12()!1()!22(2--=-----=n n t n t n t n t t n t n , n t 2,,2,1,0 =.By Rao-Blackwell Theorem, )12(2)()|(--==n T n T T Y E W is the UMVUE of λλτ-=e )(.3. (a) By Neyman-Pearson Lemma, a UMP level α test rejects 0H if and only if)1|,,,()3|,,,(2121=>=λλn n x x x kf x x x f .⇔ ])!(1[])!(3[1131-=-=∏>∏e x k e x i x n i i x ni ii ⇔ n x ke i 23>∑ ⇔ k n x n i i ln 23ln )(1+>∑= ⇔c kx ni i =+>∑=3ln ln 21 Since)(~1λn Poisson X ni i ∑=, a UMP level α test rejects0H if and only ifc X ni i >∑=1, where c is the smallest integer satisfying α≤-∞+=∑nc i i e i n 1!. [Or] ∑==ni i X T 1is sufficient for λ and )(~λn Poisson T .By the corollary of Neyman-Pearson Lemma, a UMP level α test rejects 0H if and only if )1|()3|(=>=λλt kg t g .⇔ 13!1!3-->e t k e t t t ⇔ 23ke t > ⇔ k x ni ln 23ln )(11+>∑=(b) )4(1)5()(321321≤++-=≥++=X X X P X X X P λλλβλλλλλλ343210]!4)3(!3)3(!2)3(!1)3(!0)3([1-++++-=e, 0>λ (c) The size of this test is 1847.0]!43!33!23!13!03[1)1(343210=++++-=-e β The power of this test is 9450.0]!49!39!29!19!09[1)3(943210=++++-=-e β 4. Since ∑==ni i X T 1 is sufficient for λ and )(~λn Poisson T .λλλλn tT e t n t f -=!)()|(|; and βλααλβαλ--ΛΓ=e f 1)(1)(⇒ βλααλλβαλλ---Γ=e e t n tf n t1)(1!)(),(λβααλβα)1(1)(!+--+Γ=n t tet n, 0>λ⇒ ααλβααββαβαλλβα+∞+--+++ΓΓ=Γ=⎰t tn t tT n t t n d et nt f )1)(()(!)(!)(0)1(1⇒ αλβαααλβααββαλββαβαλβαλλ++--+++--+Λ++Γ=++ΓΓΓ==t n t t t n t tT t n t e n t t n et nt f t f t f )1)(()1)(()(!)(!)(),()|()1(1)1(1|, 0>λThe posterior distribution of Λ is )1,(++ββαn t Gamma .5. (a) )(1))(1()|()|,,,(),0(111),0(211i n i x n ni ni i x i n x I e x I e x f x x x f i ∞=∑-==∞-∏===∏∏θθθθθθLet θθθ)~(1)),~((x T n ex T g -= and )()~(),0(1i n i x I x h ∞=∏=. By factorization theorem, ∑==ni i X T 1is a sufficient statistic for θ.[Or])]1(exp[1)()(1)|(),0(),0(βθθθθ-==∞∞-x x I x I e x f x⇒ )}|({θx f is an exponential family.⇒ ∑==ni i X T 1is a sufficient statistic.Since ααβn T X ==ˆ is an unbiased estimate of β and a function of sufficient statistics T , by Rao-Blackwell Theorem, αβX =ˆ is the UMVUE of β. (b) )(~1λn Poisson X T ni i ∑== ⇒ λλλn t et n t g -=!)()|(, ,2,1,0∈t ⇒ )(1212121212!)(!)()|()|(λλλλλλλλλλ----⎪⎪⎭⎫ ⎝⎛==n t n t n t e e t n et n t g t g If 12λλ> ⇒ 112>λλ ⇒ )|()|(12λλt g t g is an increasing function of t ,Hence }0|)|({>λλt g of T has MLR. (c) ),(~1θn Gam m a X T ni i ∑== ⇒ θθθtn ne t n t g --Γ=1)(1)|(, 0>t⇒tn tn n tn n e e t n e t n t g t g )11(211112121212)(1)(1)|()|(θθθθθθθθθθ------⎪⎪⎭⎫ ⎝⎛=ΓΓ=, 0>t If 12θθ> ⇒ 0)11(211212>-=--θθθθθθ ⇒ )|()|(12θθt g t g is increasing in t .Hence }0|)|({>θθt g of T has an MLR.By Karlin-Rubin Theorem, the UMP size α test rejecting 0H if c X T ni i >=∑=1, where csatisfies that αθ==>∑=}1|{1c X P ni i ; i.e.,α=Γ⎰∞--cxn dx e x n 1)(1.。

