两角和与差的正弦
两角和和差的正弦公式
两角和和差的正弦公式正弦公式是三角函数中的基本公式之一,用于求解两角和和差的正弦值。
我们先来看一下两角和的正弦公式,然后再来推导两角差的正弦公式。
1.两角和的正弦公式:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)其中A和B是任意两个角。
推导:根据向量的加法:设向量A的模为a,向量B的模为b,A与y轴的夹角为α,B与y轴的夹角为β,A与B的夹角为θ。
则向量A可以表示为:A = a(sinα, cosα)向量B可以表示为:B = b(sinβ, cosβ)向量A+B可以表示为:A+B = a(sinα, cosα) + b(sinβ, cosβ)= (asinα + bsinβ, acosα + bcosβ)设向量A+B与y轴的夹角为γ,则:tanγ = (asinα + bsinβ) / (acosα + bcosβ)根据三角函数的定义:sinγ = (asinα + bsinβ) / √[(asinα + bsinβ)² + (acosα + bcosβ)²]cosγ = (acosα + bcosβ) / √[(asinα +bsinβ)² + (acosα + bcosβ)²]根据正弦函数的定义:sin(A + B) = sinγ所以:sin(A + B) = (asinα + bsinβ) / √[(asinα + bsinβ)² + (acosα + bcosβ)²]= [(sinα + (b/a)sinβ) / √(1 + (b/a)cos(β - α))²]= (sinαcos(β - α) + sinβcos(β - α)) / √(1 +(b/a)cos(β - α))²= sinαcos(β - α) + sinβcos(β - α) / √(1 +2(b/a)cos(β - α) + (b/a)²cos²(β - α))= sinαcos(β - α) + sinβcos(β - α) / √(1 - sin²(β - α) + (b/a)²(cos(β - α))²)= sinαcos(β - α) + sinβcos(β - α) / √(cos²(β - α) - sin²(β - α) + (b/a)²(cos(β - α))²)由于sin²θ + cos²θ = 1,所以:sin(A + B) = sinαcos(β - α) + sinβcos(β - α) /√(cos²(β - α) - sin²(β - α) + (b/a)²(cos(β - α))²) = sinαcos(β - α) + sinβcos(β - α) / √cos²(β - α)(1 + (b/a)²cos²(β - α))= sinαcos(β - α) + sinβcos(β - α) / cos(β - α)√(1 + (b/a)²cos²(β - α))= sinα + (sinα/b)sinβ / √(1 + (b/a)²cos²(β - α))= sinα + (sinα/b)sinβ / √(1 + (b/a)²(1 - sin²(θ)))= sinα + (sinα/b)sinβ / √(1 + (b/a)² - (b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(1 + sin²(α)/cos²(α) -(b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(cos²(α)/cos²(α) +sin²(α)/cos²(α) - (b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √((cos²(α) + sin²(α))/cos²(α) - (b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(1/cos²(α) - (b/a)²sin²(θ))由于1/cos²θ = sec²θ,所以:sin(A + B) = sinα + (sinα/b)sinβ / √(sec²(α) -(b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(1 + tan²(α) - (b/a)²sin²(θ)) = sinα + (sinα/b)sinβ / √(1 + (b/a)²sin²(θ)/cos²(α))= sinα + (sinα/b)sinβ / √(1 + (b/a)²tan²(θ))= sinα + (sinα/b)sinβ / √(1 + sin²(β)tan²(α))根据正弦函数的定义:sin(A + B) = sinα + (sinα/b)sinβ / √(1 +sin²(β)tan²(α))= sinα + sinβ(1/b) / √(1 + sin²(β)tan²(α))所以:sin(A + B) = sinα + sinβ(1/b) / √(1 + sin²(β)tan²(α))这就是两角和的正弦公式。
(完整版)两角和与差的正弦、余弦、正切公式及变形
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
两角和与差的正弦、余弦和正切公式
[典例] (2012· 广东高>0,x∈R)的最小正周期为 10π. 6
(1)求 ω 的值; π 5π 6 0, ,f5α+ =- ,f (2)设 α,β∈ 3 2 5
5β-5π=16,求 cos(α+β). 6 17
典题导入
Go the distance
sin α+cos α [例 3] (1)(2012· 温州模拟)若 =3,tan(α-β)=2,则 tan(β-2α)=________. sin α-cos α π 4 π (2)(2012· 江苏高考)设 α 为锐角,若 cos α+6=5,则 sin2α+12的值为________. sin α+cos α tan α+1 [自主解答] (1)由条件知 = =3, sin α-cos α tan α-1 则 tan α=2. 故 tan(β-2α)=tan [(β-α)-α] = tanβ-α-tan α -2-2 4 = = . 1+tanβ-αtan α 1+-2×2 3
Go the distance
的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统 一角和角与角转换的目的. 以题试法 π 3 1.(1)已知 sin α= ,α∈ 2,π,则 5 cos 2α π 2sin α+4 =________.
