高中数学考试题型分类(一)
山西省普通高中学业水平合格性考试省统考科目数学学科考试标准试行稿(一)

山西省普通高中学业水平合格性考试省统考科目数学学科考试标准试行稿(一)山西省普通高中学业水平合格性考试省统考科目数学学科考试标准试行稿为了提高山西省普通高中学生的数学学科水平,贯彻落实国家教育部《关于开展普通高中学业水平和学业水平合格性考试的通知》(教发〔2014〕14号)和山西省教育厅《关于做好普通高中学业水平合格性考试有关工作的通知》(晋教厅函〔2014〕12号)的精神,制订《山西省普通高中学业水平合格性考试省统考科目数学学科考试标准试行稿》(以下简称《标准试行稿》)。
一、考试内容《标准试行稿》确定了山西省普通高中学业水平合格性考试省统考科目数学学科的考试内容,分为基础知识、基本技能、解决问题三部分。
二、考试形式《标准试行稿》要求数学学科考试采取笔试形式,由省级教育考试机构组织,考试时间为120分钟。
考试题型包括选择题、填空题、计算题和解答题,其中选择题和填空题为必考题型。
三、考试范围《标准试行稿》规定数学学科考试范围为普通高中数学课程标准实现的基础上,综合考虑全国普通高中数学课程标准及其他相关课程标准,涵盖数学的基本概念、基本理论、基本方法、基本技能和应用能力等方面的内容。
考试范围与内容与山西省的课程设置和教学进度相适应。
四、考试难度为了保证数学学科考试的公平公正,难度适中,适应不同水平的学生,试卷将采用一个难度适中、覆盖面广的设计思路,坚持“知识覆盖、能力考查、质量提高”的原则,力求让考生根据自己的实际情况选择应试题目,完成试卷。
试卷将分基础与提高卷,其中基础卷为全省试用,提高卷为面向考生成绩绩优、第一批本科线以上及对高水平大学招生有要求的高职高专招生的特色试卷,其难度相对提高卷为较大。
五、考试评分数学学科考试将根据《标准试行稿》的内容和要求进行评分。
每道题目的得分将频率分成若干个“档次”,不同的档次得分范围不同。
按照评分标准进行评分,在每一个档次内,对考生所得分数除以该档次的分值范围的差值,得到0~1的小数,乘以该档次的分值,就是该考生在此题目上所得分数。
高考数学题型全归纳

高考数学题型全归纳数学是高中阶段的一门重要学科,也是高考的必考科目之一。
随着高考改革的不断推进,数学的考试形式也在逐渐更新和变化。
为了帮助考生全面了解高考数学的题型,本文将详细介绍高考数学题型的分类和特点。
高考数学题型可以大致分为选择题、填空题和解答题三类。
其中选择题又包括单选题和多选题,填空题又包括填空选择题和填空计算题。
下面我们将逐一介绍这些题型的特点和解题技巧。
一、选择题选择题是高考数学考试中最常见的题型,占据了相当大的比重。
在选择题中,单选题和多选题是主要的两种形式。
1. 单选题单选题通常是给出一个问题,并提供了几个备选答案,考生需根据所学的知识和解题方法选择出一个正确答案。
单选题的特点是选项间的区别性强,常常使用排除法来确定正确答案。
解题技巧:- 仔细阅读问题,理解问题的含义,确定解题思路。
- 对于较长的计算过程,可以根据选项中的数量级大小来进行排除。
- 注意选项中是否存在常见的错误或陷阱,避免被迷惑。
2. 多选题多选题与单选题类似,不同之处在于多选题需要选择多个正确答案。
多选题的特点是选项间的区别性较小,容易混淆。
解题技巧:- 仔细阅读问题,理解问题的含义,确定解题思路。
- 对于每个选项进行分析,判断其是否符合题意。
- 注意选项中是否存在重复的答案或矛盾的答案,避免被迷惑。
二、填空题填空题是高考数学考试中的另一种常见题型,要求考生根据给出的条件或问题,在空格中填写一个或多个数字、字母或符号。
1. 填空选择题填空选择题通常是给出几个备选答案,并要求考生选择一个正确答案填入空格。
填空选择题的特点是备选答案之间的区别性强,常常使用排除法来确定正确答案。
解题技巧:- 仔细阅读问题,理解问题的含义,确定解题思路。
- 对于较长的计算过程,可以根据选项中的数量级大小来进行排除。
- 注意选项中是否存在常见的错误或陷阱,避免被迷惑。
2. 填空计算题填空计算题要求考生根据给出的条件或问题进行计算,并将结果填入空格。
高中数学导数题型分类非常全

导数1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '''2()u u v uv v v-= 3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 1(1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 2.已知物体的运动方程为223s t t=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。
高中数学集合总结+题型分类+完美解析

集合【知识清单】1.性质:确定性、互易性、无序性.2.元素和集合的关系:属于“∈”、不属于“∉”.3.集合和集合的关系:子集(包含于“⊆”)、真子集(真包含于“≠⊂”). 4.集合子集个数=n 2;真子集个数=12-n.5.交集:{}B x A x x B A ∈∈=且|并集:{}B x A x x B A ∈∈=或|补集:{}A x U x x A C U ∉∈=且|6.空集是任何非空集合的真子集;是任何集合的子集.题型一、集合概念解决此类型题要注意以下两点:①要时刻不忘运用集合的性质,用的最多的就是互易性;②元素与集合的对应,如数对应数集,点对应点集.【No.1 定义&性质】1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2-②集合{}R x x y y ∈-=,1|2与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素A.0B.1C.2D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构成的集合,而是x 和y 的值的集合,也就是一个点.答案:A详解:在①中方程022=++-y x 等价于⎩⎨⎧=+=-0202y x ,即⎩⎨⎧-==22y x 。
因此解集应为(){}2,2-,错误;在②中,由于集合{}R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理,{}R x x y y ∈-=,1|中R y ∈,错误;在③中,集合{}01|<-x x 即1<x ,而{}R a a x x ∈>,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A.2.下列命题中,(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素;(2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素;(3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素;(4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等.错误的命题的个数是( )A .0B .1C .2D .3分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数.答案:C详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确;(2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确;(3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确;(4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C .3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( )A.9B.8C.7D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性.答案:B详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6;当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8;当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;由集合的互异性得Q P +中的元素为1,2,3,4,6,7,8,11,共8个,故选B.4.设数集M 同时满足条件①M 中不含元素1,0,1-,②若M a ∈,则M aa ∈-+11. 则下列结论正确的是 ( )A .集合M 中至多有2个元素;B .集合M 中至多有3个元素;C .集合M 中有且仅有4个元素;D .集合M 中有无穷多个元素. 分析:已知M a ∈时,M aa ∈-+11.那么我们可以根据条件多求出几个M 集合的元素,找出规律并且判断元素之间是否有可能相等,从而判断集合中元素的个数.答案:C详解:由题意,若M a ∈,则M a a ∈-+11,则M a a a a a ∈-=-+--++1111111,M a a aa ∈+-=+-111111,则M a a a a a a ∈==+--+-+22111111,若a a a -+=11,则12-=a ,无解,同理可证明这四个元素中,任意两个元素不相等,故集合M 中有且仅有4个元素.----------------------------------------------------------------------------------------------------------------------【No2. 表达方式】5.下列集合表示空集的是( )A.{}55|=+∈x R xB.{}55|>+∈x R xC.{}0|2=∈x R x D.{}01|2=++∈x x R x 分析:本题考查空集的概念,空集是指没有任何元素的集合.答案:D详解:012=++x x ,031141<-=⨯⨯-=∆∴方程无实数解,故选D.6.用描述法表示下列集合:(1){}8,6,4,2,0;(2){} ,81,27,9,3;(3)⎭⎬⎫⎩⎨⎧ ,87,65,43,21; (4)被5除余2的所有整数的全体构成的集合.分析:描述法就是将文字或数字用式子表示出来.但是要注意题中给出的元素的范围详解:(1){}是偶数且x x N x ,100|<≤∈;(2){}+∈=N n n x x ,3|;(3)⎭⎬⎫⎩⎨⎧∈-=+N n n n x x ,212|; (4){}Z n n x x ∈+=,25|.====================================================================== 题型二、不含参数⑴⑴中的参数是指方程的非最高次项系数解决此类型题应注意:①区分∈,⊆,≠⊂的区别; ②会用公式求子集、真子集、非空真子集的个数;③B A A B A ⊆⇒=A B A B A ⊆⇒=两方面讨论和从∅=∅=⇒∅=B A B A .【No.1 判断元素/集合与集合之间的关系】1.给出下列各种关系①0≠⊂{}0;②0∈{}0;③{}∅∈∅;④{}a a ∈;⑤{}0=∅;⑥{}∅∈0;⑦{}0∈∅;⑧∅≠⊂{}0 其中正确的是( )A.②③④⑧B.①②④⑤C.②③④⑥D.②③④⑦分析:本题需要大家分清∈,⊆,≠⊂三个符号的意义和区别:∈--“属于”,用于表示元素和集合的关系;⊆,≠⊂--“包含于和真包含于”,用于表示集合和集合之间的关系.答案:A详解:①错误,应为{}00∈;②③④⑧正确;⑤⑥⑦应为∅≠⊂{}0;2.若U 为全集,下面三个命题中真命题的个数是( )(1)若()()U B C A C B A U U =∅= 则,(2)若()()∅==B C A C U B A U U 则,(3)若∅==∅=B A B A ,则A .0个B .1个C .2个D .3个 分析:本题应先简化后面的式子,然后再和前面的条件对比.答案:D详解:(1)()()()U C B A C B C A C U U U U =∅== ;(2)()()()∅===U C B A C B C A C U U U U ;(3)证明:∵()B A A ⊆,即∅⊆A ,而A ⊆∅,∴∅=A ;同理∅=B , ∴∅==B A ;----------------------------------------------------------------------------------------------------------------------【No.2 子集、真子集】3.从集合{}d c b a U ,,,=的子集中选出4个不同的子集,须同时满足以下两个条件: ①∅,U 都要选出;②对选出的任意两个子集A 和B ,必有B A ⊆或A B ⊆.那么共有 种不同的选法.分析:由①可以知道选出的子集中一定有∅和U ,我们要求得只剩两个集合。
高中数学考试题型及答案

高中数学考试题型及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2-4x+3,那么f(2)的值为:A. 1B. 3C. 5D. 72. 下列哪个选项是不等式x^2-2x-3<0的解集?A. (-∞, -1) ∪ (3, +∞)B. (-1, 3)C. (-∞, -1) ∪ (3, +∞)D. (-∞, 3)3. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,那么圆心坐标为:A. (2, 3)B. (-2, -3)C. (3, 2)D. (-3, -2)4. 函数y=x^3-3x^2+4x-5的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, 5)D. (5, +∞)5. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:B. 2C. 3D. 46. 已知等差数列的前三项分别为1,4,7,则该数列的第10项为:A. 26B. 27C. 28D. 297. 函数y=sin(x)的周期为:A. πB. 2πC. π/2D. 4π8. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (0, -3/2)C. (3/2, 0)D. (0, 3/2)9. 已知复数z=3+4i,那么|z|的值为:A. 5B. √7C. √13D. √1710. 函数y=x^2-6x+9的图像与x轴的交点个数为:A. 0C. 2D. 3二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x^2+2x-1的极值点为______。
2. 已知等比数列的前三项分别为2,6,18,则该数列的公比为______。
3. 圆的方程为x^2+y^2-6x-8y+25=0,其半径为______。
4. 函数y=ln(x)的定义域为______。
5. 已知向量a=(3, -4),向量b=(2, 1),则向量a与向量b的夹角的余弦值为______。
第三章:函数的概念与性质重点题型复习-【题型分类归纳】高一数学上学期同步讲与练(解析版)