数理统计试卷及答案

数理统计试卷及答案

课程名称: 概率论与数理统计 以下为可能用到的数据或公式(请注意:计算结果按题目要求保留小数位数): 0.058=2.306t (),0.059=2.262t (),0.02t (20)=2.528,0.05220=2.086t (),20.058=15.507χ(),20.958=2.733χ(),..χ=2010(1)2706,..χ=2090(1)0016,0.012 2.58u =,0.0521.96u =,X YT -=,w S =2211(||0.5)c r ij ij j i ij O E E χ==--=∑∑ 一、单项选择题(共5小题, 每小题3分, 共15分).1. 将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( c). (A) 18 (B) 14 (C) 38 (D) 122. 为了解某中学学生的身体状况,从该中学学生中随机抽取了200名学生的身高进行统计分析。

试问,随机抽取的这200名学生的身高以及数据200分别表示( b ).(A) 总体,样本容量 (B) 从总体中抽取的一个样本,样本容量(C) 个体,样本容量 (D) ,,A B C 都不正确3. 设随机变量X 服从正态分布,其概率密度函数为2(2)21()()x f x x --=-∞<<+∞,则2()E X =( c ).(A) 1 (B)4 (C) 5 (D) 84. 已知随机变量(0,1)X N ,2()Y n χ,且X 与Y 相互独立,则2X Y n (b ).(A)(,1)F n (B)(1,)F n (C)()t n (D)(1)t n -5. 设随机变量(5)t t ,且0.0525=2.571t (),则下列等式中正确的是( a ). (A) ( 2.571)0.05P t >= (B) ( 2.571)0.05P t <=(C) ( 2.571)0.05P t >= (D) ( 2.571)0.05P t <-=二、填空题(共5小题, 每小题3分, 共15分).1. 设()0.5P A =,()0.3P B =,()0.6P A B =,则()P AB =__0.3___.2. 两人约定在下午2点到3点的时间在某地会面,先到的人应等候另一人 15分钟才能离去,问他们两人能会面的概率是_____.3. 若相互独立的事件A 与B 都不发生的概率为49,且()()P A P B =,则()P A =_1/3___4. 在有奖摸彩中,有200个奖品是10元的,20个奖品是30元的,5个奖品是1000元的.假如发行了10000张彩票,并把它们卖出去.那么一张彩票的合理价格应该是__0.76元.5. 对随机变量X 与Y 进行观测,获得了15对数据,并算得相关数据:121xx l =,101xy l =,225yy l =,则样本相关系数r =_101/165____(保留二位小数).三、计算与应用题1. 设某批产品是由3个不同厂家生产的.其中一厂、二厂、三厂生产的产品分别占总量的30%、35%、35%,各厂的产品的次品率分别为3%、3%、5%,现从 中任取一件,(1)求取到的是次品的概率;0.037(2)经检验发现取到的产品为次品,求该产品是三厂生产的概率.0.492. 设随机变量X 的概率密度为2,11()0,Cx x f x ⎧-≤≤=⎨⎩其它,求常数C 以及随机 变量X 落在1(0,)2内的概率.c=3/2 p=1/16 3. 检查某大学225名健康大学生的血清总蛋白含量(单位:g/dL),算得样本均数为7.33,样本标准差为0.31.试求该大学的大学生的血清总蛋白含量的95%置信区间(结果保留二位小数).4. 为判定某新药对治疗病毒性流行感冒的疗效性,对500名患者进行了调查,结果如下:试求:(1)求表格中理论频数E,21E;12e12=232 ,e21=42(2)判断疗效与服药是否有关(结果保留三位小数)?5. 正常人的脉搏平均为每分钟72次.某职业病院测得10例慢性四乙基铅中毒患者的脉搏(单位:次/min)如下:55 68 69 71 67 79 68 71 66 70假定患者的脉搏次数近似服从正态分布,试问四乙基铅中毒患者和正常人的脉搏次数是否有显著性差异?(0.01α=)6.某公司生产两种品牌的洗发水,现分别对这两种洗发水的聚氧乙烯烷基硫酸钠含量做抽检,结果如下:甲品牌:n=10 x=3.6 21s =3.38 乙品牌:2n=12 y=2.012s =2.42若洗发水中的聚氧乙烯烷基硫酸钠含量服从正态分布,并且这两种品牌洗发水中的聚氧乙烯烷基硫酸钠含量具有方差齐性,试问这两种品牌洗发水中的聚氧乙烯烷基硫酸钠含量有无显著性差异?(0.05α=,结果保留三位小数)?欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