(2)(2012· 济南模拟)已知 α 为锐角,cos α= A.-3 4 C.- 3 cos 2α 1 B.- 7 D.-7
三角函数公式的应用
典题导入 1 π [例 1] (2011· 广东高考)已知函数 f(x)=2sin 3x-6,x∈R. 5π (1)求 f 4 的值; π π 10 6 (2)设 α,β∈ 0,2,f3α+2=13,f(3β+2π)=5,求 cos(α+β)的值. 1 π [自主解答] (1)∵f(x)=2sin 3x-6, 5π π 5π π ∴f 4 =2sin12-6=2sin4= 2. π π 10 6 (2)∵α,β∈ 0,2,f3α+2=13,f(3β+2π)=5, π 6 10 β+ = . ∴2sin α= ,2sin 2 5 13 5 3 即 sin α= ,cos β= . 13 5 12 4 ∴cos α= ,sin β= . 13 5 ∴cos(α+β)=cos αcos β-sin αsin β = 12 3 5 4 16 × - × = . 13 5 13 5 65 由题悟法 两角和与差的三角函数公式可看作是诱导公式的推广,可用 α、β 的三角函数表示 α± β
3.1.2两角和与差的正弦余弦正切公式
复习引入
1,两角差与和的余弦公式: 两角差与和的余弦公式:
cos(α ± β ) = cosα cos β sinα sin β
2,诱导公式五: 诱导公式五:
sin ( cos (
π
2 π
2
-α) = cosα -α) = sinα
sin (α + β )
π π π sin 求: α , cos + α , tan(α ) 4 4 4
例3, , π 4 3 (1)α , β ∈ (0, ), cos α = , cos(α + β ) = ) 2 5 5 (2)tan(α + β ) = 3, tan(α β ) = 2 ) 求: tan 2α , tan 2 β
探求新知
= sin α cos β + cos α sin β
sin (α β ) = sin α cos β cos α sin β
sin (α ± β ) = sinα cosβ )
tan α + tan β = 1 tan α tan β
y = 4sin x + 3cos x
y = a sin x + b cos x = a 2 + b 2 sin( x + φ )
其中,cosφ = a a 2 + b2 , sinφ = b a 2 + b2
6 证法1: 证法1: 右边=2(sin π cos α + cos π sin α ) 6 6 1 3 =2( cos α + sin α ) 2 2 =cos α + 3 sin α =左边 1 3 证法2: 证法2:左边=2( cos α + sin α ) 2 2 π π =2(sin cos α + cos sin α ) 6 6 π =2sin( + α ) =右边 6 化为某个角的一个 一个三角函数形式 注:该题将 cos α + 3 sin α 化为某个角的一个三角函数形式 π 即 cos α + 3 sin α = 2sin( + α ) 6
两角和与差的正弦、余弦正切公式
两角和与差的正弦、余弦正切公式两角和与差公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A半角公式 sin(2A )=2cos 1A -cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- tan(2A )=A A sin cos 1-=A A cos 1sin + cot(2A )=A A cos 1cos 1-+ 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb =21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] 熟记并理解各公式,并能熟练的运用各公式在具体题型中的运用。
两角和和差的正弦公式
两角和和差的正弦公式在三角函数的学习中,我们经常会遇到求两角的和或差的正弦值的问题。
为了解决这类问题,我们需要掌握两角和和差的正弦公式。
设A和B为两个角,则有:sin(A ± B) = sinA * cosB ± cosA * sinB其中,"+"号适用于求两角的正弦和,"-"号适用于求两角的正弦差。
与两角和的公式类似,设A和B为两个角,则有:sin(A ± B) = sinA * cosB ∓ cosA * sinB其中,"+"号适用于求两角的正弦和,"-"号适用于求两角的正弦差。
下面我们来证明这两个公式。
1.两角和的正弦公式的证明:我们假设一个单位圆O,以O为中心,OA为半径作出角A,以OB为半径作出角B。
设这两条半径与其终边的交点分别为C和D。
根据三角函数的定义,我们可以得到:sinA = OC / OA cosA = AC / OAsinB = OD / OB cosB = BD / OB现在我们要求两角和的正弦值,即sin(A + B),根据正弦的定义可得:sin(A + B) = OD / OA同时,根据平面几何知识,我们可以知道:OD = OC * cosB + OD * sinBOC=OCOA=OA代入前面的三角函数定义中,可以得到:OD / OA = (OC * cosB + OD * sinB) / OA进一步化简,有:sin(A + B) = cosB * sinA + sinB * cosA由此证得,两角和的正弦公式成立。
2.两角差的正弦公式的证明:同样假设单位圆O,以O为中心,OA为半径作出角A,以OB为半径作出角B。
根据三角函数的定义,我们可以得到:sinA = OC / OA cosA = AC / OAsinB = OD / OB cosB = BD / OB现在我们要求两角差的正弦值,即sin(A - B),根据正弦的定义可得:sin(A - B) = OD / OA同时,根据平面几何知识,我们可以知道:OD = OC * cosB - OD * sinBOC=OCOA=OA代入前面的三角函数定义中,可以得到:OD / OA = (OC * cosB - OD * sinB) / OA进一步化简,有:sin(A - B) = cosB * sinA - sinB * cosA由此证得,两角差的正弦公式成立。
两角和与差的正弦课件
03
CHAPTER
两角和与差的正弦公式的扩 展
半角公式
半角公式
sin(A/2) = ±√[(1-cosA)/2]
应用
在解三角形问题中,利用半角公式可以求得角度的半角值,进而求得角度的精确值。
积化和差与和差化积公式
积化和差公式
sinAcosB = 1/2[sin(A+B) + sin(A-B)]
05
CHAPTER
两角和与差的正弦公式的注 意事项
公式使用的条件
01
02
03
公式适用范围
两角和与差的正弦公式适 用于角度在$0$到$pi$之 间的情况,超出此范围需 要特别处理。
角度单位统一
在使用公式时,需要确保 角度的单位统一,一般以 弧度为单位。
特殊角的处理
对于一些特殊角,如 $frac{pi}{2}$,需要特别 注意公式的应用,避免出 现错误的结果。
在三角函数图象和性质中的应用
两角和与差的正弦公式在研究三角函数的图象和性质时也 具有重要意义。通过运用正弦公式,可以推导出一些三角 函数的性质,如周期性、奇偶性等。
在绘制三角函数的图象时,可以利用正弦公式计算出不同 角度下的正弦值,从而绘制出完整的正弦函数图象。此外 ,在研究三角函数的对称性和周期性时,也需要用到两角 和与差的正弦公式。
公式推导过程
总结词
详细描述了如何推导两角和与差的正弦公式。
详细描述
首先,利用三角函数的加法公式,将sin(α+β)表示为sinαcosβ + cosαsinβ。然后, 利用三角函数的减法公式,将sin(α-β)表示为sinαcosβ - cosαsinβ。通过这两个公 式,可以方便地计算出任意两个角度的和与差的正弦值。
两角和与差的正弦、余弦和正切公式(含解析)
两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
两角和与差的正弦、余弦和正切公式
cos
12
(α-β)= ,
13
sin
3
(α+β)=- ,则
5
π
3π
3π
π
(2)∵ <β < ,∴- <-β <- .
2
4
4
2
π
3π
π
π
又∵ <α< ,∴- <α-β < .
2
4
4
4
π
∵α>β,∴α-β>0,∴0<α-β < .
4
∵ cos
12
(α-β)= ,∴
13
sin (α-β)= 1 −
144
两角和与差的正弦、余弦和正切公式
[学习要求] 1.会推导两角差的余弦公式. 2.会用两角差的余弦公式推
导出两角差的正弦、正切公式.
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 两角和与差的正弦、余弦、正切公式
1. cos (α-β)= cos α cos β+ sin α sin β .
5
= .
169
13
cos 2α的
π
3π
π
3π
3π
∵ <α< , <β< ,∴π<α+β< .