第三章:函数的概念与性质重点题型复习题型一函数的概念辨析【例1】下列关于函数与区间的说法正确的是()A.函数定义域必不是空集,但值域可以是空集B.函数定义域和值域确定后,其对应法则也就确定了C.数集都能用区间表示D.函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A,函数的定义域和值域均为非空数集,A错误;对于B,若函数的定义域和值域均为R,对应法则可以是y x=,也可以是2y x=,B错误;对于C,自然数集无法用区间表示,C错误;对于D,由函数定义可知,一个函数值可以有多个自变量值与之对应,D正确.【变式1-1】下列对应关系或关系式中是从A 到B 的函数的是( ) A .A ⊆R ,B ⊆R ,221x y +=B .{}1,0,1A =-,{}1,2B =,:1f x y x →=+C .A =R ,B =R ,1:2→=-f x y xD .A =Z ,B =Z ,:→=f x y 【答案】B【解析】对于A ,221x y +=可化为y =显然对任意x A ∈(1x =±除外),y 值不唯一,故不符合函数的定义; 对于B ,符合函数的定义;对于C ,当2x =时,对应关系无意义,故不符合函数的定义; 对于D ,当x 为非正整数时,对应关系无意义,故不符合函数的定义. 故选:B【变式1-2】已知集合{0,1,2}A =,{1,1,3}B =-,下列对应关系中,从A 到B 的函数为( ) A .f :x y x →= B .f :2x y x →= C .f :2x y x →= D .f :21x y x →=- 【答案】D【解析】对A :当0,1,2x =时,对应的y x =为0,1,2,所以选项A 不能构成函数;对B :当0,1,2x =时,对应的2y x =为0,1,4,所以选项B 不能构成函数; 对C :当0,1,2x =时,对应的2y x =为0,2,4,所以选项C 不能构成函数;对D :当0,1,2x =时,对应的21y x =-为1-,1,3,所以选项D 能构成函数;故选:D.【变式1-3】如图所示,下列对应法则,其中是函数的个数为( )A .3B .4C .5D .6【答案】A【解析】①②③这三个图所示的对应法则都符合函数的定义,即A 中每一个元素在对应法则下,在B 中都有唯一的元素与之对应,对于④⑤,A 的每一个元素在B 中有2个元素与之对应,∴不是A 到B 的函数, 对于⑥,A 中的元素3a 、4a 在B 中没有元素与之对应,∴不是A 到B 的函数, 综上可知, 是函数的个数为3.故选:A.【变式1-4】下列关系中是函数关系的是( )A .等边三角形的边长和周长关系B .电脑的销售额和利润的关系C .玉米的产量和施肥量的关系D .日光灯的产量和单位生产成本关系 【答案】A【解析】根据函数关系的定义可得,选项A 中,当等边三角形的边长取一定的值时,周长有唯一且确定的值与其对应, 所以等边三角形的边长和周长符合函数关系;其他选项中,两个量之间没有明确的对应关系,所以不是函数关系故选:A【变式1-5】若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是( ) A . B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.题型二 判断是否为同一个函数【例2】下列各组函数中,表示同一函数的是( )A .()()21,11x f x g x x x -==+- B .()())22,f x x g x x ==C .()()2,f x x g x x = D .()()211,1f x x x g x x =+-=-【答案】C【解析】A. 函数()211x f x x -=-的定义域为{}|1x x ≠,()1g x x =+的定义域为R ,故不是同一函数;B. ()2f x x =R ,()2g x x =的定义域为[0,)+∞,故不是同一函数;C. ()()2,f x x g x x x==的定义域都是R ,且解析式相同,故是同一函数;D. ()11f x x x =+-{}|1x x ≥,()21g x x =-{|1x x ≥或1}x ≤-, 故不是同一函数,故选:C【变式2-1】下列各组函数中,表示同一函数的是( )A .()0f x x =,()xg x x = B .()211x f x x -=-,()1g x x =+C .()11f x x x -+()21g x x =-D .()f x x =,()2g x x =【答案】A【解析】A 中,()0f x x =,()xg x x= 定义域都为{|0}x x ≠ ,对应关系以及值域相同,故为同一函数;B 中,()211x f x x -=-,定义域为{|1}x x ≠,()1g x x =+定义域为R ,故不是同一函数;C 中,()11f x x x -+{|1}x x ≥,()21g x x =-{|1x x ≥或1}x ≤- ,故不是同一函数;D 中,()f x x =,定义域为R ,()(2g x x =定义域为{|0}x x ≥,故不是同一函数;故选:A【变式2-2】下列各组函数是同一函数的是( )A .2()f x x =与2()(1)g x x =+B .3()f x x =-()g x x x =-C .()xf x x =与01()g x x=D .()33f x x x =+⋅-与2()9g x x =- 【答案】C【解析】对于A ,()2f x x =,()()21g x x =+,对应关系不同,即不是同一函数,故A 不正确; 对于B ,3()f x x x x =-=--定义域为(,0]-∞,()g x x x =-定义域为(,0]-∞, 定义域相同,对应关系不同,函数不是同一函数,故B 不正确;对于C ,()1xf x x==,定义域为()(),00,∞-+∞U ,1()1g x x ==,定义域为()(),00,∞-+∞U , 定义域、对应关系相同,故为同一函数,故C 正确;对于D ,()33f x x x =+⋅-定义域为[)3,+∞,2()9g x x =-定义域为(][),33,∞∞--⋃+, 定义域不同,函数不是同一函数,故D 不正确;故选:C【变式2-3】下列各组函数是同一函数的是( )A .321x x y x +=+与y x = B .2x y x =与y x =C .||x y x=与1y = D .()21y x =-与1y x =-【答案】A【解析】对于A ,321x xy x x +==+的定义域为R ,y x =的定义域为R ,则两个函数的定义域和对应关系都相同,是同一函数;对于B ,2x y x x==的定义域为{}0x x ≠,y x =的定义域为R ,则两个函数的定义域不同,不是同一函数; 对于C ,||x y x=的定义域为{}0x x ≠,1y =的定义域为R ,则两个函数的定义域不同,不是同一函数;对于D ,()211y x x =-=-和1y x =-的对应关系不同,故不是同一函数.故选:A.题型三 求函数的定义域【例3】函数()1321f x x x =--的定义域为( )A .2{|3x x >且1}x ≠ B .2{|3x x <或1}x > C .2{|1}3x x ≤≤ D .2{|3x x ≥且1}x ≠ 【答案】D【解析】由题得3202,103x x x -≥⎧∴≥⎨-≠⎩且1x ≠.所以函数的定义域为2{|3x x ≥且1}x ≠故选:D【变式3-1】函数()2021y x -的定义域为( ) A .1,2∞⎛⎫- ⎪⎝⎭ B .1,2⎛⎫+∞ ⎪⎝⎭ C .11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭ D .11,,322⎛⎫⎛⎤-∞⋃ ⎪ ⎥⎝⎭⎝⎦【答案】C【解析】要使函数()2021y x =+-有意义, 则有30210x x ->⎧⎨-≠⎩,解得3x <且12x ≠,所以其定义域为11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式3-2】已知函数(+1)f x 的定义域为[1,2],则(23)f x -+的定义域为( ) A .[1,2] B .1[0,]2 C .[1,1]- D .1[,1]2【答案】B【解析】因为函数(+1)f x 的定义域为[1,2],所以12x ≤≤,则2+13x ≤≤,所以22+33x ≤-≤,解得102x ≤≤,所以(23)f x -+的定义域为1[0,]2,故选:B【变式3-3】已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为( )A .3[,1]2-B .3[,1)(1,1]2--⋃- C .[3,7]- D .[3,1)(1,7]--⋃- 【答案】B【解析】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .【变式3-4】函数f (x )221mx x =--+的定义域为R ,则实数m 的取值范围是( ) A .(0,1) B .(﹣∞,﹣1] C .[1,+∞) D .(﹣∞,﹣1) 【答案】B【解析】f (x )的定义域是R ,则2210mx x --+≥恒成立,即2+210mx x -≤恒成立,则0Δ0m ⎧⎨≤⎩<,解得1m ≤-,所以实数m 的取值范围为(],1-∞-.故选:B.【变式3-5】若函数223()1x f x ax ax -=++的定义域为R ,则实数a 的取值范围是__________.【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立, 0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<, 综上,04a ≤<. 故答案为:[0,4).题型四 求函数的解析式【例4】已知函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,则()2f =( ) A .1 B .3 C .7 D .9【答案】D【解析】因为函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,令()4f x x t -=,则()4f x x t =+, 所以()45f t t t =+=,解得1t =,所以()41f x x =+,(2)2419f =⨯+=,故选:D【变式4-1】已知二次函数()f x 满足()221465f x x x +=-+,求()f x 的解析式; 【答案】()259f x x x =-+【解析】设二次函数()()20f x ax bx c a =++≠,则()()()2212121f x a x b x c +=++++()()22442465ax a b x a b c x x =+++++=-+,故44,426,5a a b a b c =+=-++=,解得1,5,9a b c ==-=,故()259f x x x =-+.【变式4-2】若函数()63f g x x ⎡⎤=+⎣⎦,且()21g x x =+,则()f x 等于( ) A .129x + B .61x + C .3 D .3x 【答案】D【解析】令()21g x x t =+=,则12t x -=()63132f t t t -∴=⨯+=,即()3f x x =故选:D.【变式4-3】设函数1121f x x⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为( )A .()111x x x +-≠ B .()111x x x +-≠ C .()111x x x +≠-- D .()211xx x ≠-+ 【答案】B【解析】令()111t t x=+≠,则可得11x t =-()1t ¹ 所以()()211111t f t t t t +=+=-≠-,所以()()111x f x x x +-≠=,故选:B【变式4-4】若对任意实数x ,均有()2()92f x f x x --=+,求()f x . 【答案】32x -.【解析】利用方程组法求解即可;∵()2()92f x f x x --=+(1) ∴()()()292f x f x x --=-+(2) 由(1)2(2)+⨯得3()96f x x -=-+, ∴()32()f x x x R =-∈. 故答案为:32x - .【变式4-5】设函数()f x 是R →R 的函数,满足对一切x ∈R ,都有()()22f x x f x +-=,则()f x 的解析式为()f x =______.【答案】2,111,1x xx ⎧≠⎪-⎨⎪=⎩ 【解析】由()()22f x x f x +-=,得()()()222f x x f x -+-=,将()f x 和()2f x -看成两个未知数,可解得()()211f x x x=≠-, 当1x =时,()()()212112f f -+-=,解得()11f =,综上,()2,1,11, 1.x f x xx ⎧≠⎪=-⎨⎪=⎩ 故答案为:2,111,1x x x ⎧≠⎪-⎨⎪=⎩.题型五 定义法证明函数的单调性【例5】已知函数()218x f x x -=+,判断并证明()f x 在区间[]22-,上的单调性. 【答案】单调递增,证明见解析【解析】()f x 在区间[]22-,上单调递增,理由如下: 任取1x ,[]22,2x ∈-,且12x x <,()()()()()()()()()()()()22122112121212122222221212121818811888888x x x x x x x x x x x x f x f x x x x x x x -+--+-++----=-==++++++. 因为1222x x -≤<≤,所以120x x -<,1244x x -<+<,1244x x -<<, 所以12128x x x x +->- 所以121280x x x x ++->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间[]22-,上单调递增.【变式5-1】已知函数()f x =()f x 在区间[)1,+∞上的单调性,并证明你的结论. 【答案】增函数,证明见解析【解析】()f x 在区间[)1,+∞上是增函数.证明如下:设[)12,1,x x ∀∈+∞,且12x x <, 则()()12f x f x -= 因为[)12,1,x x ∈+∞0,又12x x <,所以120x x -<0,0,故()()120f x f x -<, 故()f x 在区间[)1,+∞上是增函数.【变式5-2】证明:函数31()2f x x x=-在区间(0,)+∞上是增函数.【答案】证明见解析.【解析】设12,(0,)x x ∈+∞,且12x x <,而3312121211()()22f x f x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()3312211122x x x x ⎛⎫=-+- ⎪⎝⎭()()2212121122122x x x x x x x x x x -=-+++()()221211221212x x x x x x x x ⎡⎤=-+++⎢⎥⎣⎦因为221211221210,0,0x x x x x x x x -<++>>,则()()2212112212120x x x x x x x x ⎡⎤-+++<⎢⎥⎣⎦, 所以12())0(f x f x -<,即12()()f x f x <,所以函数31()2f x x x=-在区间(0,)+∞上是增函数.【变式5-3】已知函数()f x 对任意的a ,∈b R ,都有()()()1f a b f a f b +=+-,且当0>x 时,()1f x >,判断并证明()f x 的单调性;【答案】函数()f x 在R 上为增函数;(2)4(1,)3m ∈-.【解析】设12,x x 是R 上任意两个不等的实数,且12x x <,则210x x x ∆=->,()()()()()()()()212111211111y f x f x f x x x f x f x x f x f x f x ⎡⎤∆=-=-+-=-+--=∆-⎣⎦,由已知条件当0x >时,()1f x >, 所以()1f x ∆>,即0y ∆>, 所以函数()f x 在R 上为增函数;题型六 利用函数的单调性求参数【例6】若函数()1f x ax =+[]1,1-内单调递减,则实数a 的取值范围是______. 【答案】[)1,0-【解析】由题意知,第一步函数单调递减,由复合函数同增异减可知0a <,第二步考虑函数定义域,10ax +≥ 在[]1,1-恒成立,(1)0a f <⎧⎨≥⎩ 得到10a -≤< 故答案为:10a -≤<.【变式6-1】若1()1ax f x x +=-在区间(1,)+∞上是增函数,则实数a 的取值范围是______. 【答案】1a <- 【解析】函数()111+1()=111a x a ax a f x a x x x -+++==+---,由复合函数的增减性可知,若1()1a g x x +=-在(1,)+∞为增函数,10a ∴+<,1a <-,【变式6-2】(多选)函数2()(21)3f x x a x =+-+在(2,2)-上为单调函数,则实数a 的取值范围可以是( )A .3,2⎛⎤-∞- ⎥⎝⎦ B .35,42⎛⎫- ⎪⎝⎭ C .35,42⎡⎤-⎢⎥⎣⎦ D .5,2⎡⎫+∞⎪⎢⎣⎭【答案】AD【解析】二次函数2()(21)3f x x a x =+-+图象对称轴为:212a x -=-, 因函数()f x 在(2,2)-上为单调函数,于是有: 当函数()f x 在(2,2)-上递减时,2122a --≥,解得32a ≤-, 当函数()f x 在(2,2)-上递增时,2122a --≤-,解得52a ≥, 所以实数a 的取值范围是:32a ≤-或52a ≥.故选:AD【变式6-3】已知函数21,22(),12x mx x f x m x x⎧-≥⎪⎪=⎨⎪-≤<⎪⎩对于12,[1,)x x ∀∈+∞且12x x ≠,都有1212()[()()]0x x f x f x -->,则m 的取值范围为 ______. 【答案】40,3⎛⎤⎥⎝⎦【解析】由题意可知,()f x 在[1,)+∞上为单调增函数,要使my x=-在[1,2)上单调递增,则0m -<,即0m >, 要使21()2f x x mx =-在[2,)+∞上单调递增,则2m ≤, 同时2112222m m ⨯-≥-,解得:43m ≤,综上可知:403m <≤.题型七 求函数的最值或值域【例7】求函数4y x x =+,142x ⎛⎫≤≤ ⎪⎝⎭的最大值与最小值.【答案】最大值172,最小值4 【解析】函数4y x x=+,根据对勾函数的性质可得: 4y x x =+在122⎡⎤⎢⎥⎣⎦,上单调递减,[]2,4上单调递增. 当2x =时取到最小值4. 又当12x =时,117822y =+=,当4x =时,415y =+= 所以当12x =时取到最大值172, 所以函数4y x x=+的最大值172,最小值4【变式7-1】312y x x =+- )A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为312y x x =+-所以1120,2x x -≥∴≤,又312y x x =+-12x ≤时单调递增, 所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:A.【变式7-2】函数23()31x f x x -=+的值域( ) A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭ D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】依题意,2112112(31)2321113333()3131313331x x x f x x x x x +-+--====-⋅++++,其中111331y x =-⋅+的值域为()(),00,∞-+∞U , 故函数()f x 的值域为22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故选D .【变式7-3】若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( ) A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦, 【答案】B【解析】令()f x t =,1y t t=+,则132t ⎡⎤∈⎢⎥⎣⎦,. 当112t ⎡⎫∈⎪⎢⎣⎭,时,1y t t=+单调递减, 当[]13t ∈,时,1y t t=+单调递增, 又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =, 所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .【变式7-4】已知{},min ,,,a a ba b b a b ≤⎧=⎨>⎩设()f x {}2min 2,42x x x =--+-,则函数()f x 的最大值是( ) A .2- B .1 C .2 D .3 【答案】B【解析】当2242x x x -≤-+-,即[]0,3x ∈时,()2f x x =-在[]0,3x ∈上单调递增,所以()max ()3321f x f ==-=,当2242x x x ->-+-,即()(),03,x ∈-∞+∞时,()()224222f x x x x =-+-=--+在(),0x ∈-∞上单调递增,在()3,+∞上单调递减,因为()02f =-,()31f =,所以()()31f x f <=; 综上:函数()f x 的最大值为1,故选:B题型八 函数奇偶性的判断【例8】判断下列函数的奇偶性.(1)()31f x x x=-; (2)()(1f x x =-(3)()f x (4)()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩.【答案】(1)奇函数;(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数;(4)偶函数【解析】(1)()f x 的定义域是()(),00,∞-+∞U ,关于原点对称,又()()()3311f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,所以()f x 是奇函数. (2)因为()f x 的定义域为[)1,1-,不关于原点对称,所以()f x 既不是奇函数也不是偶函数. (3)因为()f x的定义域为{,所以()0f x =,则()f x 既是奇函数又是偶函数.(4)方法一(定义法)因为函数()f x 的定义域为R ,所以函数()f x 的定义域关于原点对称.①当x >1时,1x -<-,所以()()()()22f x x x f x -=-⨯-==; ②当11x -≤≤时,()2f x =;③当1x <-时,1x ->,所以()()()22f x x x f x -=⨯-=-=. 综上,可知函数()f x 为偶函数.方法二(图象法) 作出函数()f x 的图象,如图所示,易知函数()f x 为偶函数.【变式8-1】函数()f x =_________对称.【答案】原点【解析】要使函数有意义,则240330x x ⎧-≥⎪⎨+-≠⎪⎩,得2206x x x -≤≤⎧⎨≠≠-⎩且,解得20x -≤<或02x <≤,则定义域关于原点对称.此时33x x +=+,则函数()f x ==,()()f x f x -==-,∴函数()f x 是奇函数,图象关于原点对称故答案为:原点【变式8-2】判断()||||()f x x a x a a R =+--∈的奇偶性.【答案】当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数 【解析】因为x ∈R ,所以定义域关于原点对称,当0a =时,则()||||0f x x x =-=,所以()f x 既是奇函数,又是偶函数; 当0a ≠时,因为()||||||||()f x x a x a x a x a f x -=-+---=--+=-, 所以()f x 是奇函数.综上所述,当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数.【变式8-3】设函数2()1f x x =+,则下列函数中为奇函数的是( ) A .()1f x + B .(1)f x + C .()1f x - D .(1)f x - 【答案】D 【解析】因为()21f x x =+ . 选项A :()2111f x x +=++,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故A 错. 选项B :()221112f x x x +==+++,定义域为()()22-∞--+∞U ,,,定义域不对称,故B 错. 选项C :()2111f x x -=-+,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故C 错. 选项D :()22111f x x x-==-+,定义域为()()00-∞∞,,+,定义域对称,为奇函数.故D 正确.故选:D.【变式8-4】设()f x 是R 上的任意函数,则下列叙述正确的是( )A .()()f x f x -是奇函数B .()()f x f x -是奇函数 C .()()f x f x --是奇函数 D .()()f x f x +-是奇函数 【答案】C【解析】A 选项:设()()()F x f x f x =-,()()()()F x f x f x F x -=-=,则()()f x f x -为偶函数,A 错误;B 选项:设()()()G x f x f x =-,则()()()G x f x f x -=-,()G x 与()G x -关系不定, 即不确定()()f x f x -的奇偶性,B 错误;C 选项:设()()()M x f x f x =--,则()()()()M x f x f x M x -=--=-, 则()()f x f x --为奇函数,C 正确;D 选项:设()()()N x f x f x =+-,则()()()()N x f x f x N x -=-+=, 则()()f x f x +-为偶函数,D 错误.故选:C.题型九 利用函数的奇偶性求值或求参【例9】若函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,则a b +=___________. 【答案】12-【解析】因为函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,所以320a a ++=,得12a =-,又()()f x f x -=-,即323211()()()22x b x x x bx x -----=-++,即220bx =恒成立,所以0b =,所以12a b +=-. 故答案为:12-.【变式9-1】若函数()()()325x x a f xx +-=为奇函数,则=a ( )A .12 B .23 C .34D .1 【答案】B【解析】根据题意得()()()()()323255x x a x x a f x xx-+---++==--,因为函数()()()325x x a f xx +-=为奇函数,所以()()f x f x -=-,即()()()()323255x x a x x a x x-+++-=-,整理得:()640a x -=,所以640a -=,解得23a =.故选:B【变式9-2】已知函数()()32121f x a x x =-+-是偶函数,则a =______.【答案】1【解析】函数()()32121f x a x x =-+-是偶函数,则()()11f f -=,即()121121a a -+-=-+--,解之得1a = 经检验符合题意. 故答案为:1【变式9-3】已知函数()f x 是定义在R 上的奇函数,当0x >时,()(1)f x x x =+,那么()1f -等于( )A .﹣2B .﹣1C .0D .2 【答案】A【解析】因为0x >时,()(1)f x x x =+,可得()1122f =⨯=,又因为函数()f x 是定义在R 上的奇函数,可得()()112f f -=-=-.故选:A.【变式9-4】设()f x 是定义域为()2,2-的奇函数,当02x ≤<时,()122f x x m x =++-(m 为常数),则()1f -=( )A .53- B .53C .32-D .32【答案】C【解析】因为()f x 是定义域为()2,2-的奇函数,所以()00f =,因为当02x ≤<时,()122f x x m x =++-,所以()1002f m =-+=,解得12m =, 所以当02x ≤<时,()11222f x x x =++-,所以()()13111222f f ⎛⎫-=-=--++=- ⎪⎝⎭.故选:C.【变式9-5】设函数()()23211x x f x x ++=+在区间[]22-,上的最大值为M ,最小值为N ,则()20221M N +-的值为______. 【答案】1【解析】由题意知,()32211x xf x x +=++([]2,2x ∈-), 设()3221x xg x x ++=,则()()1f x g x =+,因为()()3221x xg x g x x ---==-+,所以()g x 为奇函数, ()g x 在区间[]22-,上的最大值与最小值的和为0, 故2M N +=,所以()()202220221211M N +-=-=.题型十 利用函数的奇偶性求解析式【例10】设()f x 为奇函数,且当0x ≥时,2()f x x x =+,则当0x <时,()f x =( ) A .2x x + B .2x x -+ C .2x x - D .2x x -- 【答案】B【解析】设0x <,则0x ->,所以()2f x x x -=-,又()f x 为奇函数,所以()()()22f x f x x x x x =--=--=-+, 所以当0x <时,()2f x x x =-+.故选:B.【变式10-1】函数()f x 为偶函数,当()0,x ∈+∞时,()227f x x x =-,则当(),0x ∈-∞时,()f x =()A .()227f x x x =-+B .()227f x x x =--C .()227f x x x =-D .()227f x x x =+ 【答案】D【解析】设(),0x ∈-∞,则()0,x -∈+∞,则()()()222727f x x x x x -=---=+,因为函数()f x 为偶函数,则当(),0x ∈-∞时,()()227f x f x x x =-=+.故选:D.【变式10-2】已知()f x 是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则当0x <时,()f x =( )A .2x x -B .2x x +C .2x x -+D .2x x -- 【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()00f =,即()010f a =+=,解得1a =-,当0x ≥时,()2f x x x =-,当0x <时,0x ->,则()()22f x x x x x -=-+=+,因为()f x 是奇函数,所以()()2f x f x x x =--=--.故选:D .【变式10-3】若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=(e 为无理数,2.71828e =⋅⋅⋅),则()g x =( )A .e e x x --B .()1e e 2x x -+C .()1e e 2x x --D .()1e e 2x x -- 【答案】D【解析】由()()e xf xg x +=可得()()e x f x g x --+-=,根据()f x 与()g x 的奇偶性可得()()()()e xf xg x f x g x --+-=-=,故()()()()e e x xf xg x f x g x ---+=-⎡⎤⎣⎦.整理得()2e e x xg x --=-,即()()1e e 2x xg x -=-.故选:D.题型十一 利用单调性奇偶性解不等式【例11】定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是( )A .12m <- B .12m > C .112m -≤< D .122m <≤ 【答案】C【解析】∵()f x 是偶函数,()()()f x f x f x ∴=-=,故(1)()f m f m -<可变形为(1)()f m f m -<, ∵()f x 在区间[]0,2上单调递减,故212131222212112m m m m m m m m ⎧⎧⎪⎪-≤-≤-≤≤⎪⎪-≤≤⇒-≤≤⇒-≤<⎨⎨⎪⎪->⎪⎪<⎩⎩.故选:C.【变式11-1】若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是__________. 【答案】[]1,2【解析】因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增,又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥,则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤,所以原不等式的解集为[]1,2. 故答案为:[]1,2【变式11-2】函数()f x 是定义在()1,1-上的奇函数且单调递减,若2(2)(4)0,f a f a -+-<则a 的取值范围是( ) A .)5,3 B .(3)(2,)-∞⋃+∞ C .)3,2 D .()3,2-【答案】C【解析】函数()f x 是定义在()1,1-上的奇函数且单调递减,2(2)(4)0f a f a -+-<可化为2(2)(4)f a f a -<-则2212114124a a a a -<-<⎧⎪-<-<⎨⎪->-⎩2a <故选:C【变式11-3】奇函数()2f x +是定义在()3,1--上的减函数,若()()1320f m f m -+-<,则实数m 的取值范围为______. 【答案】()1,2【解析】由题意知,函数()2f x +的定义域为()3,1--,所以函数()f x 的定义域为()1,1-, 所以1111321m m -<-<⎧⎨-<-<⎩,解得12m <<.又奇函数()2f x +是()3,1--上的减函数,所以()f x 是()1,1-上的奇函数,且在()1,1-上单调递减. 由()()1320f m f m -+-<,得()()132f m f m -<--, 所以()()123f m f m -<-,所以123m m ->-,解得2m <.综上,12m <<. 故答案为:()1,2.【变式11-4】已知函数()f x 是定义在R 上的偶函数,若1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()21210mf m m f m --->的解集为( )A .(),1-∞-B .(),1-∞C .()1,+∞D .()1,-+∞ 【答案】C【解析】令()()g x xf x =,因为函数()f x 是定义在R 上的偶函数,所以()()()()g x xf x xf x g x -=--=-=-,即()g x 是定义在R 上奇函数. 又1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()()()11221212120x f x x f x g x g x x x x x --=<--成立,所以()g x 在[)0,∞+上单调递减,又()g x 是定义在R 上奇函数,所以()g x 在R 上单调递减,所以()()()()()2121210mf m m f m g m g m ---=-->,即()()21g m g m >-, 所以21m m <-,解得1m >.故A ,B ,D 错误.故选:C .题型十二 利用单调性奇偶性比较大小【例12】定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则下列判断正确的是( )A .311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113422f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .311242f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131224f f f ⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A【解析】因为()f x 为偶函数,所以11()()22f f -=,33()()22f f -=, 又113422<<,且()f x 在(0,)+∞上是减函数,所以311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A【变式12-1】已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①()(),x f x f x ∀∈-=R ;②()12,0,x x ∀∈+∞,当12x x ≠时,()()2112120x f x x f x x x ->-.记()1a f =,()33f b -=,()55f c =,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a << 【答案】B【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,()()2112120x f x x f x x x ->-,即()()1212120f x f x x x x x ->-,所以函数()f x x 在(0,)+∞上单调递增. 又x ∀∈R ,()()f x f x -=,所以函数()f x 是R 上的偶函数,所以()()3333f f -=,则有()()()135135f f f <<,所以a b c <<,故选:B .【变式12-2】已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 【答案】B【解析】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >, ∴函数()f x 在(1,)+∞上为单调增函数, ∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B .【变式12-3】已知()f x 对于任意R x ∈都有(2)()f x f x +=,且()f x 在区间[)0,2上是单调递增的,则( 6.5),(1),(0)f f f --的大小关系是( )A .(1)(0)( 6.5)f f f -<<-B .( 6.5)(0)(1)f f f -<<-C .(1)( 6.5)(0)f f f -<-<D .(0)(1)( 6.5)f f f <-<- 【答案】D 【解析】()f x 对于任意R x ∈都有(2)()f x f x +=,∴()f x 周期为2,偶函数()f x 在区间[)0,2上是单调递增,( 6.5)(1.5)f f ∴-=,(1)(1)f f -=,(0)(1)(1.5)f f f ∴<<,即(0)(1)( 6.5)f f f <-<-故选:D题型十三 利用函数的周期性求值【例13】已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255- 【答案】B【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B【变式13-1】已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022 【答案】A 【解析】(2)()(2)()x f x f f f x x -=∴+=-,又()()f x f x -=-,(2)()()f x f x f x ∴+=-=-,∴函数的周期4T =.又函数()f x 是定义域为R 的奇函数,(0)0f ∴=,(2)(0)0f f ∴==,(3)(1)(1)2f f f =-=-=-,(4)(0)0f f == (1)(2)(3)(4)20200f f f f +++=+-+=∴,又202250542=⨯+(1)(2)(3)(2022)5050(1)(2)2f f f f f f ∴++++=⨯++=.故选:A.【变式13-2】已知函数()1y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=当(]0,2x ∈时,()2f x x =+.则()2022f =( )A .1-B .1C .2D .2- 【答案】D【解析】函数()1y f x =+的图象关于直线3x =-对称,∴函数()y f x =的图象关于直线2x =-对称,()()22f x f x ∴-+=--,取2x x =+可得()()2222f x f x -++=--+⎡⎤⎣⎦,∴()()4f x f x =--又对x ∀∈R 有()()2f x f x +-=, 取4x x =--可得()()442f x f x --++=,所以()()()42f x f x f x =--=--.,()()424f x f x --=-+,()()4f x f x ∴+=-,()()()444f x f x f x ⎡⎤∴++=--=⎣⎦,即()()8f x f x +=,()f x ∴的周期8T =()()()()()()()2022252866242222222f f f f f f ∴=⨯+==+=-=-=-+=-.故选:D.【变式13-3】设函数()f x 的定义域为R ,()12f x +-为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()011f f -+=,则20232⎛⎫=⎪⎝⎭f ________. 【答案】34【解析】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,函数()f x 关于点()1,2对称,又定义域为R ,则有()12f =;又()2f x +为偶函数,可得()()22f x f x +=-+,函数()f x 关于直线2x =对称,()()()4242f x f x f x =--=-+,又()()24f x f x +=--,则()()f x f x =-,则()()()222f x f x f x +=-+=-,函数()f x 周期为4,则202311131012422222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-==-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 由上可得()()()()1,041424f f a b f f a b ==+=-=---,则2441a b a b a b +=⎧⎨++--=⎩,解得11a b =⎧⎨=⎩, 则39131244f ⎛⎫=+= ⎪⎝⎭,则2023334224f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:34.题型十四 抽象函数综合问题【例4】函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立.(1)证明函数f (x )的奇偶性;(2)若f (1)= -2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->-- 【答案】(1)证明见解析;(2)4;(3){|2x x <-或1}x >- 【解析】(1)令x =y =0得f (0)=0,再令y =—x 即得f (-x )=-f (x ), ∴()f x 是奇函数.(2)设任意12,R x x ∈,且12x x <,则210x x ->,由已知得21()0f x x -<①,又212121()()()()()f x x f x f x f x f x -=+-=-②, 由①②可知12()()f x f x >,由函数的单调性定义知f (x )在(-∞,+∞)上是减函数,∴x ∈[-2,2]时,[]max ()(2)(2)(11)2(1)4f x f f f f =-=-=-+=-=, ∴f (x )当x ∈[-2,2]时的最大值为4.(3)由已知得:[]2(2)(4)2()(2)f x f x f x f -->--,由(1)知f (x )是奇函数,∴上式又可化为:[]2(24)2(2)(2)(2)(24)f x x f x f x f x f x -->+=+++=+,由(2)知f (x )是R 上的减函数, ∴上式即:22424x x x --<+, 化简得(2)(1)0x x ++>,∴ 原不等式的解集为{|2x x <-或1}x >-.【变式14-1】已知函数()f x 的定义域是()0,∞+,对定义域内的任意12x x , 都有()()()1212f x x f x f x =+,且当01x <<时,()0f x >.(1)证明:当1x >时,()0f x <;(2)判断()f x 的单调性并加以证明;(3)如果对任意的()12,0,x x ∈+∞ ,()()()221212f x x f a f x x +≤+恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)函数()f x 单调递减,证明见解析;(3)(]0,2a ∈ 【解析】(1)(1)(1)(1)(1)0f f f f =+⇒=;1(1)()()0f f x f x=+=;当()0,1x ∈时,()11,x ∈+∞;()10()0f x f x>⇒<;∴当1x >时,()0f x <.(2)单调递减.证明:()1212,0,x x x x ∀∈+∞<,且()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭12x x <,211x x ∴>,210x f x ⎛⎫∴< ⎪⎝⎭,即()()12f x f x > ∴()f x 单调递减(3)函数()f x 的定义域是()0,∞+0a ∴>;()()()()()222212121212f x x f a f x x f x x f ax x +≤+⇒+≤恒成立;由(2),()f x 单调递减,221212x x ax x +≥恒成立,221212x x a x x +≤恒成立,因为22121212212x x x x x x x x +=+≥,当且仅当12x x =时等号成立,所以2a ≤; 又()f a 有意义,所以0a > 综上:(]0,2a ∈.【变式14-2】已知函数()f x 对任意,R x y ∈,都有()()()1f x y f x f y +=+-,且当0x >时,()1f x >. (1)求证:()f x 在R 上是增函数;(2)若关于a 的方程2(75)2f a a +-=的一个实根是1,求(6)f 的值; (3)在(2)的条件下,已知R m ∈,解关于x 的不等式()(2)3f mx f x ->+. 【答案】(1)证明见解析;(2)3;(3)详见解析【解析】(1)依题意()()()1f x y f x f y +=+-,且0x >时,()1f x >,令0x y ==,则()()()()0001,01f f f f =+-=,()()()()()1,2f x x f x f x f x f x -+=-+--+=,任取12x x <,()()()()121211f x f x f x f x x x -=--+()()()()12112111f x f x x f x f x x =--+-=--+⎡⎤⎣⎦,由于210x x ->,所以()211f x x ->,所以()()()()12120,f x f x f x f x -<<,所以()f x 在R 上递增. (2)由(1)知,()f x 在R 上递增,()()217532f f +-==,()()()()6333313f f f f =+=+-=.(3)依题意()()()1f x y f x f y +=+-,()f x 在R 上递增,()(2)3f mx f x ->+.()(2)12f mx f x -->+,()()()22,23f mx x f mx x f +->+->,()23,15mx x m x +->+>,当1m =-时,不等式的解集为空集. 当1m <-时,不等式的解集为5|1x x m ⎧⎫<⎨⎬+⎩⎭. 当1m >-时,不等式的解集为5|1x x m ⎧⎫>⎨⎬+⎩⎭.【变式14-3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且1()12f =-当0x >时,()0.f x <(1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明; (3)如果()(2)2f x f x >-,求x 的取值范围;【答案】(1)0;(2)函数()f x 是定义在R 上的减函数,详见解析;(3)1x >-. 【解析】(1)令0x y ==,则()()()0000f f f -=-,∴()00f =;(2)函数()f x 是定义在R 上的减函数,设12,R x x ∀∈,且12x x >,则120x x ->, ∴()()()1212f x x f x f x -=-,∵当0x >时,()0.f x <∴()120f x x -<,即()()120f x f x -< ∴()()12f x f x <,∴函数()f x 是定义在R 上的减函数; (3)∵()()()f x y f x f y -=-∴()()()00f x f f x -=-,又()00f =, ∴()()f x f x =--, ∴函数()f x 是奇函数,∵()()()f x y f x f y -=-,1()12f =- ∴111112222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫--=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴()()(2)2(2)1(21)f x f x f x f f x >-=--=+, 又函数()f x 是定义在R 上的减函数, ∴21x x <+,即1x >-, ∴x 的取值范围为1x >-.题型十五 幂函数的图象性质【例15】现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( ) A .1 B .2 C .3 D .4 【答案】B【解析】幂函数满足a y x =形式,故3y x =,y x =满足条件,共2个故选:B【变式15-1】(多选)已知幂函数232()(21)m m f x a x -+=-,其中,a m R ∈,则下列说法正确的是( )A .1a =B .()f x 恒过定点(1,1)C .若3m =时,()y f x =关于y 轴对称D .若112m <<时,(2)(1)f f <【答案】ABC【解析】因为232()(21)m m f x a x -+=-为幂函数,所以211a -=,解得1a =,故A 正确; 则232()m m f x x -+=,故恒过定点(1,1),故B 正确;当3m =时,2()f x x =,22()()()f x x x f x -=-==,所以()y f x =为偶函数,则()y f x =关于y 轴对称,故C 正确; 当112m <<时,2320m m -+>,则()f x 在(0,)+∞上为增函数, 所以(2)(1)f f >,故D 错误.故选:ABC【变式15-2】图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是( )A .12,3,1-B .1-,3,12C .12,1-,3D .1-,12,3 【答案】D【解析】由题图知:10α<,201α<<,31α>,所以1α,2α,3α依次可以是1-,12,3.故选:D【变式15-3】当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数,则m =_________.【答案】2【解析】函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减, 可得2230m m --<,可得2m =, 故答案为:2【变式15-4】已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.【答案】4【解析】由题意可得23310m m m ⎧--=⎨>⎩,解得4m =故答案为:4.【变式15-5】已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围.【答案】(1)()3f x x =;(2)2,3⎛⎫-∞ ⎪⎝⎭【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.题型十六 简单函数模型的应用【例16】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0. (1)当020x <≤时,求函数()v x 的表达式;。
高考数学总复习考点及分值分配