数理统计试题及答案

数理统计试题及答案

数理统计试题及答案一、单项选择题(每题3分,共30分)1. 在概率论中,随机变量X的数学期望E(X)表示的是()。

A. X的众数B. X的中位数C. X的均值D. X的方差答案:C2. 以下哪项是描述性统计中常用的数据集中趋势的度量方法?()。

A. 极差B. 方差C. 标准差D. 偏度答案:A3. 假设检验中,原假设H0通常表示的是()。

A. 研究者想要证明的假设B. 研究者想要否定的假设C. 研究者认为正确的假设D. 研究者认为错误的假设答案:C4. 在回归分析中,如果自变量X与因变量Y之间存在线性关系,则回归系数β1表示的是()。

A. X每增加一个单位,Y平均增加β1个单位B. X每增加一个单位,Y平均减少β1个单位C. X每减少一个单位,Y平均增加β1个单位D. X每减少一个单位,Y平均减少β1个单位答案:A5. 以下哪项是统计学中用于衡量数据离散程度的指标?()。

A. 均值B. 中位数C. 众数D. 方差答案:D6. 抽样分布是指()。

A. 总体数据的分布B. 样本数据的分布C. 样本统计量的分布D. 总体统计量的分布答案:C7. 在统计学中,置信区间是用来估计()。

A. 总体均值B. 总体方差C. 总体标准差D. 以上都是答案:D8. 以下哪项是统计学中用于衡量数据分布形态的指标?()。

A. 均值B. 方差C. 偏度D. 峰度答案:C9. 假设检验中,如果p值小于显著性水平α,则()。

A. 拒绝原假设B. 接受原假设C. 无法做出决策D. 需要更多的数据答案:A10. 在方差分析中,如果F统计量大于临界值,则()。

A. 拒绝原假设B. 接受原假设C. 无法做出决策D. 需要更多的数据答案:A二、多项选择题(每题5分,共20分)1. 下列哪些是统计学中常用的数据收集方法?()。

A. 观察法B. 实验法C. 调查法D. 抽样法答案:ABCD2. 描述性统计中,以下哪些是数据的集中趋势的度量方法?()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期成人本科
数理统计学试题
一、选择题(每题1分,共30分)
1、样本是总体中:(D)
A、任意一部分
B、典型部分
C、有意义的部分
D、有代表性的部分
E、有价值的部分
2、参数是指:(C)
A、参与个体数
B、研究个体数
C、总体的统计指标
D、样本的总和
E、样本的统计指标
3、抽样的目的是:(E)
A、研究样本统计量
B、研究总体统计量
C、研究典型案例
D、研究误差
E、样本推断总体参数
4、脉搏数(次/分)是:(B)
A、观察单位
B、数值变量
C、名义变量D.等级变量E.研究个体
5、疗效是:(D)
A、观察单位
B、数值变量
C、名义变量
D、等级变量
E、研究个体
6、抽签的方法属于(D)
A、分层抽样
B、系统抽样
C、整群抽样
D、单纯随机抽样
E、二级抽样
7、统计工作的步骤正确的是(C)
A、收集资料、设计、整理资料、分析资料
B、收集资料、整理资料、设计、统计推断
C、设计、收集资料、整理资料、分析资料
D、收集资料、整理资料、核对、分析资料
E、搜集资料、整理资料、分析资料、进行推断
8、实验设计中要求严格遵守四个基本原则,其目的是为了:(D)
A、便于统计处理
B、严格控制随机误差的影响
C、便于进行试验
D、减少和抵消非实验因素的干扰
E、以上都不对
9、对照组不给予任何处理,属(E)
A、相互对照
B、标准对照
C、实验对照
D、自身对照
E、空白对照
10、统计学常将P≤0.05或P≤0.01的事件称(D)
A、必然事件
B、不可能事件
C、随机事件
D、小概率事件
E、偶然事件
11、医学统计的研究内容是(E)
A、研究样本
B、研究个体
C、研究变量之间的相关关系
D、研究总体
E、研究资料或信息的收集.整理和分析
12、统计中所说的总体是指:(A)
A、根据研究目的确定的同质的研究对象的全体
B、随意想象的研究对象的全体
C、根据地区划分的研究对象的全体
D、根据时间划分的研究对象的全体
E、根据人群划分的研究对象的全体
13、概率P=0,则表示(B)
A、某事件必然发生
B、某事件必然不发生
C、某事件发生的可能性很小
D、某事件发生的可能性很大
E、以上均不对
14、总体应该由(D)
A、研究对象组成
B、研究变量组成
C、研究目的而定
D、同质个体组成
E、个体组成
15、在统计学中,参数的含义是(D)
A、变量
B、参与研究的数目
C、研究样本的统计指标
D、总体的统计指标
E、与统计研究有关的变量
16、调查某单位科研人员论文发表的情况,统计每人每年的论文发表数应属于(A)
A、计数资料
B、计量资料
C、总体
D、个体
E、样本
17、统计学中的小概率事件,下面说法正确的是:(B)
A、反复多次观察,绝对不发生的事件
B、在一次观察中,可以认为不会发生的事件
C、发生概率小于0.1的事件
D、发生概率小于0.001的事件
E、发生概率小于0.1的事件
18、统计上所说的样本是指:(D)
A、按照研究者要求抽取总体中有意义的部分
B、随意抽取总体中任意部分
C、有意识的抽取总体中有典型部分
D、按照随机原则抽取总体中有代表性部分
E、总体中的每一个个体
19、以舒张压≥12.7KPa为高血压,测量1000人,结果有990名非高血压患者,有10名高血压患者,该资料属(B)资料。