2
4
2
4
2
∵ sin
3
(α+β)=- ,∴
5
cos (α+β)=- 1 −
9
4
=- ,
25
5
∴ cos 2α= cos [(α-β)+(α+β)]= cos (α-β) cos (α+β)-
sin (α-β) sin
高考数学 两角和与差的正弦、余弦与正切公式
两角和与差的正弦、余弦与正切公式[知识梳理]1.两角和与差的正弦、余弦、正切公式(1)C (α∓β):cos(α∓β)=cos αcos β±sin αsin β.(2)S (α±β):sin(α±β)=sin αcos β±cos αsin β.(3)T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎪⎫α,β,α±β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式(1)S 2α:sin2α=2sin αcos α.(2)C 2α:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)T 2α:tan2α=2tan α1-tan 2α⎝ ⎛⎭⎪⎫α≠±π4+k π,且α≠k π+π2,k ∈Z . 3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(2)cos 2α=1+cos2α2,sin 2α=1-cos2α2. (3)1±sin2α=(sin α±cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (4)a sin α+b cos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b2,tan φ=b a (a ≠0). 特别提醒:(1)角:转化三角函数式中往往出现较多的差异角,注意观察角与角之间的和、差、倍、互补、互余等关系,运用角的变换,化多角为单角或减少未知角的数目,连接条件角与待求角,使问题顺利获解.对角变换时:①可以通过诱导公式、两角和与差的三角公式等;②注意倍角的相对性;③注意拆角、拼角技巧,例如,2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=α+β2-α-β2=(α+2β)-(α+β),α-β=(α-γ)+(γ-β),15°=45°-30°,π4+α=π2-⎝ ⎛⎭⎪⎫π4-α等.(2)将三角变换与代数变换密切结合:三角变换主要是灵活应用相应的三角公式,对于代数变换主要有因式分解、通分、提取公因式、利用相应的代数公式等,例如,sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 22x . [诊断自测]1.概念思辨(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小关系不确定.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )答案 (1)√ (2)√ (3)× (4)×2.教材衍化(1)(必修A4P 131T 5)sin20°cos10°-cos160°sin10°=( )A .-32 B.32 C .-12 D.12答案 D解析 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D.(2)(必修A4P 146A 组T 3)已知tan ⎝ ⎛⎭⎪⎫α+π6=12,tan ⎝ ⎛⎭⎪⎫β-π6=13,则tan(α+β)=________.答案 1解析 ∵α+β=⎝ ⎛⎭⎪⎫α+π6+⎝ ⎛⎭⎪⎫β-π6,∴tan(α+β)=tan ⎝ ⎛⎭⎪⎫α+π6+tan ⎝ ⎛⎭⎪⎫β-π61-tan ⎝ ⎛⎭⎪⎫α+π6tan ⎝ ⎛⎭⎪⎫β-π6=12+131-16=1.3.小题热身(1)sin7°+cos15°sin8°cos7-sin15°sin8°的值为( )A .2+ 3B .2- 3C .2 D.12答案 B解析 原式=sin (15°-8°)+cos15°sin8°cos (15°-8°)-sin15°sin8°=sin15°cos8°cos15°cos8°=tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30° =1-331+33=3-13+1=2- 3.故选B.(2)若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于( ) A .7 B .-7 C.17 D .-17答案 C解析 ∵sin(α-β)sin β-cos(α-β)cos β=45,∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34.∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.故选C.题型1 求值问题典例 已知cos ⎝ ⎛⎭⎪⎫π4+x =35,若17π12<x <7π4,求sin2x +2sin 2x 1-tan x的值. 本题采用“函数转化法”.解 由17π12<x <7π4,得5π3<x +π4<2π.又cos ⎝ ⎛⎭⎪⎫π4+x =35,所以sin ⎝ ⎛⎭⎪⎫π4+x =-45,所以cos x =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+x -π4=cos ⎝ ⎛⎭⎪⎫π4+x cos π4+sin ⎝ ⎛⎭⎪⎫π4+x sin π4=35×22-45×22=-210, 从而sin x =-7210,tan x =7.则sin2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x 1-tan x=2⎝ ⎛⎭⎪⎫-7210·⎝ ⎛⎭⎪⎫-210+2⎝ ⎛⎭⎪⎫-721021-7=-2875.方法技巧三角恒等变换的变“角”与变“名”问题的解题思路1.角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化.2.名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.冲关针对训练已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( )A.3π4B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.故选C.题型2 三角恒等变换的综合应用角度1 研究三角函数的性质 典例 (优质试题·临沂一模)已知函数f (x )=4sin ⎝⎛⎭⎪⎫x -π3cos x +3.(1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.本题采用转化法、数形结合思想.解 函数f (x )=4sin ⎝ ⎛⎭⎪⎫x -π3cos x +3, 化简可得f (x )=2sin x cos x -23cos 2x + 3=sin2x -23⎝ ⎛⎭⎪⎫12+12cos2x + 3 =sin2x -3cos2x=2sin ⎝⎛⎭⎪⎫2x -π3. (1)函数的最小正周期T =2π2=π,由2k π-π2≤2x -π3≤2k π+π2时单调递增,解得k π-π12≤x ≤k π+5π12(k ∈Z ),∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)函数g (x )=f (x )-m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点x 1,x 2,转化为函数f (x )与函数y =m 有两个交点.令u =2x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴u ∈⎣⎢⎡⎦⎥⎤-π3,2π3 可得f (x )=2sin u 的图象(如图).由图可知:m 在[3,2),函数f (x )与函数y =m 有两个交点,其横坐标分别为x 1,x 2.故得实数m 的取值范围是m ∈[3,2),由题意可知x 1,x 2是关于对称轴是对称的:那么函数在⎣⎢⎡⎦⎥⎤0,π2的对称轴为x =5π12, ∴x 1+x 2=5π12×2=5π6.那么tan(x 1+x 2)=tan 5π6=-33.方法技巧三角函数综合性试题涉及三角函数的性质研究.首先将三角函数化为f (x )=A sin(ωx +φ)的形式,在转化过程中需要三角恒等变换.如典例.这是高考的重点题型.冲关针对训练(优质试题·河北区二模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos x . (1)求函数f (x )的最小正周期;(2)若α是第一象限角,且f ⎝⎛⎭⎪⎫α+π3=45,求tan ⎝ ⎛⎭⎪⎫α-π4的值. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos x =32sin x -12cos x +cos x =32sin x +12cos x=sin ⎝ ⎛⎭⎪⎫x +π6, 所以函数f (x )的最小正周期为T =2π1=2π.(2)由于f (x )=sin ⎝⎛⎭⎪⎫x +π6, 则f ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α+π2=cos α=45, 由于α是第一象限角,所以sin α=35,则tan α=34,则tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-17. 