数值分析典型习题
数值分析典型例题

1数值分析典型例题例1 对下列各数写出具有5位有效数字的近似值。
236.478, 0.00234711,9.000024, 9.000034310⨯.解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310⨯。
注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9是1位有效数字。
例2 指出下列各数具有几位有效数字。
2.0004, -0.00200, -9000, 9310⨯,2310-⨯。
解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程*s 的近似值s=800m ,所需时间*s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。
解:因为t s v /=,所以)()(1)()()(2t e tss e t t e t v s e s v v e -=∂∂+∂∂≈ 从而05.00469.0358005.0351|)(||||)(|1|)(|22≤≈+⨯≤+≤t e t s s e t v e同样v v e v e r )()(≈)()()()(t e s e t e vtt v s e v s s v r r r -=∂∂+∂∂=所以00205.03505.08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r因此绝对误差限和相对误差限分别为0.05和0.00205。
例4试建立积分20,,1,05=+=n dx x x I nn 的递推关系,并研究它的误差传递。
解:151--=n n I nI ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。
但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可知近似值之间的递推关系为151--=n n I nI ……………………………………………….…..(2) (1)-(2)可得01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。
数值分析习题含答案

x1 )
f (x0)
(x
x 0 )( x x0 x1
x1 )
f ' ( x0 )
(x ( x1
x0)
2 2
x0 )
f ( x1 )
R ( x)
其中 R(x) 由以下计算得到: 构造辅助函数:
(t ) f (t ) N 2 (t ) (t (x x0 ) (t x0 ) ( x
2 2
x1 ) x1 )
f [ 2 ,2 ] =-2089 ,
0 1 2 7
0 1 7
f (x)
M ,
x
[ a , b ] ,证明:在任意相邻两节点间
R1 ( x )
1 8
Mh
2
。
x xi x xi M
1
f ( ) R1 i ( x ) 2 M 8 h 2,
h ,
2
x
8 ,n
[ xi , xi
1
]
R1 ( x )
max R1 i ( x )
1 2
s
2
[( x
xi
1
))( x
x
i
1 2
)( x
x i )]
e
4
h
3
[ s( s
1)( s
1)] 24
3 9
e h
4
3
10
6
3!
8
h
1 . 317
则用二次插值的步长应:
h
0 .6585
10
2
2-6 对区间 [a,b] 作步长为 h 的剖分,且 做线性插值,其误差限为 证明:区间上的误差限: 误差限: 2-7 设 f ( x ) 解: 自变量 1 2
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
典型例题与习题

a
2
b f ( x)dx (b a) f ( a b ) f () (b a)3
a
2
24
9/16
Ex2.复合左矩形求积公式旳求积误差
b a
n1
f ( x)dx h
j0
f (a
h2 jh)
2
n j1
f ( j )
设被积函数在积分区间上旳一阶导数连续,由连续函数
介值定理
1
n
n j 1
N 1
[
n0
f
(
xn
)
4
f
(
xn1/
2
)
f ( xn1 )]
其中, h = (b – a )/N, xn= a + n h ( n = 0,1,2,···, N)
13/16
Ex8.将线性常系数非齐次高阶常微分方程初值问题:
y(n) + a1 y(n-1) + a2 y(n-2) +·······+ an y = f( x, y, ····, y(n-1))
Gm
(h)
4m
Gm
1
(
h 2
)
Gm
1
(h)
4m 1
f ( x) Gm (h) O(h2(m1) )
练习:二阶中心差商旳外推公式?