与高考有关的所有数学问题(二)题型分析1、选择题部分单选的总评和总结:本套选择题中第1~5题比较简单,第6题考查学生的归纳能力,第8题是一个应用性问题,第9题是以新增的概率统计为素材的比较大小题,但要求学生熟悉公式的变形推导,方可解决。
第10题图形题是江西试卷的一大特点。
2、填空题部分填空题的总评和总结:填空题考生容易下手,其中第15题是对选修的考查,基本上是一学就会的题3、解答题部分解答题的总评和总结:解答题第16、17题只要学生运算细心,基本上能顺利拿下,第18题是以立几体积计算为背景的古典概型题,要求学生有较强计数能力。
第19题立几题回归到往年的中档题位置,传统方法,向量法都容易解决。
第20题解析几何第1问学生容易拿分,第2问是开放性问题,要求学生有较强的运算能力和计算技巧及很强的推理能力才可得到最终结论的题。
第21题是定义型的题,比较抽象,要求学生有很强的理解能力和扎实的基本功,相对较难一点,但没有偏难题。
(三)分析与总结通过对今年我省数学高考试卷的分析,我感到今年的江西高考数学试卷在命制中,本试卷的知识覆盖面广,基本把每个知识点都涉及到。
题目数量、难度安排适宜,题目立意新颖,试卷难、中、易比例恰当。
达到了考基础、考能力、考素质、考潜能的考试目标。
编辑启示我们组稿时主要主要以下几点:1.基础能力,即基本的计算能力。
2.图形处理能力,包括两点,第一点,通过数字变成图形,第二点,通过图形读出数字的规律。
3.归纳猜想能力,归纳猜想并不指的我们前面讲过的数学归纳法问题,归纳和猜想意思是我们通过一些题目信息去提炼出最关键的问题,让我们知道那个是题眼,了解到这个题目本质之后,去代入一些特殊的、极限的值。
4.知识联系,如能否把函数与其他知识结合起来,比如说复习到后面的解析几何的时候,能不能把后面的解析几何起来。
高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表示+实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.(8)交集、并集、补集∅=∅B A ⊆A ∅=B A ⊇1()U AA =∅ 2(U A A【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法)()(U U A =()()()UU U A B A B =〖1.2〗函数及其表示(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f A B→.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为[,]a b,其复合函数[()]f g x的定义域应由不等式()a g x b≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2++=,则在()0()()()0a y xb y xc ya y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我a Ab B们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质(1)函数的单调性①定义及判定方法如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< x..2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=减.为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,a-∞-、[,)a+∞上为增函数,分别在[,0)a-、]a上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②式子n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈(4)指数函数〖2.2〗对数函数(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-=③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=(4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =(f q (f =0时) 2a ()2ba - ③若2b q a ->,则()M f q =)q)0x 0x 0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2024年高考数学大题--概率统计题型分类汇编(学生版)