角度2 三角恒等变换与向量的综合典例(优质试题·南京三模)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2,t 为实数. (1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值; (2)若t =1,且a ·b =1,求tan ⎝ ⎛⎭⎪⎫2α+π4的值. 本题采用向量法、平方法.解 (1)向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2,t 为实数.若a -b =⎝ ⎛⎭⎪⎫25,0,则(2cos α-2sin α,sin 2α-t )=⎝ ⎛⎭⎪⎫25,0, 可得cos α-sin α=15,平方可得sin 2α+cos 2α-2cos αsin α=125,即为2cos αsin α=1-125=2425(cos α>0,sin α>0),由sin 2α+cos 2α=1,解得cos α+sin α=(cos α-sin α)2+4sin αcos α =125+4825=75, 即有sin α=35,cos α=45,则t =sin 2α=925.(2)若t =1,且a ·b =1,即有4cos αsin α+sin 2α=1,即有4cos αsin α=1-sin 2α=cos 2α,由α为锐角,可得cos α∈(0,1),即有tan α=sin αcos α=14,则tan2α=2tan α1-tan 2α=121-116=815, tan ⎝ ⎛⎭⎪⎫2α+π4=tan2α+11-tan2α=1+8151-815=237. 方法技巧三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算进行化简.冲关针对训练(优质试题·南通模拟)已知向量m =⎝ ⎛⎭⎪⎫sin x 2,1,n =⎝ ⎛⎭⎪⎫1,3cos x 2,函数f (x )=m ·n .(1)求函数f (x )的最小正周期;(2)若f ⎝ ⎛⎭⎪⎫α-2π3=23,求f ⎝ ⎛⎭⎪⎫2α+π3的值. 解 (1)f (x )=sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3, ∴f (x )的最小正周期T =2π12=4π.(2)∵f ⎝ ⎛⎭⎪⎫α-2π3=2sin α2=23,∴sin α2=13,∴cos α=1-2sin 2α2=79,∴f ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π2=2cos α=149.1.(优质试题·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( ) A.725 B.15 C .-15 D .-725答案 D解析 cos ⎝ ⎛⎭⎪⎫π4-α=22(cos α+sin α)=35⇒cos α+sin α=325⇒1+sin2α=1825,∴sin2α=-725.故选D.2.(2014·全国卷Ⅰ)设α∈⎝⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2答案 C解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin ⎝ ⎛⎭⎪⎫π2-α,所以sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,又因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.3.(2014·全国卷Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.答案 1解析 f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ)=sin(x +φ)cos φ-sin φcos(x +φ)=sin(x +φ-φ)=sin x ,∴f (x )的最大值为1.4.(优质试题·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝ ⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1.[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( )A.12B.33C.22D.32答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( )A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(优质试题·云南一检)cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(优质试题·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4答案 D解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin (10°-30°)12sin20°=-2sin20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛ π4- ⎭⎪⎫β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ) A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2, 由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223.⎝⎭cos ⎝ ⎛⎭⎪⎫α+β2=539,故选C. 7.(优质试题·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3答案 A解析 sin2αsin2β=sin[(α+β)+(α-β)]sin[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)sin (α+β)cos (α-β)-cos (α+β)sin (α-β)=tan (α+β)+tan (α-β)tan (α+β)-tan (α-β)=13.故选A. 8.(优质试题·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( ) A .-12 B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin (2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z .∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6, ∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3, ∴cos ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1, 则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D. 9.(优质试题·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(优质试题·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74, ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝ ⎛⎭⎪⎫0,π4, ∴cos ⎝ ⎛⎭⎪⎫π4-θ=34, ∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D. 二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13. ∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13. ∴cos 2α-sin 2β=13. 12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β =12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(优质试题·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案 π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3。
第5课时 两角和与差的正弦、余弦和正切公式
3 1 4 2 2 8 2-3 =- × + × = . 5 3 5 3 15
工具
第三章
三角函数
栏目导引
1.理解和运用两角和与差的三角函数公式需注意的几个问题 (1)两角和与差的正弦、余弦、正切公式之间的内在联系 ①掌握好公式的内在联系及其推导过程,能帮助我们理解和记忆公 式,是学好这部分内容的关键. ②诱导公式是两角和与差的三角函数公式的特殊情况,α、β 中若有 π 的整数倍角时,使用诱导公式更灵活、简便. 2
(3)角的变换 α=(α+β)-β,β=(α+β)-α,2α=(α+β)+(α-β), 2β=(α+β)-(α-β).