6/16
常微分方程初值问题 1. Euler措施
y f ( x, y) x x0
y(
x0
)
y0
y0 yn1
y( x0 ), yn
xn1 xn h hf ( xn , yn ),(n
16/16
N 1
试证明用Euler公式计算成果为 y(b) f (tn )h
数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析练习题附答案

1
2-3 对矩阵 A 进行 LDLT 分解和 GGT 分解,求解方程组 Ax=b,其中
16 4 8
1
A=( 4 5 −4) , b=(2)
8 −4 22
3
解:(注:课本 P26 P27 根平方法)
设 L=(l i j ),D=diag(di),对 k=1,2,…,n,
其中������������=������������������-∑������������=−11 ���������2��������� ������������
������31=(������31 − ∑0������=1 ������3������������1������ ������������)/ ������1=186=12
������32=(������32
−
∑1������=1
������3������������2������
������������ )/
6.6667
,得 ������3 = 1.78570
−1 209
������4
0
������4
0.47847
(
56
−1
780 (������5) 209)
(200)
(������5) ( 53.718 )
1 −1
4
1 −4
15
������1
25
������2
6.6667再由1源自− 15561
− 56
209
x (k1) 1
1 5
(12
2 x2( k )
x (k) 3
)
2 5
x (k) 2
《数值分析》练习题及答案解析

《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析习题集及答案

数值分析习题集及答案篇一:数值分析习题与答案第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式()()则得有5位有效数字,其误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2),相对误差限满足,而解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=,是 3位有数数字。
5.计算四个选项:取,利用:式计算误差最小。
第二、三章插值与函数逼近习题二、三 1.给定的数值表用线性插值与二次插值计算的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计()。
线性插值时,用及两点,用Newton插值误差限,因,故二次插值时,用,,三点,作二次Newton 插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次,函数表的步长h插值法求的近似值,要使误差不超过应取多少? 解:用误差估计式(),令因得3. 若,求和.解:由均差与导数关系于是4. 若的值,这里p≤n+1.解:可知当而当P=n+1时于是得有互异,求,由均差对称性5.求证.解:解:只要按差分定义直接展开得6.已知的函数表求出三次Newton均差插值多项式,计算f()的近似值并用均差的余项表达式估计误差. 解:根据给定函数表构造均差表由式()当n=3时得Newton均差插值多项式N3(x)=+()+()() 由此可得f() N3()= 由余项表达式()可得由于7. 给定f(x)=cosx的函数表篇二:数值分析试题1参考答案参考答案1 一、1.2 2.xn?1?xn?3.1, 0 4.7,f(xn)(n?0,1,?) ?f(xn)25 7?(k?1)15(k)??x2?x11336. ? ,1(k?1)?x2??x1(k?1)1220??2003??10?2?4二、(1) L??0?13??00?1??(2)1?0?120???,U??01?00?5???4000?2310?0??0?? 3??4?1??l65?a65?(l61u15?l62u25?l63u35?l64u45);u55u56?a55?(l51u16?l52u26?l53u356?l54u46)三、先造差分表如下:(1)选x1?,x2?,x3?,x4?为节点,构造三次向前Newton插值多项式?2y1?3y1N(x?th)?y1??y1?t(t?1)?t(t?1)(t?2) 31 2!3!将x1和h代入上式,则有N3(?)?25?2t?1/2*t(t?1)?5/6*t(t?1)(?2)由??解得t?,所以f()?N()?(2) 选x3?,x4?,x5?为节点,构造二次向前Newton插值式N2(x3?th)?y3??y3t?t(t?1)2!将x3和h代入上式,则有N2(?)?20?t?t(t?1) 由+=解得t=,所以 f()?N2()?(3)由f(?)3ht(t?1)(t?2)3!(,0?t?2)R2(x0?th)?f(?)3600有R(2(xi?)?(t?1)(t?2)?**maxt(t?1)(t?2)0?t?23!3!??可知f(x)有两位整数,故能保证有两位有效数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别声明:考试时需带计算器作辅助计算1.2015x *=是经四舍五入得到的近似值,则其相对误差*r e ≤-31104⨯. 