概率统计概率统计是是高考数学的热点之一,概率统计大题是新高考卷及多省市高考数学的必考内容。
回顾近几年的高考试题,主要考查古典概型、相互独立事件、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差等内容,多与社会实际紧密结合,以现实生活为背景设置试题,注重知识的综合应用与实际应用。
重点考察考生读取数据、分析数据和处理数据的能力。
题型一:离散型随机变量及其分布列题型二:超几何分布与二项分布题型三:均值与方差的实际应用题型四:正态分布与标准正态分布题型五:线性回归与非线性回归题型六:独立性检验及应用题型七:条件概率/全概率公式/贝叶斯公式题型八:概率与统计图表的综合应用题型九:概率与其他知识的交汇应用题型十:利用概率解决决策类问题题型一:离散型随机变量及其分布列1(2023·广东肇庆·高三广东肇庆中学校考阶段练习)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以X表示这2人中团体赛获奖的人数,求X的分布列和数学期望;求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布,可结合其对应的概率计算公式及期望计算公式,简化计算。
)1(2024·四川成都·成都七中模拟预测)甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.2(2024·云南德宏·高三统考期末)设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的4个球,其中甲箱有2个蓝球和2个黑球,乙箱有3个红球和1个白球,丙箱有2个红球和2个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X表示最后摸出的2个球的分数之和,求X的分布列及数学期望.题型二:超几何分布与二项分布2(2024·广东广州·广州市培正中学校考二模)某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了10张相同的卡片,其中只在6张卡片上印有“奖”字.(1)采取放回抽样方式,从中依次抽取3张卡片,求抽到印有“奖”字卡片张数X的分布列、数学期望及方差;(2)采取不放回抽样方式,从中依次抽取3张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.1、独立重复试验与二项分布(1)定型:“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.(2)定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.(3)列表,根据离散型随机变量的取值及其对应的概率,列出分布列.(4)求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,⋯,n),E(X)=np,D(X)=np(1-p).2、超几何分布的适用范围及本质(1)适用范围:考察对象分两类;已知各类对象的个数;从中抽取若干个个题,考察某一类个题个数的概率分布;(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的。
高中数学考试分析教研