工具
第三章
三角函数
栏目导引
2.理解和运用二倍角公式需注意的几个问题 (1)掌握二倍角公式与两角和公式之间的内在联系能帮助我们理解 与记忆公式. (2)公式的逆用及有关变形 1-cos 2α 1+cos 2α 2 sin α= ;cos α= (降幂公式); 2 2
工具
第三章
三角函数
栏目导引
5 又 β 为第一象限角,cos β= , 13 12 12 ∴sin β= 1-cos β= ,tan β= , 13 5
2
24 12 -7-5 204 ∴tan(2α-β)= = . 24 12 253 1+- 7 × 5
工具
第三章
三角函数
栏目导引
sin 50° 1+ 3tan 10° -cos 20° 求值: . cos 80° 1-cos 20°
1 2× 2 2tan α 4 解析: tan 2α= = = . 12 3 1-tan2α 1-2
π 4 ∵α∈0,2,2α∈(0,π),tan 2α=3>0, π , 0 , ∴2α∈ 2
两角和与差的正弦、余弦、正切公式
两角和与差的正弦、余弦、正切公式
两角和与差的正弦余弦正切公式:sin(α±β)=sinα·cosβ±cosα·sinβ,
cos(α+β)=cosα·cosβ-sinα·sinβ,tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
1、两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。
两角和与差的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。
正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
几何意义上,正弦公式即为正弦定理。
2、先利用单位圆(向量)推到两角和与差的余弦公式,再利用诱导公式推导正弦公式,最后利用同角三角函数的基本关系推到正切公式。
3、正弦和差公式始终是sin与cos相乘; 余弦和差公式始终是cos与cos相乘,sin与sin相乘,两角和与差的正弦公式:正=正余余正符号同两角和与差的余弦公式:余=余余正正符号异。
【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。
两角和与差的正弦公式与余弦公式
两角和与差的正弦公式与余弦公式在三角学中,两角和与差的正弦公式和余弦公式是非常重要的公式。
它们可以帮助我们计算两个角的和与差的正弦和余弦值,从而解决许多与三角函数相关的数学问题。
首先我们来看两角和的正弦公式。
假设有两个角A和B,我们想要计算角A+B的正弦值。
根据这个公式,我们有:sin(A + B) = sinA * cosB + cosA * sinB其中sinA、sinB、cosA和cosB分别表示角A和B的正弦和余弦值。
这个公式意味着两个角的正弦值的和可以通过相应角的正弦和余弦值的乘积来计算。
接下来我们来看两角差的正弦公式。
同样假设有两个角A和B,我们想要计算角A-B的正弦值。
根据这个公式,我们有:sin(A - B) = sinA * cosB - cosA * sinB这个公式告诉我们两个角的正弦值的差可以通过相应角的正弦和余弦值的乘积来计算。
除了正弦公式,还有两角和与差的余弦公式。
与正弦公式类似,余弦公式也可以帮助我们计算两个角的和与差的余弦值。
首先我们来看两角和的余弦公式。
同样假设有两个角A和B,我们想要计算角A+B的余弦值。
根据这个公式,我们有:cos(A + B) = cosA * cosB - sinA * sinB这个公式告诉我们两个角的余弦值的和可以通过相应角的余弦和正弦值的乘积来计算。
接下来我们来看两角差的余弦公式。
同样假设有两个角A和B,我们想要计算角A-B的余弦值。
根据这个公式,我们有:cos(A - B) = cosA * cosB + sinA * sinB这个公式告诉我们两个角的余弦值的差可以通过相应角的余弦和正弦值的乘积来计算。
这些正弦公式和余弦公式在许多问题中都很有用。
例如,在使用三角函数求解三角形的边长和角度时,我们可以利用这些公式来计算垂直边的长度以及不同角度的正弦和余弦值。
在实际应用中,我们还可以根据这些公式来解决一些复杂的分析几何问题。
例如,在计算引力场中两个物体的合力时,我们可以利用这些公式来计算两个力的分力和合力的大小和方向。
两角和与差的正弦、余弦和正切公式及二倍角公式
答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .
4.5 两角和与差的正弦、余弦与正切公式
关闭
3
1
3
π
解析 答案
-9-
1 2 3 4 5
自测点评 1.两角和与差的正弦公式概括为“正余、余正符号同”,两角和与 差的余弦公式概括为“余余、正正符号异”.“符号同”指的是等号左 边的“±”与等号右边的“±”一致. 2.运用公式时要注意公式成立的条件. 3.给角求值问题往往给出的角是非特殊角,求值时要注意: (1)观察角,分析角之间的差异,巧用诱导公式或拆分; (2)观察名,尽可能使得函数统一名称; (3)观察结构,利用公式,整体化简.
= =
4sin40 °· cos40 °-sin40 °
cos40 ° √3cos40 °+sin40 °-sin40 ° cos40 °
tan������±tan������ (3)tan(α±β)= . 1∓tan������tan������
2.二倍角公式 sin 2α=2sin αcos α ; cos 2α=cos2α-sin2α =2cos2α-1
tan 2α=
2tan������ . 1-tan2 ������
=1-2sin2α
;
3.公式的变形 (1)tan α±tan β=tan(α±β)(1∓tan αtan β) (2)1±sin 2α=(sin α±cos α)2.
.
-4-
1 2 3 4 5
1.下列结论正确的打“√”,错误的打“×(2)两角和与差的正切公式中的角α,β是任意的.( × ) (3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos 60°= . (
4.(2015长沙模拟)已知α为第二象限角,sin α+cos α= 3 ,则cos 2α=( )
两角和与差的正弦、余弦和正切公式
三角函数两角和与差及二倍角公式一、知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.注意:1.在使用两角和与差的余弦或正切公式时运算符号易错. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. [试一试]1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22 B .22 C .32D .1 答案:B2.若sin α2=33,则cos α=( )A .-23B .-13C .13D .23答案:C解析:因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×233⎛⎫ ⎪ ⎪⎝⎭=13二、方法归纳 1.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin 4πα⎛⎫± ⎪⎝⎭2.角的变换技巧2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=22βααβ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭3.三角公式关系[练一练]1.已知tan 6πα⎛⎫-⎪⎝⎭=37,tan 6πβ⎛⎫+ ⎪⎝⎭=25,则tan(α+β)的值为( ) A .2941 B .129 C .141 D .1答案:D2.已知sin 2α=23,则cos 24πα⎛⎫+ ⎪⎝⎭=( ) A .16 B .13 C .12 D .23答案:A解析:法一:cos 24πα⎛⎫+ ⎪⎝⎭=121cos 22πα⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=12(1-sin 2α)=16. 法二:cos 4πα⎛⎫+ ⎪⎝⎭=22cos α-22sin α, 所以cos 24πα⎛⎫+ ⎪⎝⎭=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16 三、考点精讲考点一 三角函数公式的基本应用1.已知sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,则cos 22sin 4απα⎛⎫+ ⎪⎝⎭=________. 答案:-75解析:cos 22sin 4απα⎛⎫+ ⎪⎝⎭=22cos sin 222sin cos 22αααα-⎛⎫+ ⎪⎝⎭=cos α-sin α,∵sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,∴cos α=-45,∴原式=-75.2.设sin 2α=-sin α,α∈,2ππ⎛⎫⎪⎝⎭,则tan 2α的值是________. 答案: 3解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12,又α∈,2ππ⎛⎫⎪⎝⎭,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=()223313-=--3.