2. 01(),(),,()n l x l x l x 是以01,,,n x x x 为节点的拉格朗日插值基函数,则3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,13-.4. 利用Simpson 公式求⎰212dx x =7.35. 设求积公式10()d (),(1)nk k k f x x A f x n ≈≥∑⎰=是Gauss 型求积公式,则3nk k k A x ==∑1.46. 数值微分公式(2)(2)()i i i f x h f x h f x h+≈--'的截断误差为2().O h7. 设1101A ⎛⎫= ⎪⎝⎭,则A 的谱半径()A ρ=1,A 的条件数1cond ()A =4.8. 用牛顿下山法求解方程303x x -=根的迭代公式是 2133(1),3n n n n x x x x x λ+-=-- 下山条件是1()().n n f x f x +<9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ<B10. 应用幂法迭代公式(+1)()k k A x =x 当k 充分大时有p q ≈()(1)(),k+2k+k x x x ++0 则A 的按模最大的特征值 1,2λ=11. 设数据12,x x 的绝对误差分别为0.005和0.002,则12x x -的绝对误差约为( D ) A. 0.005 B. 0.002 C. 0.003 D. 0.007 12. 对于多项式2012()n n n P x a a x a x a x =++++在某点0x 处函数值的秦九韶算法基于如下公式:算法计算的始点为n a ,而这一算法的优点在于( C )A. 精度高B. 计算量小C. 精度高,且计算量小D. 既收敛又稳定 13. 给定数据0x 1x 2x …… n x)(0x f )(1x f )(2x f …… )(n x f由它们所确定的Lagrange 多项式与Newton 多项式,以下说法正确的是( C )A.从数值算法上讲,它们是不同的,不过, 一般而言, 后者计算结果精度会更高B.无论从数值算法还是从数学意义上讲,它们都是相同的, 只是后者计算更灵活C.从数值算法讲它们不同,但数学意义上讲它们却是相同的D.无论从数值算法还是从数学意义上讲,它们都是不同的 14. 利用求解方程0)(=x f 根的牛顿迭代法公式为)()(1n n n n x f x f x x '-=+。
利用这一方法进行求解时,迭代所用初始点的选取很关键,以下最好的说法是( B )A.对于单重根是局部二阶收敛的,初始点应选取较接近于根的值,但不一定收敛B.它是局部二阶收敛的,初始点选用较接近于根的值即收敛C.对于单重根是二阶收敛的,初始值0x 任意选取D.对于多重根是超线性收敛的,且初始点0x 任意选取15.求解方程0)(=x f 时,可将方程变形而得到迭代格式)(1n n x x ϕ=+,当迭代格式)(1n n x x ϕ=+中函数)(x ϕ满足( D )条件时,这一迭代格式必收敛。
A.1)(<x ϕB.1)(<'x ϕC. 1)(<x ϕD.()1x φ'< 16. 求矩阵特征值与特征向量的幂法与反幂法,分别可以用于求矩阵的( A ) A. 按模最大特征值与最小特征值,及其对应特征向量 B. 所有特征值及其对应特征向量 C. 按模最大特征值及其对应特征向量 D. 按模最小特征值及其对应特征向量17.求解微分方程初值问题数值解的改进的欧拉折线法,其局部截断误差的阶是 ( B ) A. 1 B. 2 C.3 D. 418. 已知n 对观测数据n k y x k k ,...,2,1),,(=, 这n 个点的拟合直线01y a x a =+,10,a a 是使( D )最小的解。
A.∑=--nk k kx a a y110 B.()∑=--nk k kx a a y110C.)(2110knk kx a a y--∑= D.2101)(a x a yk nk k--∑=19. 若复化梯形公式计算定积分dx e x ⎰-1,要求截断误差的绝对值不超过4105.0-⨯,则≥n ( A )A. 41B. 42C. 43D. 40 20. 已知函数)(x f y =的数据表0251369x y - ,则)(x f y =的拉格朗日插值基函数=)(2x l ( A ) A.)15)(25(5)1)(2(----x x x B.)10)(50)(20()1)(5)(2(------x x x C. )12)(52(2)1)(5(----x x x D.)51)(21(1)5)(2(--⋅--x x x21. 求解初值问题00')(),,(y x y y x f y ==的近似解的梯形公式是=+1n y ( A )A. )],(),([211++++n n n n n y x f y x f h yB. )],(),([211++-+n n n n n y x f y x f hyC. )],(),([211+++-n n n n n y x f y x f h yD. )],(),([21n n n n n y x f y x f hy ++-22. 下面( D )不是数值计算应注意的问题A. 注意简化计算步骤,减少运算次数B. 要避免相近两数相减C. 要防止大数吃掉小数D. 要尽量消灭误差23. 对矩阵特征值满足12n λλλ>≥⋯⋯≥情况,幂法收敛速度由比值12λλ=r 确定,r 越小收敛速度( A )A. 越快B. 越慢C. 不变D. 不确定24. 令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