一、引言高中数学作为我国教育体系中的重要学科,其教学质量直接影响到学生的综合素质和未来发展。
为了提高高中数学教学质量,教师需要认真分析考试情况,找出问题,从而有针对性地进行教学改进。
本文通过对高中数学考试的分析,旨在为教师提供教学参考,促进教学质量的提升。
二、考试分析1. 考试题型及分值分布高中数学考试题型主要包括选择题、填空题、解答题和附加题。
其中,选择题和填空题主要考查学生的基础知识,解答题和附加题主要考查学生的综合运用能力。
从分值分布来看,选择题和填空题的分值相对较低,解答题和附加题的分值较高。
2. 考试难度分析从考试难度来看,高中数学考试难度较大。
一方面,考试内容涉及面广,包括数列、函数、三角、立体几何、解析几何等多个模块;另一方面,考试题型多样化,既有基础题,也有综合题和探究题。
这对学生的数学素养和思维能力提出了较高要求。
3. 学生成绩分析通过对学生成绩的分析,可以发现以下问题:(1)基础知识掌握不牢固。
部分学生在选择题和填空题上失分较多,说明他们对基础知识掌握不牢固,如公式、定理、性质等。
(2)综合运用能力不足。
学生在解答题和附加题上失分较多,说明他们缺乏综合运用知识解决问题的能力。
(3)解题技巧有待提高。
部分学生在解题过程中,无法合理运用解题技巧,导致解题效率低下。
4. 教学方法与策略分析针对上述问题,教师在教学过程中应采取以下方法与策略:(1)加强基础知识教学。
教师应注重基础知识的讲解和训练,帮助学生牢固掌握公式、定理、性质等。
(2)注重培养学生的综合运用能力。
教师可以通过设计综合性较强的题目,引导学生运用所学知识解决问题。
(3)提高解题技巧。
教师应教授学生一些常用的解题技巧,如分析法、综合法、反证法等,以提高解题效率。
三、教学改进建议1. 优化教学内容(1)根据学生的实际情况,调整教学内容。
教师应关注学生的学习进度,针对不同层次的学生,合理调整教学内容。
(2)关注学科前沿。
教师应关注数学学科的发展动态,将前沿知识融入教学,提高学生的学科素养。
高中数学考试会考什么?

高中数学考试会考什么?高中数学考试是衡量学生数学能力的重要指标,其内容涵盖高中阶段所学的所有知识点,并考察学生对数学知识的理解、应用和处理问题的能力。
为了帮助考生更好地理解考试内容,本文将从以下几个方面进行分析:一、考试内容概述高中数学考试通常包括以下六个部分:1. 函数与导数: 此部分主要考察函数的概念、性质、图像,以及导数的概念、运算、应用等。
重点内容包括:函数的定义域、值域、单调性、奇偶性、周期性常见函数的图像及性质:一次函数、二次函数、指数函数、对数函数、三角函数等导数的定义、求导法则、导数的应用(如求极值、最值、单调区间、凹凸性等)2. 三角函数与解三角形: 此部分主要考察三角函数的定义、性质、图像,以及解三角形等内容。
重点内容包括:三角函数的定义、单位圆、三角函数的图像、性质解三角形的基本定理:正弦定理、余弦定理、面积公式三角函数的应用(如求解三角形、周期性问题等)3. 向量与立体几何: 此部分主要考察向量、空间直线、空间平面以及空间几何体的性质。
重点内容包括:向量的定义、运算、坐标表示空间直线的方程、空间平面的方程空间几何体的性质:棱柱、棱锥、球体等4. 数列与不等式: 此部分主要考察数列的定义、性质、求通项公式,以及不等式的性质和证明等。
重点内容包括:数列的定义、等差数列、等比数列、递推数列数列求通项公式的方法不等式的性质,常见不等式及其证明方法(如柯西不等式、均值不等式等)5. 概率与统计: 此部分主要考察概率、随机变量、统计数据的收集、整理和分析等内容。
重点内容包括:概率的基本概念、古典概率、几何概率、条件概率随机变量的分布、常见分布(如二项分布、正态分布等)数据的收集、整理、图表分析、方差、标准差6. 解析几何: 此部分主要考察圆锥曲线及其性质,以及平面向量在解析几何中的应用。
重点内容包括:圆锥曲线的定义、方程、性质:圆、椭圆、双曲线、抛物线直线与圆锥曲线的位置关系平面向量的应用(如直线方程、曲线方程等)二、考试题型分析高中数学考试题型主要包括选择题、填空题、解答题。
2021《高中数学专题题型分类大全》第一分册函数专题3函数的奇偶性及对称性