已知函数f (x )=2sin 136x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 54π⎛⎫⎪⎝⎭的值; (2)设α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65,求cos(α+β)的值. 解:(1)∵f (x )=2sin 136x π⎛⎫-⎪⎝⎭,∴f 54π⎛⎫⎪⎝⎭=2sin 5126ππ⎛⎫- ⎪⎝⎭=2sin π4=2. (2)∵α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65, ∴2sin α=1013,2sin 2πβ⎛⎫+ ⎪⎝⎭=65,即sin α=513,cos β=35.∴cos α=1213,sin β=45∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.[解题通法]两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.考点二 三角函数公式的逆用与变形应用(1)在△ABC 中,若tan A ·tan B =tan A +tan B +1,则cos C 的值是( ) A .-22 B .22 C .12 D .-12(2)sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12 B .12 C .32 D .-32答案:(1)B (2)B解析:(1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B=-1,即tan(A +B )=-1,所以A +B =3π4,则C =π4,cos C =22,故选B .(2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. [解题通法]运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等. [针对训练] 1.已知sin 6πα⎛⎫+⎪⎝⎭+cos α=435,则sin 3πα⎛⎫+ ⎪⎝⎭的值为( ) A .45 B .35 C .32 D .35答案:A 解析:由条件得32sin α+32cos α=435, 即12sin α+32cos α=45,∴sin 3πα⎛⎫+ ⎪⎝⎭=45. 2.若α+β=3π4,则(1-tan α)(1-tan β)的值是________.答案:2解析:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β.∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 考点三 角的变换已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. 解:(1)∵α,β∈0,2π⎛⎫⎪⎝⎭,从而-π2<α-β<π2 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45,∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=45×31010+35×1010⎛⎫- ⎪ ⎪⎝⎭=91050变式练习:在本例条件下,求sin(α-2β)的值 解:∵sin(α-β)=-1010,cos(α-β)=31010, cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.[解题通法]1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”;3.注意角变换技巧. [针对训练]1.设tan ()α+β=25,tan 4πβ⎛⎫- ⎪⎝⎭=14,则tan 4πα⎛⎫+ ⎪⎝⎭=( )A .1318B .1322C .322D .16答案:C解析:tan 4πα⎛⎫+ ⎪⎝⎭=()tan 4παββ⎡⎤⎛⎫+-- ⎪⎢⎥⎝⎭⎣⎦=()()tan tan 34221tan tan 4παββπαββ⎛⎫+-- ⎪⎝⎭=⎛⎫++- ⎪⎝⎭2.设α为锐角,若cos 6πα⎛⎫+ ⎪⎝⎭=45,则sin 212πα⎛⎫+ ⎪⎝⎭的值为________. 答案:17250解析:因为α为锐角,cos 6πα⎛⎫+⎪⎝⎭=45, 所以sin 6πα⎛⎫+ ⎪⎝⎭=35,sin 26πα⎛⎫+ ⎪⎝⎭=2425, cos 26πα⎛⎫+⎪⎝⎭=725, 所以sin 212πα⎛⎫+⎪⎝⎭=sin 264ππα⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=2425×22-725×22=17250. 考点四 三角函数式的化简1.化简:2sin 22cos sin 4ααπα-⎛⎫- ⎪⎝⎭=________.答案:22cos α解析:原式=2sin αcos α-2cos 2α22α-cos α=22cos α.2.化简:42212cos 2cos 22tan sin 44x x x x ππ-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭解:原式=()222221112sin cos 1sin 2cos 22222sin cos 2sin cos sin 244442cos 4x x x x x x x x x x ππππππ-+-==⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫- ⎪⎝⎭=1cos 22x 3.化简:1tan 1tan tan 22tan 2αααα⎛⎫ ⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭.解:1tan 1tan tan 22tan 2αααα⎛⎫⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭=cos sin sin sin 2221cos sin cos cos222αααααααα⎛⎫⎛⎫ ⎪ ⎪-⋅+⋅⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=cos 2α2-sin 2α2sin α2cos α2⋅cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α⋅cos α2cos αcosα2=2sin α[解题通法]三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.考点五 三角函数式的求值研究三角函数式的求值,解题的关键都是找出条件中的角与结论中的角的联系,依据函数名称的变换特点,选择合适的公式求解.归纳起来常见的命题角度有:给值求值; 给角求值; 给值求角. 角度一 给值求值1.已知函数f (x )=2cos 12x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 3π⎛⎫⎪⎝⎭的值; (2)若cos θ=35,θ∈3,22ππ⎛⎫⎪⎝⎭,求f 6πθ⎛⎫- ⎪⎝⎭. 解:(1)因为f (x )=2cos 12x π⎛⎫-⎪⎝⎭, 所以f 3π⎛⎫⎪⎝⎭=2cos 312ππ⎛⎫- ⎪⎝⎭=2cos π4=2×22=1. (2)因为θ∈3,22ππ⎛⎫⎪⎝⎭,cos θ=35, 所以2234sin 1cos 155θθ⎛⎫=--=--=- ⎪⎝⎭.所以f 6πθ⎛⎫-⎪⎝⎭=2cos 612ππθ⎛⎫--⎪⎝⎭=2cos 4πθ⎛⎫-⎪⎝⎭=2×22cos sin 22θθ⎛⎫+⎪ ⎪⎝⎭=cos θ+sin θ=35-45=-15.角度二 给角求值2.(1)4cos 50°-tan 40°=( ) A . 2 B .2+32C . 3D .22-1 答案:C解析:4cos 50°-tan 40°=4cos 50°-sin 40°cos 40°=4sin 40°·cos 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2cos 10°-sin 40°cos 40°=2cos 10°-+cos 40°=32cos 10°-32sin 10°cos 40°=330°cos 10°-cos 40°=3cos 40°cos 40°=3.(2)化简:sin 50°(1+3tan 10°)=________. 答案:1解析:sin 50°(1+3tan 10°)=sin 50°00sin1013cos10⎛⎫+ ⎪⎝⎭ =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×000132cos10sin1022cos10⎛⎫+ ⎪⎝⎭ =2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.角度三 给值求角3.已知α,β为锐角,sin α=35,cos ()α+β=-45,求2α+β.解:∵sin α=35,α∈0,2π⎛⎫⎪⎝⎭,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×45⎛⎫- ⎪⎝⎭+45×35=0.又2α+β∈30,2π⎛⎫⎪⎝⎭,∴2α+β=π. 4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2123113⨯⎛⎫- ⎪⎝⎭=34>0,∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.