高一数学知识点必修一:二次函数

合集下载

高一数学必修一b版知识点总结

高一数学必修一b版知识点总结

高一数学必修一b版知识点总结本文将对高一数学必修一b版的知识点进行总结,旨在帮助同学们更好地复习和掌握这些内容。

一、集合与函数1. 集合的概念:元素、包含关系、空集、全集等。

2. 集合的运算:交集、并集、差集、补集等。

3. 函数的概念:定义域、值域、对应关系等。

4. 函数的表示法:映射图、列表、解析式等。

5. 函数的性质:一一对应、满射、单射等。

二、二次函数1. 二次函数的定义:标准形式、一般形式、顶点形式等。

2. 二次函数的图像与性质:开口方向、对称轴、顶点坐标、零点等。

3. 二次函数的图像的平移与伸缩:平移、纵向伸缩、横向伸缩等。

4. 二次函数的应用:最值问题、解方程等。

三、平面几何1. 平面几何基本概念:点、线、面等。

2. 直线与角的性质:同位角、对顶角、余角等。

3. 三角形与四边形:三角形的分类、四边形的性质等。

4. 圆的定义与性质:圆心角、弧、弦等。

5. 平面几何的证明:直角三角形性质的证明等。

四、立体几何1. 空间几何基本概念:线段、平面、立体等。

2. 空间几何的投影:平行投影、垂直投影等。

3. 空间几何的相交关系:垂直、平行等。

4. 空间几何的计算:体积、表面积等。

五、概率统计1. 概率的概念:频率、实验、样本空间等。

2. 概率的计算:相对频率、等可能性等。

3. 统计的概念:均值、中位数、众数、极差等。

4. 统计图表的绘制与分析:直方图、折线图、饼图等。

六、数列与数学归纳法1. 数列的定义与表示:通项公式、递推公式等。

2. 等差数列与等比数列:公差、公比等。

3. 数列的求和与性质:等差数列求和、等比数列求和等。

4. 数学归纳法的原理与应用。

七、三角函数1. 角度与弧度制:角度的度与弧度的关系。

2. 三角函数的定义与性质:正弦、余弦、正切等。

3. 三角函数的图像与性质:周期、对称性等。

4. 三角函数的基本关系:和差化积、倍角公式等。

综上所述,本文总结了高一数学必修一b版的知识点,包括集合与函数、二次函数、平面几何、立体几何、概率统计、数列与数学归纳法以及三角函数。

人教A版高中数学必修一 二次函数与一元二次不等式 (解析版)

人教A版高中数学必修一   二次函数与一元二次不等式 (解析版)