《必修1》函数专题三、函数的奇偶性与对称性 『知识与方法梳理』☟1、奇偶函数的定义与性质:2、几个初等函数的奇偶性:(1)函数:y = ax + b 为奇函数时b=0 ;为偶函数时a=0 .为奇函数时a=c=0 ;为偶函数时b=0 .(3)函数:y = ax为奇函数的时a∈R ;为偶函数时a=0 .(4)指数函数:y = a x(a≠1,a>0) 与对数函数:y = log a x(a≠1,a>0)属于非奇非偶函数.(5)幂函数:y = xα(α∈Q) 为奇函数时α为奇数;为偶函数时α为偶数.3、函数图形的对称性:4.常识知识与方法:(1)复合及合成函数的奇偶性:.奇函数在原点有定义时一定经过原点(3)一个定义在R上的函数如果有两个对称轴或对称中心,则该函数一定是周期函数. (4)定义域关于原点对称的常函数是偶函数(5)既是奇函数又是偶函数的函数必是零函数『题型分类例析』✍(一)函数奇偶性的概念性质问题■题型结构特征:无解析式函数的奇偶性的判断.★判断识真☆1.下列说法正确的是()A.如果一个函数的定义域关于坐标原点对称,则这个函数为奇函数B.如果一个函数为偶函数,则它的定义域关于坐标原点对称C.如果一个函数的定义域关于坐标原点对称,则这个函数为偶函数D.如果一个函数的图象关于y轴对称,则这个函数为奇函数2.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数【例题1】[2014全国课标1文5]设函数)(),(xgxf的定义域为R,且)(xf是奇函数,)(xg是偶函数,则下列结论中正确的是()A.)()(xgxf是偶函数 B. )(|)(|xgxf是奇函数C. |)(|)(xgxf是奇函数 D. |)()(|xgxf是奇函数〖类型题〗(一)1.f(x)是定义在R上的奇函数,下列结论中,不正确的是()A.f(-x)+f(x)=0 B.f(-x)-f(x)=-2f(x)C.f(x)·f(-x)≤0 D.f(x)f(-x)=-12.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|- g(x)是奇函数3.函数()f x的定义域为R,若(1)f x+与(1)f x-都是奇函数,则( )A.f(x)是偶函数B.f(x)是奇函数C.()(2)f x f x=+ D.(3)f x+是奇函数4.函数1211111(),(),,(),,()()nnf x f x f xx x f x x f x+===++则函数2015()f x是()A.奇函数但不是偶函数B.偶函数但不是奇函数奇偶性定义性质偶函数对定义域内任意x都有f(-x) = f(x)关于y轴对称奇函数对定义域内任意x都有f(-x) = - f(x)关于原点对称函数y = f(x)满足对称性对称轴或中心f(x) = f– 1(x) 轴对称y=xf(x) = f(2a – x) 轴对称x=af(a + x) = f(a – x) 轴对称x=af(a + x) = f(b – x) 轴对称x= a+b 2f(a + x) + f(a - x) = 2b 中心对称(a, b) f(x) + f(2a - x) = 2b 中心对称(a, b)f(a + x) + f(b - x) = c 中心对称(a+b2,c2)函数f(x) g(x) f[g(x)] f(x) ± g(x) f(x) ⋅ g(x)奇偶性奇奇奇奇偶偶偶偶偶偶奇偶偶非奇偶奇偶非奇非奇非非非非偶偶非非奇非非非非偶非非非非C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数(二)函数解析式奇偶性的判断■题型结构特征:有解析式函数的奇偶性的判断【例题2】 判断下列函数的奇偶性.(1) )y = x 4 - x 3x - 1 ;(2) y = 12 - x 2;(3) f(x)=x( 12x - 1 + 12);(4)f(x) = log 2(x + x 2 + 1).【例题3】判断函数 222 0,()2 0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩的奇偶性并画出它的图像.※解法辩伪※判断函数f(x) = 2223, 0,2, 0,23, 0x x x x x x x ⎧++<⎪=⎨⎪-+->⎩的奇偶性.〖错解〗∵当x < 0时,f( - x) = - ( - x)2 + 2( - x) – 3 = - (x 2 + 2x + 3) = - f(x);∵当x > 0时,f( - x) = ( - x)2 + 2( - x) + 3 = - (- x 2 + 2x – 3) = - f(x). ∴函数f(x)是奇函数.【例题4】 [2015广东理3]下列函数中,既不是奇函数,也不是偶函数的是( )A .x e x y += B .xx y 1+=C .xx y 212+= D .21xy +=1. 判断下面两个函数的奇偶性并说明为什么:(1)f (x )=|2x -1|-|2x +1|;(2)f(x) =x + 1x;(3)f(x) = x 2-1x+1+ 1;(4)f (x )=⎩⎪⎨⎪⎧1-x 2, x >0,0, x =0,x 2-1, x <0.2. 函数y = 1 - x 2 + x 2- 1 是( ); A.奇函数但不是偶函数 B.偶函数但不是奇函数 C.既是奇函数又是偶函数 D.非奇非偶函数3. 函数y =1-x 2+91+|x |是( ).A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数4. [2015湖南文8]设函数f(x)=ln(1+x)-ln(1-x),则f (x )是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数5. 函数f(x) =ln(1)(0),0 (x=0),ln(1x )(0)x x x x x ⎧+->⎪⎨⎪-+-<⎩的奇偶性是( )A.奇函数B.偶函数C.即是奇函数也是偶函数D.非奇非偶函数6. 下列函数中,在其定义域内既是奇函数又是增函数的是( )A .y =-x 2+5(x ∈R )B .y =-xC .y =x 3(x ∈R )D .y =-1x(x ∈R ,x ≠0)7. 若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数(三)利用对称点求值1. 分段函数求值■题型结构特征:具有奇偶性的分段函数【例题5】若函数f(x)=⎩⎨⎧x 2+2x x≥0g(x)x <0为奇函数,则f(g(-1))=________.2. 抽象函数求值■题型结构特征:具有奇偶性的抽象函数【例题6】 设函数f (x )(x ∈R)为奇函数,f (1)=12,且f (x +2)=f (x )+f (2),则f (5)=________.3. 合成复合函数求值■题型结构特征:具有奇偶性的合成及复合函数 ★判断识真☆给出函数f (x )=|x 3+1|+|x 3-1|,则下列坐标表示的点一定在函数y =f (x )的图象上的是( )A. (a ,-f (a )) B .(a ,f (-a )) C .(-a ,-f (a )) D .(-a ,-f (-a ))【例题7】 已知函数()()2ln 1931,f x x x =++则()1lg 2lg 2f f ⎛⎫+= ⎪⎝⎭( )A. - 1 B .0 C .1 D .2(四)函数的对称中心和轴1. 对称轴的判断■题型结构特征:判断是否具有轴对称性或求其对称轴 ★判断识真☆函数()412x x f x +=的图象( )A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称※解法辩伪※ 已知f(2x + 1)是偶函数,求函数f(2x)及f(x)的图象的对称轴.〖错解〗 ∵f(2x + 1)是偶函数, ∴f(2x + 1) = f( - 2x + 1) 故f(2x)的对称轴为 x = 1,f(x)的对称轴为x = 12.【例题8】[2017全国新课标1文9] 已知函数f(x) = lnx + ln(2 - x),则 A .f(x)在(0,2)单调递增 B .f(x)在(0,2)单调递减C .y = f(x)的图像关于直线x =1对称D .y = f(x)的图像关于点(1,0)对称2. 对称中心的判断■题型结构特征:判断是否具有中心对称性或求对称中心【例题9】 三次函数都存在对称中心,某同学发现把函数f(x)= x 3 - 3x 2 + 5x - 1的图像平移,使其对称中心变成原点,则新图像对应函数就会变成奇函数. 那么函数f(x)图像的对称中心是 .(五)函数奇偶性对称性确定的参数问题1. 偶函数确定的参数■题型结构特征:已知偶函数求参数【例题10】 [2014湖南文15]若()()ax e x f x ++=1ln 3是偶函数,则=a __________.2. 奇函数确定的参数■题型结构特征:已知奇函数求参数【例题11】 已知函数f (x )=ax 2+1bx +c (a ,b ,c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a ,b ,c 的值.※解法辩伪※已知定义域为R 的函数abx f x x++-=+122)(,是否存在实数a,b使函数f(x )为奇函数,如果存在求a,b 的值,若不存在说明理由. 〖错解〗当f(x)是奇函数时,f(0)=0, f(-1) = - f(1),即110,22214ba b b a a --+⎧=⎪⎪+⎨-+-+⎪=-⎪++⎩解得2,1a b =⎧⎨=⎩.故存在a 、b 实数使f(x)为奇函数.3. 非奇偶对称函数确定的参数■题型结构特征:非奇偶函数具有对称性,求参数【例题12】 [2015福建文15]若函数()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.【例题13】 若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值是______.〖类型题〗(五)1. 函数 f(x) = x 2 + ax – 1是偶函数,则a 的值为 .2. 若函数f (x )=(x +1)(x -a )为偶函数,则a 等于( ). A .-2 B .-1 C .1 D .23. 已知函数f (x )=ax 2+bx +3a +b为偶函数,其定义域为[a -1,2a ],则a +b =________.4. 若函数f (x )=-x +abx +1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为_______. 5. [2015新课标1理13]若函数f (x )=xln (x +2a x +)为偶函数,则a =6. 设函数f(x)=x(e x +ae -x )(x ∈R )是偶函数,则实数a =______.7. 若1()21x f x a =+-是奇函数,则a = .8. [2015天津文7] 已知定义在R 上的函数||()21x m f x -=- (m 为实数)为偶函数,记0.5(log 3),af 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A. b c aB. b c aC. b a cD. b c a9. [2015山东文8] 若函数21()2xx f x a+=-是奇函数,则使f (x )>3A.( )B.(-1, 0))C.(0,1)D.(1,+∞)10. 已知函数f (x )=x 2+ax(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[1,+∞)上的单调性.11. [2014上海21]设常数0≥a ,函数aax f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=; (2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由. (六)奇偶对称性函数的单调问题■题型结构特征:函数的奇偶性对称性与单调性的综合问题1. 偶函数的单调性★判断识真☆1.设函数f (x )是定义在R 上的偶函数,且f (x )=f (2-x ),若f (x )在区间[]1,2上是减函数,则函数f (x )( )A .在区间[]-2,-1上是增函数,区间[]3,4上是增函数B .在区间[]-2,-1上是增函数,区间[]3,4上是减函数C .在区间[]-2,-1上是减函数,区间[]3,4上是增函数D .在区间[]-2,-1上是减函数,区间[]3,4上是减函数【例题14】[2017天津理6]已知奇函数f(x)在R 上是增函数,g(x) = xf(x).若a = g( - log 25.1),b = g(20.8),c = g(3),则a ,b ,c 的大小关系为 A. a b c <<B. c b a <<C. b a c <<D. b c a <<2. 奇函数的单调性★判断识真☆1.设f (x )为定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为正值B .恒等于零C .恒为负值D .无法确定正负2.[2017北京理5]已知函数f(x) = 3x - ( 13)x ,则f(x)A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数【例题15】 已知定义在R 上的奇函数f (x )满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a -a 2),则实数a 的取值范围是______.3. 非奇偶对称函数的单调性【例题16】 已知函数f (x )的图象向右平移a ()a >0个单位后关于x =a +1对称,当x 2>x 1>1时,[]f (x 2)-f (x 1)(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【例题17】 对于定义在区间M 上的函数f (x ),若满足对∀x 1,x 2∈M 且x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )为区间M 上的“非减函数”,若f (x )为区间[0,1]上的“非减函数”,且f (0)=0,f (x )+f (1﹣x )=1;又当x ∈[,1]时,f (x )≤2x ﹣1恒成立.有下列命题:①∀x ∈[0,1],f (x )≥0;②当x 1,x 2∈[0,1]且x 1≠x 2时,f (x 1)≠f (x 2);③f ()+f ()+f ()+f ()=2;④当x ∈[,1]时,f (f (x ))≤f (x ). 其中正确命题有( )A .②③B .①②③C . ①②④D . ①③④【例题18】 若定义在R 上的函数f (x )对任意的x 1,x 2∈R都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1. (1)求证:f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数;(3)若f (4)=5,解不等式f (3m 2-m -2)<3.【例题19】 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0,有f (a )+f (b )a +b > 0成立.(1)判断f (x )在[-1,1]上的单调性,并证明你的结论;(2)解不等式f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.1. [2017全国新课标1理5]函数f(x)在(-∞, +∞)单调递减,且为奇函数.若f(1) = - 1,则满足 - 1≤f(x - 2)≤ 1的x 的取值范围是 A .[-2, 2] B .[-1, 1] C .[0, 4] D .[1, 3]2. 下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是( )3. (2016天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足1(2)(2)a f f ->-,则a 的取值范围是______.4. 设函数f (x )定义在实数集R 上,f (2-x )=f (x ),且当x ≥1时f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12) < f (2) < f (13)C .f (12)<f (13) < f (2)D .f (2)<f (12) <f (13)5. 已知定义域为R 的函数f(x)是(8,+∞)上的减函数,且函数y = f(x + 8)为偶函数,则( ) A.f(6)>f(7) B.f(6)>f(9) C.f(7)>f(9) D.f(7)>f(10)6. 已知函数f (x )=⎩⎨⎧-x 2-4x ,x ≥0x 2-4x ,x <0,若f (a -2)+f (a )>0,则实数a 的取值范围是______.7. 已知()f x 是定义域为R的偶函数,当x≥时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是_______.8. 已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x (x >0)0 (x =0)x 2+mx (x <0).(1)求实数m 的值,并画出y =f (x )的图象;(2)若函数f (x )在区间[-1,a -2]上单调递增,试确定a 的取值范围.9. 函数f(x)的定义域为D={x| x ≠0},且满足对于任意x 1, x 2∈D ,有f(x 1⋅x 2) = f(x 1) + f(x 2).(1)求f(1)的值; (2)判断f(x)的奇偶性并证明你的结论; (3)如果f(4) = 1, f(x – 1)< 2,且f(x)在(0, +∞)上是增函数,求x 的取值范围.10. 定义在( - 1, 1)上的函数f(x), ①对任意的x,y ∈( - 1, 1)都有:f(x) + f(y) = f(x + y1 + xy); ②当x ∈( - 1, 0)时,f(x) > 0.(1)判断f(x)在( - 1, 1)上的奇偶性,并说明理由; (2)判断函数f(x)在(0, 1)上的单调性;(3)若f( 15 ) = - 12 ,试求f( 12 ) - f( 111 ) - f( 119 )的值.(七)奇偶性对称性与周期性的综合问题1.两对称确定的周期■题型结构特征:有两个对称关系函数判断其周期 ★判断识真☆1.函数f (x )是定义在R 上非常数的偶函数,且f (x )满足条件:对任意x ∈R ,都有f (2+x )=f (2-x ),则f (x )( )A .是周期为2的函数B .是周期为4的函数C .关于(2,0)点中心对称D .是奇函数【例题20】[2014·全国大纲]奇函数f (x )的定义域为R .若f (x+2)为偶函数,且f (1)=1,则f (8)+f (9)=( ) A .-2 B .-1 C .0 D .12.轴对称与周期■题型结构特征:已知一对称的周期函数 ★判断识真☆2.函数f (x )在定义域R 上不是常数函数,且f (x )满足条件:对任意x ∈R ,都有f (2+x )=f (2-x ),f (1+x )=-f (x ),则f (x )( )A .是奇函数但非偶函数B .是偶函数但非奇函数C .既是奇函数又是偶函数D .是非奇非偶函数【例题21】 设函数f(x)(x ∈R)满足f(- x) = f(x),f(x + 2) =f(x),则函数y = f(x)的图像是( )3.中心对称与周期■题型结构特征:已知一对称关系和半周期关系函数【例题22】 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ). A.(25)(11)(80)f f f -<< B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<〖类型题〗(七)1. 已知函数)(x f 是定义在R 上的奇函数,且)2()(+-=x f x f .当10≤≤x 时,2)(xx f =,则(2007)f =2. 设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间[2,3]上,)(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = .3. 已知f(x)是R 上的偶函数,对任意的x ∈R 都有f(x + 6) = f(x)+f(3)成立,若f(1) = 2,则f(2005) = ( )A.2005B.2C.1D.04. 已知定义在(-1,1)的函数f(x),若对任意x ,y ∈(-1,1)都有f(x) + f(y)= f(x + y),且函数y = f(x)的图像关于直线x = 13 对称,则f(- 23)= .5. 定义在R 上的函数()f x 满足:(1)(1)(1)f x f x f x -=+=-成立,且()f x 在[1,0]-上单调递增,设(3),(2),(2)a f b f c f ===,则a 、b 、c 的大小关系是( )A.a b c >>B.a c b >>C.b c a >>D.c b a >>6. 设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称。
高考数学新题型分类

高考数学新题型分类新课标以来,高考数学中显现了创新题型,以第8、14、20题为主,创新题型是建立在高中数学思维体系之上的一中新数学题型。
2021年高考数学新题型分类为以下几点:(一)解析几何中的运动问题解析几何中的创新小题是新课标高考中显现频率最高的题型,09、10、11年高考数学选择填空压轴题都显现了运动问题。
即新课标高考数学思维从传统分析静态模型转变为分析动态模型。
因此考生需要把握在运动过程中关于变量与不变量的把握、善于建立运动过程中直截了当变量与间接变量的关系、以及专门值情境分析、存在问题与任意问题解题方法的总结。
在解此类创新题型时,往往需要融入生活中的专门多思想,加上题目中所给信息相融合。
在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。
(二)新距离近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要明白得坐标系中坐标差的原理,关于对应两点构成的矩形中坐标差的关系弄清晰就行了。
近两年高考大题中均涉及到了新距离问题,但是高考所考察的内容不再新距离本身,而在于建立新的数学模型情形下,考生能否摸索出建立数学模型与数学思维的关系。
比如2021年压轴题,关于一个数列各个位做差取绝对值求和的问题,由于每个位取值情形均相同,故只需考虑一个位就行了。
在大题具体解题中笔者会详细叙述。
(三)新名词关于题目中显现了新名词新性质,考生完全能够从新性质本身动身,从数学思维角度明白得新性质所代表的数学含义。
此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。
新课标数学追求对数学思维的自然描述,即可不能给学生思维断层、非生活常规思路(北京海淀区2021届高三上学期期末考试题的解析几何大题属于专门规思路)。
比如2009年北京卷文科填空压轴题,确实是让学生直观形象的去明白得什么叫做孤立元,如此肯快就能够得到答案。
高中数学考试有哪些题型?