[解题通法]三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.考点六 三角恒等变换的综合应用 已知函数f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin 6x π⎛⎫+ ⎪⎝⎭≥12, 从而522666k x k πππππ+≤+≤+,k ∈Z , 即2223k x k πππ≤≤+,k ∈Z . 故使f (x )≥g (x )成立的x 的取值集合为222,3x k x k k Z πππ⎧⎫≤≤+∈⎨⎬⎩⎭. [解题通法]三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题. [针对训练]设函数f (x )=sin 23x π⎛⎫+⎪⎝⎭+33sin 2x -33cos 2x . (1)求f (x )的最小正周期及其图像的对称轴方程;(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )的图像,求g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域.解:(1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin 26x π⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ).(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )=33sin 236x ππ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=-33cos 2x 的图像. 即g (x )=-33cos 2x . 当x ∈,63ππ⎡⎤-⎢⎥⎣⎦时,2x ∈2,33ππ⎡⎤-⎢⎥⎣⎦,得cos 2x ∈1,12⎡⎤-⎢⎥⎣⎦所以-33cos 2x ∈33,36⎡⎤-⎢⎥⎣⎦,即函数g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域是33,36⎡⎤-⎢⎥⎣⎦课后作业课后练习一、选择题1.已知sin3πα⎛⎫+⎪⎝⎭+sin α=-435,则cos23πα⎛⎫+⎪⎝⎭等于()A.-45B.-35C.35D.45答案:D2.已知cos6πα⎛⎫+⎪⎝⎭-sin α=233,则sin76πα⎛⎫-⎪⎝⎭的值是()A.-233B.233C.-23D.23答案:D3.已知向量a=sin,16πα⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭,b=(4,4cos α-3),若a⊥b,则sin43πα⎛⎫+⎪⎝⎭等于() A.-34B.-14C.34D.14答案:B4.函数y=sin x+cos x图象的一条对称轴方程是()A.x=5π4B.x=3π4C.x=-π4D.x=-π2答案:A5.在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则C的大小为()A.π6B.56πC.π6或56πD.π3或23π答案:A6.已知0<α<π,3sin 2α=sin α,则cos(α-π)等于()A.13B.-13C.16D.-16答案:D解析:∵0<α<π,3sin 2α=sin α,∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-167.已知tan(α+β)=25,tan4πβ⎛⎫-⎪⎝⎭=14,那么tan4πα⎛⎫+⎪⎝⎭等于()A .1318B .1322C .322D .16答案:C解析:因为α+π4+β-π4=α+β,所以α+π4=(α+β)-4πβ⎛⎫- ⎪⎝⎭.所以tan 4πα⎛⎫+ ⎪⎝⎭=tan ()()()tan tan 344221tan tan 4παββπαββπαββ⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭+--== ⎪⎢⎥⎛⎫⎝⎭⎣⎦++- ⎪⎝⎭8.已知cos 2α=12 (其中α∈,04π⎛⎫- ⎪⎝⎭),则sin α的值为 ( )A .12B .-12C .32D .-32答案:B解析:∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈,04π⎛⎫- ⎪⎝⎭,∴sin α=-129.若f (x )=2tan x -2sin 2x2-1sin x 2cosx2,则f 12π⎛⎫⎪⎝⎭的值为 ( )A .-433B .8C .4 3D .-4 3 答案:B解析:f (x )=2tan x +1-2sin 2x212sin x =2tan x +2cos x sin x =2sin x cos x =4sin 2x∴f 12π⎛⎫⎪⎝⎭=4sinπ6=8 10.在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是 ( ) A .12B .22C .32D .1答案:C解析:由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32二、填空题 1.如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为αi (i =1,2,3),则cos α13cos α2+α33- sinα13·sin α2+α33=________ 答案:-122.设sin α=352παπ⎛⎫<< ⎪⎝⎭,tan(π-β)=12,则tan(α-β)=________答案:-2113.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈,22ππ⎛⎫- ⎪⎝⎭,则tan(α+β)=__________,α+β的值为________. 答案:3 -23π4.已知α为第二象限的角,且sin α=35,则tan 2α=________.答案:-247解析:因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan 2α=-247. 5.函数y =2cos 2x +sin 2x 的最小值是________. 答案:1- 2解析:∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin 24x π⎛⎫+⎪⎝⎭+1, ∴当sin(2x +π4)=-1时,函数取得最小值1- 26.若cos 2sin 4απα⎛⎫- ⎪⎝⎭=-22,则cos α+sin α的值为________.答案:12解析:∵cos 2sin 4απα⎛⎫- ⎪⎝⎭=cos 2α-sin 2α22α-cos α=-2(sin α+cos α)=-22,∴cos α+sin α=12.三、解答题 1.(1)已知α∈0,2π⎛⎫⎪⎝⎭,β∈,2ππ⎛⎫⎪⎝⎭且sin(α+β)=3365,cos β=-513.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:(1)∵β∈,2ππ⎛⎫⎪⎝⎭,cos β=-513,∴sin β=1213又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365,∴cos(α+β)=-1-sin 2α+β=233165⎛⎫-- ⎪⎝⎭=-5665 ∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =33556123651365135⎛⎫⎛⎫⋅---⋅= ⎪ ⎪⎝⎭⎝⎭ (2)∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=13+121-13×12=1∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π42.(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C解:(1)①证明:如上图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)), 由|P 1P 3|=|P 2P 4|及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2, 展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β), ∴cos(α+β)=cos αcos β-sin αsin β ②解 由①易得,cos 2πα⎛⎫- ⎪⎝⎭=sin α, sin 2πα⎛⎫-⎪⎝⎭=cos α. sin(α+β)=cos ()2παβ⎡⎤-+⎢⎥⎣⎦=cos ()2παβ⎡⎤⎛⎫-+- ⎪⎢⎥⎝⎭⎣⎦=cos 2πα⎛⎫-⎪⎝⎭cos(-β)-sin 2πα⎛⎫- ⎪⎝⎭sin(-β) =sin αcos β+cos αsin β. ∴sin(α+β)=sin αcos β+cos αsin β(2)解:由题意,设△ABC 的角B 、C 的对边分别为b 、c . 则S =12bc sin A =12,AB →·AC →=bc cos A =3>0,∴A ∈0,2π⎛⎫⎪⎝⎭,cos A =3sin A ,又sin 2A +cos 2A =1, ∴sin A =1010,cos A =31010, 由cos B =35,得sin B =45,∴cos(A +B )=cos A cos B -sin A sin B =1010.