A、计算
B、计数
C、计量
D、等级
E、都对
20、红细胞数(1012L-1)是(B)
A、观察单位
B、数值变量
C、名义变量
D、等级变量
E、研究个体
21、某次研究进行随机抽样,测量得到该市120名健康成年男子的血红蛋白数,则本次研究总体为:(C)
A、所有成年男子
B、该市所有成年男子
C、该市所有健康成年男子
D、120名该市成年男子
E、120名该市健康成年男子
22、某地区抽样调查1000名成年人的血压值,此资料属于:(B)
A、集中型资料
B、数值变量资料
C、无序分类资料
D、有序分类资料
E、离散型资料
23、抽样调查的目的是:(E)
A、研究样本统计量
B、研究总体统计量
C、研究典型案例
D、研究误差
E、样本推断总体参数
24、测量身高、体重等指标的原始资料叫:(B)
A、计数资料
B、计量资料
C、等级资料
D、分类资料
E、有序分类资料
25、某种新疗法治疗某病患者41人,治疗结果如下:()
治疗结果治愈显效好转恶化死亡
治疗人数 8 23 6 3 1
该资料的类型是:D
A、计数资料
B、计量资料
C、无序分类资料
D、有序分类资料;
E、数值变量资料
26、样本是总体的(C)
A、有价值的部分
B、有意义的部分
C、有代表性的部分
D、任意一部分
E、典型部分
27、将计量资料制作成频数表的过程,属于&not;&not;统计工作哪个基本步骤:(C)
A、统计设计
B、收集资料
C、整理资料
D、分析资料
E、以上均不对
28、良好的实验设计,能减少人力、物力,提高实验效率;还有助于消除或减少:(B)
A、抽样误差
B、系统误差
C、随机误差
D、责任事故
E、以上都不对
29、以下何者不是实验设计应遵循的原则(D)
A、对照的原则
B、随机原则
C、重复原则
D、交叉的原则
E、以上都不对
30、下面那一项可用于比较身高和体重的变异度(C)
A、方差
B、标准差
C、变异系数
D、全距
E、四分位数间距
二、名词解释(每题4分,共20分)
1、样本——样本是指以某种方式按预先规定的概率从总体中随机抽取的、足够数量的和能
代表总体分布特征的一部分观察单位某指标数据的集合。

S X)表示样本统计量对总体参数的离散程度。

2、标准误——标准误(
3、Ⅰ型错误——Ⅰ型错误是指在假设检验中拒绝了一个实际成立的原假设所犯的错误,其
概率记为α。

4、变异系数——变异系数是相对数形式表示的变异指标。

它是通过变异指标中的全距、平
均差或标准差与平均数对比得到的。

5、统计推断——根据带随机性的观测数据(样本)以及问题的条件和假定(模型),而对未
知事物作出的,以概率形式表述的推断。

三、分析计算题(共50分)
1、为研究黄芪对细胞中RNA代谢的影响,在人肌皮肤二倍体细胞培养上进行黄芪对尿嘧啶
核苷的渗入试验,结果见下表,请分析:
①用统计图描述这两组资料
②描述这两组资料的集中趋势和离散趋势
③两总体方差是否相等?
④两总体均数有无差别?(40分)
表1两组对象的尿嘧啶核苷(cpm/6×105细胞)
组别尿嘧啶核苷
黄芪组410 380 601 304 250 146 128 191 139 289 520 220 300
对照组417 349 500 430 848 320 590 200 230 235 763 458
答:①用统计图描述这两组资料——
②这两组资料的集中趋势——
离散趋势——
③两总体方差不相等。

④两总体均数有差别。

2、根据下表数据,试比较使用含氟牙膏与使用一般牙膏的患龋率有无不同?(10分)
表2使用含氟牙膏与使用一般牙膏的患龋率
牙膏类型调查人数患龋齿人数患龋率(%)
含氟牙膏200 70 35
一般牙膏100 50 50
合计300 120 40
答:如下图所示,使用含氟牙膏与使用一般牙膏的患龋率有不同。

相关文档
最新文档