高中数学考试有哪些题型?高中数学考试是学生能力的有用体现,也是高中教学的有用依据。
目的是更好地理解考试内容,本文将从教育专家的角度,对高中数学考试的题型进行深入解析,并结合新考试大纲特点分析命题趋势,为学生和家长提供建议参考。
一、考试目标与题型分类高中数学考试的总体目标是考查学生对数学基础知识、基本技能的掌握程度,以及运用数学思维解决问题的能力。
依据这一考试目标,高中数学考试题型主要分为以下四大类:1. 选择题:主要考查学生对基础知识、基本概念的理解和运用,以及对基础公式、定理的掌握。
常以单选题、多选题的形式出现,要求学生从多个选项中选择正确答案。
2. 填空题:主要考查学生对数学知识的灵活运用和计算能力,以及对一些重要结论的推导能力。
题型相对灵活,常以简述题、求值、换算、作图等形式出现,要求学生直接填写答案。
3. 解答题:这是高中数学考试的核心题型,主要考查学生对数学知识的综合运用能力,以及分析问题、解决问题的能力。
题目难度逐步递增,通常分为三个层次:基础题、中等难度题和难题。
基础题:侧重于考查基础知识、基本技能,要求学生能熟练运用所学知识解决简单问题。
中等难度题:更强调考查学生对知识的理解和运用,要求学生能将多个知识点联系起来解决问题。
难题:侧重点在于考查学生对数学方法和技巧的灵活运用,以及对问题的深入分析和理解,需要学生具备较高的数学思维能力。
4. 应用题:主要考查学生将数学知识应用到实际生活中的能力,以及对实际问题进行抽象和简化的能力。
题型通常以实际情景为背景,要求学生根据题意建立起数学模型,并运用数学方法进行分析和解决。
二、命题趋势与复习准备建议近几年,高中数学考试的命题趋势主要呈现以下特点:1. 更加注重考查学生对数学思想方法的理解和运用:例如,数形结合、分类讨论、化归思想等。
2. 更加注重考查学生解决问题的能力:题目更加灵活、开放,要求学生根据题意灵活选择解题方法和策略。
3. 更加注重考查学生对数学知识的综合运用:题目往往涉及多个知识点,需要学生将知识理解透彻,才能完成解答。
高中数学学业水平考试大纲说明

高中数学学业水平考试大纲说明高中数学学业水平考试是对高中生数学学业水平的重要检验,对于学生的综合素质评价和高中毕业具有重要意义。
以下将对高中数学学业水平考试大纲进行详细说明,帮助同学们更好地了解考试要求,为备考做好充分准备。
一、考试性质与目的高中数学学业水平考试是依据普通高中课程标准进行的终结性考试,旨在全面检测学生数学学科核心素养的发展水平,以及学生在数学学科方面达到的学业水平。
其目的主要包括以下几个方面:1、衡量学生是否达到普通高中数学课程标准所规定的数学学科毕业要求。
2、为高中学生毕业提供数学学科的学业水平依据。
3、为评价高中数学教学质量提供参考。
二、考试内容与要求(一)必修课程1、集合与常用逻辑用语(1)集合:理解集合的含义,掌握集合的表示方法,能够进行集合的运算。
(2)常用逻辑用语:理解充分条件、必要条件、充要条件的含义,能够进行命题的判断与推理。
2、函数(1)函数的概念与性质:理解函数的概念,掌握函数的单调性、奇偶性等性质。
(2)指数函数、对数函数、幂函数:掌握这三类基本初等函数的图象与性质,能够运用它们解决相关问题。
(3)函数的应用:能够运用函数模型解决实际问题。
3、三角函数(1)任意角与弧度制:理解任意角的概念,掌握弧度制与角度制的换算。
(2)三角函数的概念、同角三角函数基本关系、诱导公式:掌握三角函数的定义,能运用基本关系和诱导公式进行化简和求值。
(3)三角函数的图象与性质:掌握正弦函数、余弦函数、正切函数的图象与性质,能够进行图象的变换和应用。
4、向量(1)平面向量的概念及线性运算:理解平面向量的概念,掌握向量的加法、减法、数乘运算。
(2)平面向量的基本定理及坐标表示:掌握平面向量基本定理,能够进行向量的坐标运算。
(3)平面向量的数量积:理解平面向量数量积的概念,能够运用数量积解决有关问题。
5、数列(1)数列的概念:理解数列的概念和通项公式。
(2)等差数列、等比数列:掌握等差数列和等比数列的通项公式、前 n 项和公式,能够运用它们解决相关问题。
高一数学必考题型例题及解析

高一数学必考题型例题及解析高一数学是高中的基础课程,由于其计算量重、概念重、层次高等特点,在高一学期就会接触到很多常考的必考题型,这些必考题型也是高考试卷中常考的题型,因此考生们在学习高一数学课程时,需要通过例题熟悉各必考题型,以求在考试中能够更加熟练地掌握这些必考题型。
下面就以几道例题来说明上述必考题型以及对应的解法。
一、方程与不等式1、若2x+5y=15,求x的取值范围。
解:由题意得2x+5y=15,设x=t,得t+5y=15,即5y=15-t,因此y=3-t/5,即x和y的取值由下列不等式给出:x=t,t∈R;y=3-t/5,t∈R因此x的取值范围为x=t,t∈R。
2、如果x+3>2x-3,求x的取值范围。
解:由题意得x+3>2x-3,解得x>0,因此x的取值范围为x>0。
二、函数1、已知函数f(x)的定义域是[-3,3],试求x值使f(x)=2的解集。
解:由函数f(x)的定义域[-3,3],已知f(x)=2,由此有f(x)-2=0,即f(x)=2,因此x的解集是f(x)=2的根的集合,即x=-3或x=3。
2、已知函数f(x)对任意实数x满足:f(x+2)=f(x)+2,求f(x)的表达式。
解:设f(x)的表达式为f(x)=asx+b,由f(x+2)=f(x)+2,可得as(x+2)+b=asx+b+2,即2as+2=2,解得as=-1,将其代入f(x)=asx+b,得f(x)=-x+b,此时f(0)=b,由此可求得b=f(0),因此函数f(x)的表达式为f(x)=-x+f(0)。
三、统计1、已知一组数据:37,52,68,50,41,求这组数据的平均值。
解:将这组数据按大小排列为37,41,50,52,68,求这组数据的平均值:平均值=(37+41+50+52+68)/5=482、某市有3000名居民,某晚上该市有750名居民出去旅游,求该晚上该市居民出行的比例。
高中数学专题题型及解题技巧

高中数学专题题型及解题技巧1高中数学专题题型及解题技巧选择题选择题是高中数学考试中的较根底题型之一,分为多项选择和单项选择,一般是放在考查的第一局部,是考试重心,在习题练习中也占有较大比例.目前的高中数学选择题倾向于单项选择,外表看来降低了不少难度,但是选项中的相近答案极易给学生以误导.通常来说,选择题的知识覆盖面较广,思维具有跳跃性,题目由浅到深,是检测学生观察、分析以及推理判断能力的有效手段.如何提高解答选择题正确率,这就要求学生在练习中要充分利用题干中提供的各种信息,排除相似选项的干扰,一方面从题干出发,探求结果,另一方面结合选项,排除矛盾.我们可以采取排除法,概念分析法、图形分析法和逆向思维法相结合,灵活运用各种定理概念,做到发散思维,提高解题时效率.如题:设定义在R上的函数f(某)满足f(某)?f(某+2)=13,假设f(1)=2,那么f(99)等于().该题共有四个答案,分别是13、2、132、213.我们可以通过这样的步骤计算:(1)(某+2)=13f(某),f(某+4)=13f(某+2)=1313f(某)=f(某).(2)函数f(某)为周期函数,且T=4,f(99)=f(4某24+3)=f(3)=13f(1)=132.在这里,我们利用题干中的相关条件,运用函数的周期性这一概念,得到f(某)是周期为4的函数.周期性是解答此题的关键,我们可以利用直接法算出.填空题选择题在考试中放在选择题后,题量不大,难度相对较低,但是分值也不高,主要是为了考查学生的根本技能和学生的根底能力.学生能够利用根底知识解决和分析问题,在填空题中就不会失去太多分数.填空题与选择题的差异在于:首先,填空题没有选项,在解答问题时缺乏提示,但是同时也排除了相似项的干扰;其次,填空题是在题干中抽出一局部内容由学生填补,结构简单、概念性强;此外,填空题不要求写出运算过程,是将结论直接填入空位中的求解题.一般来说,填空题的运算量都不算大,学生可以根本采用数形结合法、等价转换法、构造法等,小题小做,提高正确率.如:在△ABC中,角A、B、C所对的边分别为a、b、c,如果a、b、c成等差数列,那么cosA+cosC1+cosAcosC=.解这道题有两种方法,首先:我们可以通过取特殊值来计算,例如a=3,b=4,c=5,那么cosA=45,cosC=0,cosA+cosC;1+cosAcosC=45;其次:利用角的特殊性,取特殊角A=B=C=π3,cosA=cosC=12,cosA+cosC1+cosAcosC=45.这就要求我们要熟练掌握三角形的概念以及特殊三角形直接的关系,才能在习题练习中节省时间,顺利解答.2高中数学解题技巧灵活数学解题技巧的运用目标所谓灵活的数学解题技巧就是在有效的学习时间内让学生的数学学习效果到达最大化.具体目标是形成与数学课本内容紧密镶嵌的解题模式,改变学生惯有的学习方式,对待不同类型的题目要注意灵活运用.熟练地运用数学解题技巧不是一味地为了技巧而运用技巧,而是在熟练掌握根本的课本知识的同时,在逐渐的积累与实践中掌握不同类型题目的学习规律,让数学解题技巧成为学生的一种辅助工具比方有的题目可以套用公式,但是同样也可以按照规律进行简便运算,数学解题技巧的运用旨在培养学生独立思考的逻辑思维能力和分析能力.不单单要让学生学会应对应试教育模式,还要更加注重技巧对学生解题的帮助以及运用数学思维去解决实际问题的能力.审题技巧审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三局部。
高中数学考试有哪些题型?

高中数学考试有哪些题型?高中数学考试是高考的重要组成部分,其题型设计既要考查学生对基础知识的掌握程度,还要考察学生的逻辑推理、分析问题和解决问题的能力。
本文将从教育专家的角度,解读高中数学考试的常见题型,并探讨其设计理念和对学生能力的考查。
一、基础知识考查为主,能力考查为辅高中数学考试题型主要分为选择题、填空题、解答题三类。
其中选择题和填空题主要考查学生对基础知识的掌握情况,解答题则侧重于考查学生的逻辑推理、分析问题和解决问题的能力。
1. 选择题:内容覆盖高中数学所有重要概念、公式、定理和性质,通常考查学生对基本知识的理解和运用,常见以单选题、多选题的形式出现。
2. 填空题:偏重于考察学生对知识点的灵活运用和计算能力,常见以直接填空、填空加简答的形式出现。
3. 解答题:题型多元化,除了常见的证明题、计算题、应用题、函数图形题等,特别要求学生运用所学知识和方法解决问题,展现逻辑思维和解题技巧。
二、题型设计体现数学学科特点高中数学考试题型设计体现了数学学科的逻辑性、抽象性、严谨性和应用性等特点。
1. 逻辑性:题型设计注重逻辑推理,要求学生运用数学思维进行清晰、严谨的论证。
2. 抽象性:题型设计涵盖抽象的数学概念和模型,需要学生拥有抽象思维能力,将实际问题转化为数学问题进行解决。
3. 严谨性:题型设计要求学生严格按照数学法则和逻辑规则进行规范的计算和推理。
4. 应用性:题型设计与实际生活联系紧密,引导学生将数学知识用于解决问题,提高数学学习的应用价值。
三、能力考查侧重于思维能力和解决问题的能力高中数学考试题型设计不仅考查学生对知识点的掌握程度,更注重考察学生的思维能力和解决问题的能力。
1. 逻辑推理能力:要求学生运用已有的知识和经验,通过逻辑推导,得出正确的结论。
2. 分析问题能力:要求学生能够对问题进行深入分析,判断关键信息和解题思路。
3. 解决问题能力:要求学生运用数学知识和方法,结合逻辑推理和分析问题的能力,找到问题的答案,并进行合理的表达。
2023全国乙卷数学题型分布

2023全国乙卷数学题型分布一、选择题(共20小题,每小题4分,共80分)选择题占据了2023年全国乙卷数学考试的第一大题型。
题目内容涵盖了高中数学知识的不同方面,考察学生对基本概念、定理、公式的理解和灵活运用能力。
具体题型如下:1. 逻辑推理题:考察学生对逻辑思维的掌握和运用能力。
2. 函数与方程题:考察学生对函数与方程的理解和运用能力。
3. 概率与统计题:考察学生对概率与统计知识的理解和运用能力。
4. 几何题:考察学生对几何知识的理解和运用能力。
5. 综合题:考察学生对多个知识点的综合应用能力。
二、填空题(共8小题,每小题6分,共48分)填空题是2023年全国乙卷数学考试的第二大题型。
通过填空题,考生需要掌握基本的计算技巧和应用能力。
1. 整数填空题:考察学生对整数运算和计算规则的掌握能力。
2. 分数填空题:考察学生对分数的计算和应用能力。
3. 代数式填空题:考察学生对代数式的运算和简化能力。
4. 方程填空题:考察学生对方程的应用和解题能力。
三、解答题(共4小题,每小题15分,共60分)解答题是2023年全国乙卷数学考试的第三大题型。
这一部分要求学生能够灵活运用所学的数学知识,进行较为复杂的推理和证明,培养学生的逻辑思维和问题解决能力。
1. 推理证明题:考察学生对数学定理和推理证明方法的掌握能力。
2. 问题解决题:考察学生解决实际问题的能力。
四、应用题(共3小题,每小题20分,共60分)应用题是2023年全国乙卷数学考试的第四大题型。
该题型要求学生能够结合所学的数学知识,解答与实际生活相联系的问题,培养学生的数学建模和问题解决能力。
1. 速度与距离题:考察学生对速度、距离和时间的关系的理解和运用能力。
2. 面积与体积题:考察学生对面积、体积和几何关系的理解和运用能力。
3. 利润与成本题:考察学生对利润、成本和经济关系的理解和运用能力。
总结:2023年全国乙卷数学考试的题型分布包括选择题、填空题、解答题和应用题。
高中数学有哪些常见的考试题型?