故cos C =cos[π-(A +B )]=-cos(A +B )=-10103.设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈,33ππ⎡⎤-⎢⎥⎣⎦,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解:(1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin 26x π⎛⎫+⎪⎝⎭+1. 由2sin 26x π⎛⎫+ ⎪⎝⎭+1=1-3, 得sin 26x π⎛⎫+⎪⎝⎭=-32∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6.∴2x +π6=-π3,即x =-π4(2)-π2+2k π≤2x +π6≤π2+2k π (k ∈Z ),即36k x k ππππ-+≤≤+ (k ∈Z ),得函数单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z ). 列表:x 0 π6 π3 π2 2π3 5π6 π y232-12描点连线,得函数图象如图所示:4.设函数f (x )=3sin x cos x -cos x sin 2x π⎛⎫+ ⎪⎝⎭-12. (1)求f (x )的最小正周期; (2)当x ∈0,2π⎡⎤⎢⎥⎣⎦时,求函数f (x )的最大值和最小值. 解:f (x )=3sin x cos x -cos x sin 2x π⎛⎫+⎪⎝⎭-12 =32sin 2x -12cos 2x -1 =sin 26x π⎛⎫-⎪⎝⎭-1 (1)T =2π2=π,故f (x )的最小正周期为π(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,当2x -π6=-π6,即x =0时,f (x )有最小值-32.6.已知函数f (x )=2cos 2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.解:(1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6; 当cos x =23时,f (x )取得最小值-73.。
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。
两角和与差的正弦余弦和正切公式及二倍角公式
两角和与差的正弦余弦和正切公式及二倍角公式1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B4.两角差的余弦公式:cos(A - B) = cos A cos B + sin A sin B5.两角和的正切公式:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)6.两角差的正切公式:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)二倍角公式:1.正弦的二倍角公式:sin(2A) = 2sin A cos A2.余弦的二倍角公式:cos(2A) = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A 3.正切的二倍角公式:tan(2A) = (2tan A) / (1 - tan^2 A)这些公式在三角函数的学习中非常重要,可以用于简化计算,推导其他公式,解三角方程等。
以上是两角和与差的正弦、余弦和正切公式及二倍角公式的简要描述。
详细阐述这些公式需要更多的字数,下面将对每个公式进行更详细的解释。
1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B这个公式表示角A和角B的和的正弦等于角A的正弦乘以角B的余弦加上角A的余弦乘以角B的正弦。
2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B这个公式表示角A和角B的差的正弦等于角A的正弦乘以角B的余弦减去角A的余弦乘以角B的正弦。
3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B这个公式表示角A和角B的和的余弦等于角A的余弦乘以角B的余弦减去角A的正弦乘以角B的正弦。
两角和与差的正弦_
教学重点:
导出两角和与差的正弦公式
教学难点:
两角和与差的正弦公式运用
4
思考
一般地sin(α-β)能否用α 、β的 角的三角函数来表示?
5
问 题 探 究
如何用任意角α 与β 的正弦、余 弦来表示sin(α -β )? 思考:你认为会是 sin(α -β )=sinα -sinβ 吗?
2 3 2 1 2 2 2 2
6 2 4
11
应用举例
例3:不查表,求sin75°的精确值.
解: sin75= =sin(45 °+ 30 °)
=sin45 °cos30 °+cos45 °sin30 °
2 3 2 1 2 2 2 2
6 2 4
12
练习:求下列各式的精确值:
复习:两角和与差余弦公式
cos(α+β)=cosαcosβ–sinαsinβ
简记:
C( ) CC SS
cos(α–β)=cosαcosβ+sinαsinβ
简记:C(α-β)= CC +SS
1
不用计算器,求sin375° 的值.
解: sin375° = sin(360°+15°) = sin15°
5 2 5 2
3 所以cosα= ,sinα= 5
32 42 5
4 5
2
y'= 5sin(α+45°) = 5(sinαcos45°+cosαsin45° 4 2 3 2 7 2 =5(5 2 5 2 ) = 2
所以点Pˊ的坐标为(
-
2 , 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的正弦
教学目标:
1.能推导2π
α±,32
πα±的诱导公式,并能灵活运用; 2.掌握()S αβ±公式的推导,并能熟练进行公式正逆向运用。
教学重点:()S αβ±公式及诱导公式的推导、运用;
教学难点:()S αβ±公式及诱导公式的运用。
教学过程:
(一)复习:
1.()C αβ±公式;
2.练习:
化简:(1)cos3cos sin3sin αααα+;(2)cos(
)cos()66ππαα++-;(3)cos15cos75-o o . (二)新课讲解:
1.诱导公式
(1)cos()cos cos sin sin sin 222π
π
π
αααα-=+=;
(2)把公式(1)中
2πα-换成α,则cos sin()2παα=-. 即:cos()sin 2παα-= sin()cos 2π
αα-=. 2.两角和与差的正弦公式的推导
sin()cos[()]2παβαβ+=-+ cos[()]2
παβ=-- cos()cos sin()sin 22ππ
αβαβ=-+- sin cos cos sin αβαβ=+
即:sin()αβ+=sin cos cos sin αβαβ+ (()S αβ+)
在公式()S αβ+中用β-代替β,就得到:
sin()sin cos cos sin αβαβαβ-=- (()S αβ-)
说明:(1)公式()C αβ±对于任意的,αβ都成立。
练习:习题4.6第二题,补充证明:sin()cos 2παα+= cos()sin 2π
αα+=-.
(2)2π
α±,32
πα±的三角函数等于α的余名三角函数,前面再加上一个把α看作锐角时原三角函数的符号;
(3)诱导公式用一句话概括为奇变偶不变,符号看象限。
3.例题分析:
例1:求值(1)sin 75o ; (2)sin195o ; (3)cos79cos56cos11cos34-o o o o .
解:(1)sin 75o sin30cos 45cos30sin 45=+o o o o =12=; (2)sin195o sin(18015)=+o o sin15(sin 45cos30cos 45sin 30)=-=--o o o o o
=;
(3)cos79cos56cos11cos34-o o o o cos(7956)=+=o o . 例2:已知2sin ,(,)32πααπ=∈,33cos ,(,)42
πββπ=-∈,求sin()αβ-,cos(),tan()αβαβ++.
解:Q 2sin ,(,)32
πααπ=∈, ∴cos α==
33
cos ,(,)42
πββπ=-∈Q , ∴sin β==,
∴sin()sin cos cos sin αβαβαβ-=-=
cos()cos cos sin sin αβαβαβ+=-=
又Q sin()αβ+=
∴sin()tan()cos()αβαβαβ++=
+ == 例3:已知5cos 13θ=-,求cos()6
πθ+及sin()6πθ+的值。
解: Q 5cos 13
θ=-0<, ∴θ在二,三象限,
当θ在第二象限时,12sin 13θ==
,
∴cos()6π
θ+cos cos sin sin
66π
π
θθ=-5121132132=-⨯-⨯1226=-,
sin()6πθ+sin cos cos sin 66ππθθ=+526=,
当θ在第三象限时,12sin 13θ==-
,
∴cos()6π
θ+cos cos sin sin 66
π
π
θθ=-5121132132=-⨯+⨯1226-=,
sin()6πθ+sin cos cos sin 66ππθθ=-526
=-. 小结:掌握 公式()S αβ+的推导,能熟练运用()S αβ±公式,注意()S αβ±公式的逆用。