解:由1)(000===-e x y y ,111)(-==e x y y 可知,xe x e x x e x x x x x y x x x x y x L )1(1)1(0101011)(111010110101-+=+--=--⨯+--⨯=--+--=---,余项为()1,0),1(2))((!2)()(101∈-=--''=-ξξξx x e x x x x f x R , 故8141121)1(max max 21)(10101=⨯⨯=-⨯⨯≤≤≤-≤≤x x e x R x ξξ25. 已知函数()y f x =的相关数据由牛顿插值公式求三次插值多项式3()P x ()2P =的值近似值。
(注:要求给出差商表)解:差商表由牛顿插值公式:26.给出计算x =, 并证明2x =。
解:由题意可得出其迭代格式为1k x += 02k x ≤≤且 当02x ≤≤时,()1,x ϕ'=< 所以迭代格式是收敛的.由1lim k k x x *+→∞=可得,x * 22()2,()20.x x x x ****=+--= 解得:121, 2.x x **=-= 其中110x *=-<舍去。
可得 2.x *= 即解得 2.x =27. 应用紧凑格式的Doolitte 分解(即LU 分解)法求解方程组:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173530103421101002014321x x x x 。
解:由紧凑格式的Doolitte 分解(略)得:1011210101L ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭及1020101212U ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,于是求解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173510101211014321y y y y 可得⎪⎪⎩⎪⎪⎨⎧====46354321y y y y ,求解⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛463521************x x x x 可得⎪⎪⎩⎪⎪⎨⎧====22114321x x x x 。
28.设方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225321321321x x x x x x x x x ,(1) 考察用雅可比迭代法,高斯-赛德尔迭代法解此方程组的收敛性;(2) 写出雅可比迭代法及高斯-赛德尔迭代法解此方程组的迭代格式。
解: (1) 由系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--1032241125为严格对角占优矩阵可知,使用雅可比、高斯-赛德尔迭代法求解此方程组均收敛。
[精确解为2,3,4321==-=x x x ] (2) 使用雅可比迭代法:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=++=--+103551201035121041515203201210141510322011201014151)()()(1)(1)1(k k k k x x bD x U L D x ,使用高斯-赛德尔迭代法:29. 写出求解线性代数方程组的Gauss-Seidel 迭代格式,并分析此格式的敛散性。
解:方程组的Gauss-Seidel 迭代格式为其迭代矩阵为 其特征方程为 解之得 谱半径26()121G B ρ=>,故迭代发散. 29. 已知012113,,,424x x x ===(1)推导以这三点为求积节点在[0,1]上的插值型求积公式10120113()()()()424f x dx A f A f A f ≈++⎰;(2)指明求积公式所具有的代数精度;(3)用所求公式计算120x dx ⎰。
解:(1)所求插值型的求积公式形如:故101113()[2()()2()]3424f x dx f f f ≈-+⎰。
(2)所求的求积公式是插值型,故至少具有2次代数精度,再将34(),f x x x =代入上述公式,可得 故代数精度是3次。
(3)由2)可得:12222011131[2()()2()]34243x dx =-+=⎰。
30. 见教材P67例4.1.1。
31. 用Romberg 方法计算⎰31dx x ,写出计算过程并将结果填入下表(*号处不填).32.单原子波函数的形式为bx ae y -=,试按照最小二乘法决定参数a 和b ,已知数据如下:解:对bx ae y -=两边取对数得bx a y -=ln ln ,令y Y ln =,a A ln =,则拟合函数变为bx A Y -=,所给数据转化为取1)(0=x ϕ,x x =)(1ϕ,则()41)(),(4100==∑=i x x ϕϕ,()()7)(),()(),(410110===∑=i ix x x x x ϕϕϕϕ,()21)(),(41211==∑=i i x x x ϕϕ,而()2109.0)(),(410-==∑=i iy x y x ϕ,()6056.3)(),(411-==∑=i i i y x x y x ϕ。