高中数学有哪些常见的考试题型?高中数学考试作为衡量学生数学基础和应用能力的重要指标,其题型设计内容覆盖了多个方面,旨在考察学生的知识掌握、逻辑思维、问题解决和应用能力。
本文将从教育专家的角度,对高中数学考试中比较普遍的题型进行解析,并提供学习建议。
一、基础知识题型这类题型主要考察学生对基础概念、公式、定理的理解和应用。
最常见的一种题型包括:概念辨析题:考察对概念的理解,要求学生能准确定义概念,并能识别不同概念之间的主要区别与联系。
公式运用题:要求学生熟练掌握公式,并能灵活地将其应用到具体的题目中。
定理证明题:考察学生对定理的理解和推导能力,要求学生能运用逻辑推理和数学方法证明定理。
计算题:考察学生的运算能力,要求学生能熟练运用特殊运算技巧,快速准确地进行计算。
二、综合应用题型这类题型考察学生将多个知识点综合运用,解决复杂问题的能力。
最常见的一种题型包括:函数与方程的综合应用题:将函数、方程、不等式等知识点融合在一起,要求学生能运用函数的性质、图像、方程的解法等知识解决问题。
几何与代数的综合应用题:将平面几何、立体几何与代数知识结合,要求学生能运用解析几何、向量等方法解决几何问题。
实践应用题:考察学生将数学知识应用到现实生活中解决实际问题的能力,要求学生能根据实际情况建立数学模型,并运用数学方法进行分析和解决。
三、开放性探究题型这类题型考察学生的探究能力、创新能力和逻辑思维能力。
最常见题型包括:探究性问题:要求学生提出问题、分析问题、解决问题,并能对问题进行拓展和延伸。
开放性问题:这类问题没有唯一答案,要求学生能用多种方法进行解答,并能给出合理的解释和论证。
创意设计题:要求学生发挥数学知识和思维进行设计和创造,比如设计新的图形、构造新的函数等。
学习建议:夯实基础:牢固掌握基础知识是学习高中数学的关键。
要认真理解概念、记住公式、熟练掌握运算技巧。
注重理解:不要死记硬背公式,要注重理解概念的含义、定理的推导过程和公式的应用场景。
高中数学考试有哪些题型?

高中数学考试有哪些题型?哎呦喂,说起来高中数学考试,那可真是让人又爱又恨啊!你们这些小朋友是不是也跟我一样,每次看到卷子上密密麻麻的题,脑袋就嗡嗡作响?其实吧,高中数学考试题型说起来也不复杂,主要就那几类,我今天就给大家唠唠。
首先得说一说选择题吧,这可是数学考试的大头!一般来说,选择题都是些基础知识的考察,比如三角函数、指数函数、对数函数这些常见玩意儿,还有就是简单的应用题。
我记得高中的时候,有一次数学考试,有一道选择题,说的是一个圆锥形的冰淇淋,要问它的体积是多少。
当时我看着题目就感觉有点懵,心想这冰淇淋的体积怎么算?最后才反应过来,这题其实挺简单的,只要把圆锥的底面积和高带进公式就行了。
哎,当时我还纠结了好一阵,现在想想真是有点丢人啊。
接着说一说填空题吧,这可是考验大家理解能力和计算能力的题型!填空题的特点就是没有选项,需要自己独立思考,然后把答案填上去。
我记得高中的时候,有一次考试,有一道填空题,说的是一个函数图像,要问它的导函数的表达式。
当时我看着题目,就感觉有点难,因为这题需要先求出原函数的导数,然后再根据导数的图像写出表达式。
不过,好在当时我认真学习了导数的概念和技巧,最后还是顺利的解出来了。
最后就是大题了,这可是数学考试中的“重头戏”!大题一般难度比较大,需要综合运用各种知识和技巧才能解答。
我记得高中的时候,有一次考试,有一道大题,说的是一个圆锥被一个平面截出一个椭圆,要问这个椭圆的面积是多少。
这道题当时真的把我给难倒了,因为这题需要用到立体几何的知识,还得结合解析几何的知识才能解出来。
我当时试着画图、推导公式,花了很长时间才算出来。
总而言之,高中数学考试的题型其实并不难,只要平时认真学习,掌握基础知识,多加练习,相信大家都能取得好成绩。
当然,考试的时候也不要紧张,放松心态,认真审题,仔细计算,相信你们一定能战胜考试的!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学考试题型分类(一)————————————————————————————————作者:————————————————————————————————日期:2高中数学试卷题型分类(一)一、集合与简易逻辑2001年(1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B ,命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2002年(1) 设集合}2,1{=A ,集合}5,3,2{=B ,则B A 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x ,乙:5>x ,则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2003年(1)设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与N 的关系是(A )M N=M (B )M N=∅ (C )N M (D )MN(9)设甲:1k =,且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件;(C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2004年(1)设集合{},,,M a b c d =,{},,N a b c =,则集合MN=(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方,则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2005年(1)设集合{}P=1234,,,,5,{}Q=2,4,6,8,10,则集合PQ=(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =,命题乙:直线y kx =与直线1y x =+平行,则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2006年(1)设集合{}M=1012-,,,,{}N=123,,,则集合M N=(A ){}01, (B ){}012,, (C ){}101-,, (D ){}10123-,,,, (5)设甲:1x =;乙:20x x -=.(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2007年(8)若x y 、为实数,设甲:220x y +=;乙:0x =,0y =。
则(A )甲是乙的必要条件,但不是乙的充分条件; (B )甲是乙的充分条件,但不是乙的必要条件;(C )甲不是乙的充分条件,也不是乙的必要条件; (D )甲是乙的充分必要条件。
2008年(1)设集合{}A=246,,,{}B=123,,,则AB=(A ){}4 (B ){}1,2,3,4,5,6 (C ){}2,4,6 (D ){}1,2,3(4)设甲:1, :sin 62x x π==乙,则 (A )甲是乙的必要条件,但不是乙的充分条件; (B )甲是乙的充分条件,但不是乙的必要条件; (C )甲不是乙的充分条件,也不是乙的必要条件; (D )甲是乙的充分必要条件。
二、不等式和不等式组2001年(4) 不等式53>+x 的解集是( )(A) }2|{>x x (B) {|82}x x x <- >或 (C) }0|{>x x (D) }2|{>x x()355>358>282x x x x x +> ⇒-+> ⇒-> ⇒ <- >或2002年(14) 二次不等式0232<+-x x 的解集为( )(A )}0|{≠x x (B )}21|{<<x x (C )}21|{<<-x x (D )}0|{>x x2003年(5)、不等式2|1|<+x 的解集为( )(A )}13|{>-<x x x 或 ( B )}13|{<<-x x (C )}3|{-<x x (D )}1|{>x x2004年(5)不等式123x -<的解集为(A ){}1215x x << (B ){}1212x x -<< (C ){}915x x << (D ){}15x x < 2005年 (2)不等式{3274521x x ->->-的解集为(A )(,3)(5,+)-∞∞ (B )(,3)[5,+)-∞∞ (C )(3,5) (D )[3,5){{123327390(39)(525)0452152505x x x x x x x x ⎛=⎫->->⎧⇒⇒--<⇒⎨ ⎪->-->=⎩⎝⎭2006年(2)不等式31x +≤的解集是(A ){}42x x -≤≤-(B ){}2x x ≤-(C ){}24x x ≤≤(D ){}4x x ≤(9)设,a b ⊂R ,且a b >,则下列不等式中,一定成立的是(A )22a b > (B )(0)ac bc c >≠ (C )11a b> (D )0a b -> 2007年(9)不等式311x -<的解集是(A )R (B )203x x x ⎧⎫< >⎨⎬⎩⎭或 (C )23x x ⎧⎫>⎨⎬⎩⎭ (D )203x x ⎧⎫<<⎨⎬⎩⎭2008年(10)不等式23x -≤的解集是(A ){}51x x x ≤-≥或 (B ){}51x x -≤≤ (C ){}15x x x ≤-≥或 √(D ){}15x x -≤≤(由x 2332315x x -≤⇒-≤-≤⇒-≤≤)三、指数与对数2001年(6) 设7.6log 5.0=a ,3.4log 2=b ,6.5log 2=c , 则,,a b c 的大小关系为( ) (A) a c b << (B) b c a << (C) c b a << (D) b a c <<(0.5log a x =是减函数,>1x 时,a 为负;2log b x =是增函数,>1x 时a 为正.故0.522log 6.7<log 4.3<log 5.6) 2002年(6) 设a =2log 3,则9log 2等于( )(A )a 1 (B )a 2 3323log 92log 32log 9log 2a a ⎛⎫=== ⎪⎝⎭(C )223a (D )232a(10) 已知3104log )2(2+=x x f ,则)1(f 等于( ) (A )314log 2 (B )21 (C )1 (D )2()22224/2102102110()log log (1)log log 42333x x f x f ++⨯+=====,(16) 函数212-=xy 的定义域是{}1x x ≥-。
12120log 212x x x -⎛⎫-≥⇒≥⇒≥- ⎪⎝⎭2003年(2)函数51-xy x =+ ∞<<+∞()的反函数为(A )5log (1), (1)y x x =-< (B )15, ()x y x -=-∞<<+∞ (C )5log (1), (1)y x x =-> (D )151, ()xy x -=+-∞<<+∞55555151log 5log (1)log (1)log (1)10,1x x x y y y x y x y y x x x ⎡⎤=+ ⇒=-⇒=-⇒=-⎢⎥ −−−−−−−−−−−→=--> >⎣⎦按习惯自变量和因变量分别用和表示定义域:; (6)设01x <<,则下列不等式成立的是(A )20.50.5log log x x > (B )222x x > (C )2sin sin x x > (D )2x x >0.5log b x=2log b x=xbab c22y x =2x y =0.5log y X=sin y x=2sin y x =xy(8)设45log 224x =,则x 等于 (A )10 (B )0.5 (C )2 (D )4[41544445lg 25554log 22=log 22log 2lg lg 2lg lg 22lg 444x x x x x x x ⨯======(), , , ] 2004年(16)232164log =16+ 12 ()223423322164log 4log 2441216-⎡⎤+=+=-=⎢⎥⎣⎦2005年(12)设0m >且1m ≠,如果log 812m =,那么log 3m =(A )1241111log 3log 3log 8124442m m m ⎛⎫===⨯= ⎪⎝⎭(B )12- (C )13 (D )13- 2006年(7)下列函数中为偶函数的是(A )2xy = (B )2y x = (C )2log y x = (D )2cos y x =(13)对于函数3xy =,当0x ≤时,y 的取值范围是(A )1y ≤ (B )01y <≤ (C )3y ≤ (D )03y <≤(14)函数23()log (3)f x x x =-的定义域是(A )(,0)(3,+)-∞∞ (B )(,3)(0,+)-∞-∞ (C )(0,3) (D )(3,0)-()223>03<003x x xx x -⇒-⇒<<(19)122log 816=--1 132222log 816log 243log 24341⎛⎫-=-=-=-=- ⎪⎝⎭2007年(1)函数lg -1y x =()的定义域为 (A )R (B ){}0x x > (C ){}2x x > (D ){}1x x >(2)0441lg 8lg 2=4⎛⎫+- ⎪⎝⎭(A )3 (B )2 (C )1 0312********lg 8lg 2=lg 4lg 41=1=1422⎡⎤⎛⎫+-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(D )0(5)2xy =的图像过点(A )1(3,)8- (B )1(3,)6- (C )(3,8)-- (D )(3,)--6{2201222220.50.50.5B C D A 2(0,2)2>2(1,2)201,sin <sin 0101,log log log x x x y x x y x x x x x x x x x x x X x x <<⎡⎤⎧⎫=−−−→⇒⇒⎨⎬⎢⎥=⎩⎭⎢⎥<<⇒<⎢⎥⎢⎥<<⇒<⎢⎥<<⇒<>⎣⎦为增函数值域排除();值域为增函数排除();排除();为减函数,故选(),,,,(15)设1a b >>,则(A )log 2log 2a b > (B )22log log a b > (C )0.50.5log log a b > (D )log 0.5log 0.5b a >(3)021log 4()=3-(A )9 (B )3 (C )2 (D )102221log 4()=log 21=21=13⎡⎤---⎢⎥⎣⎦(6)下列函数中为奇函数的是(A )3log y x = (B )3x y = (C )23y x = (D )3sin y x =(7)下列函数中,函数值恒大于零的是(A )2y x = √(B )2xy = (C )2log y x = (D )cos y x =(9)函数lg 3-y x x =+的定义域是(A )(0,∞) (B )(3,∞) (C )(0,3] (D )(-∞,3] [由lg x 得>0x ,由3-x 得3x ≤,{}{}{}03=0<3x x x x x x >≤≤故选(C )](11)若1a >,则(A )12log 0a < (B )2log 0a < (C )10a-< (D )210a -<四、函数(3) 已知抛物线22-+=ax x y 的对称轴方程为1x =,则这条抛物线的顶点坐标为( )(A) )3,1(- (B) )1,1(- (C) )0,1( (D) )3,1(--(7) 如果指数函数x a y -=的图像过点)81,3(-,则a 的值为( )(A) 2 (B) 2- (C) 21-(D) 21(10) 使函数)2(log 22x x y -=为增函数的区间是( )(A) ),1[+∞ (B) )2,1[ (C) ]1,0( (D) ]1,(-∞(13)函数2655)(xx f x x +-=-是( )(A) 是奇函数 (B) 是偶函数xy1.3log y x=2log y x=0.5log y x=0.77log y x =330.30.30.40.30.40.3()()[(1,0)][(1,0)]()().log log log log ..log log log log 0.50.4, 45; 0.5>0.5, 5<>>数数点的左边点的右边函数函数①同底异真对数值大小比较:增函数真大对大,减函数真大对小如②异底同真对数值大小比较:同性时:左边底大对也大,右边底大对却小 异性时:左边减大而增小,右边减小而增大 如0.4343343434log log log log log log log log log log 5; 0.5>0.5, 5<5lg 2lg 2lg 2lg 268(61,81,68)lg3lg 4lg3lg 4>=+=+>⇒>③异底异真对数值大小比较:同性时:分清增减左右边,去同剩异作比较. 异性时:不易不求值而作比较,略. 如:(C) 既是奇函数又是偶函数 (D) 既不是奇函数又不是偶函数(16) 函数)34(log 31-=x y 的定义域为____________。