二次函数与一元二次不等式一、知识聚焦考点一 数学建模-不等式的应用例题6. 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%. 【解析】设税率调低后“税收总收入”为y 元.y =2 400m (1+2x %)·(8-x )%=-1225m (x 2+42x -400)(0<x ≤8). 依题意,得y ≥2 400m ×8%×78%,即-1225m (x 2+42x -400)≥2 400m ×8%×78%, 整理,得x 2+42x -88≤0,解得-44≤x ≤2. 根据x 的实际意义,知x 的范围为0<x ≤2.考点二 数学运算-解不等式例题7、解下列不等式(1)-x 2+2x -3<0; (2)-3x 2+5x -2>0. 【答案】(1) R (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <1【解析】(1)原不等式可化为x 2-2x +3>0, 由于Δ<0,方程x 2-2x +3=0无解, ∴不等式-x 2+2x -3<0的解集为R . (2)原不等式可化为3x 2-5x +2<0,由于Δ>0,方程3x 2-5x +2=0的两根为x 1=23,x 2=1, ∴不等式-3x 2+5x -2>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <1. 考点三 直观想象-不等式恒成立例题8.若函数y =x 2+2(a -2)x +4对任意-3≤a ≤1时,y <0恒成立,如何求x 的取值范围?【答案】不存在【解析】要使对任意-3≤a ≤1,y <0恒成立,只需满足⎩⎨⎧2x +x 2-4x +4<0-3×2x +x 2-4x +4<0, 即⎩⎨⎧x 2-2x +4<0,x 2-10x +4<0.因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4对任意-3≤a ≤1,y <0恒成立. 二、学业质量测评一、选择题1.(2019·全国高一课时练习)不等式(1)(2)0x x +-≤的解集为 ( )A .{|12}x x ≤≤-B .{|12}x x <<-C .1-12x x x ⎧⎫>-≤⎨⎬⎩⎭或 D .}{21x x x <-或【答案】A【解析】由二次函数()()12y x x =+-的图象可知,不等式的解是12x ≤≤-,故选A.2.(2019·全国高一课时练习)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥ B .0k ≥且2k ≠ C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】(k -2)x 2-2kx +k -6=0,∵关于x 的一元二次方程(k -2)x 2-2kx +k =6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨∆=----⎩…,解得:32k ≥且k ≠2. 故选D .3.(2019·全国高一课时练习)若0a <,则不等式()110a x x a ⎛⎫++< ⎪⎝⎭的解集是( ) A .1 1,a ⎛⎫--⎪⎝⎭B .1 ,1a ⎛⎫-- ⎪⎝⎭C .()1 ,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭D .()1,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】D【解析】0a <,对应二次函数()11y a x x a ⎛⎫=++⎪⎝⎭抛物线开口向下,小于零的解集为“两根之外”,又101a ->>-,故解集为()1,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭,故选D . 4.(2018·全国高二单元测试)设R x ∈,则“12x >”是“2210x x +->”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】由题意得,不等式2210x x +->,解得1x <-或12x >,所以“12x >”是“2210x x +->”的充分而不必要条件,故选A .5.(2019·全国高一课时练习)已知方程()2250x m x m +-+-=的两根都大于2,则实数m 的取值范围是( ) A.(][) 5,44,--⋃+∞ B.(]5,4--C.() 5,-+∞D.[)[)4,24,--⋃+∞【答案】B【解析】方程()2250x m x m +-+-=的两根都大于2,则二次函数()225y x m x m =+-+-的图象与x 轴的两个交点都在x=2的右侧,根据图象得:方程的判别式0∆≥;当2x =时函数值0y >;函数对称轴222m -->。

高一数学二次函数知识点归纳

高一数学二次函数知识点归纳

高一数学二次函数知识点归纳高一数学二次函数是一种常见的函数类型,掌握二次函数的知识对我们学习数学以及实际生活中的问题解决都具有重要作用。

下面是对高一数学二次函数知识点的归纳和三个例子。

(一)基本概念高一数学二次函数的一般式为 y = ax² + bx + c(其中a ≠ 0),其中 a,b,c是实数,x,y是变量。

a 是函数的二次项系数,控制着图像的开口方向和大小,当 a>0 时,开口朝上;a<0 时,开口朝下。

b 是一次项系数,控制着图像的横向位置;c 是常数项系数,控制着图像的纵向位置。

二次函数的图像是一个抛物线。

(二)二次函数的性质①对称性:二次函数图像关于 x=-b/2a 对称,称为抛物线的对称轴;②零点:也就是函数值为0的点。

求二次函数的零点需要先将其转化为一元二次方程,使用求根公式即可求解;③最值:也就是函数的极值点,当二次函数的抛物线朝上时,函数的最小值为 y=a*(-(b²-4ac)/4a)+c;当抛物线朝下时,函数的最大值为 y=a*(-(b²-4ac)/4a)+c。

(三)例子1. 求二次函数 y = x² + 3x + 2 的对称轴、开口方向和最小值。

解:对称轴为x=-b/2a = -3/2,因此抛物线沿着这条直线对称。

a=1>0,因此开口朝上。

最小值为 y=a*(-(b²-4ac)/4a)+c = -1/4。

2. 求二次函数y = −2 x² + 8 x − 3 的零点和最大值。

解:将函数转化为一元二次方程:-2x²+8x-3 = 0;使用求根公式求解,得到 x1=1.5,x2=1.7;a=-2<0,因此抛物线朝下,最大值为 y=a*(-(b²-4ac)/4a)+c = 2.2。

3. 已知二次函数 y=3x²+6x-1,求其图像通过的点。

解:将 x 带入函数式得到 y=3x²+6x-1;当 x=0 时,y=-1;因此,通过的点为 (0,-1)。

高一数学必修一知识点归纳

高一数学必修一知识点归纳

高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。

1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。

1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。

第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。

2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。

第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。

3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。

第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。

4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。

4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。

第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。

5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。

第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。

6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。

高一必修一上册数学知识点

高一必修一上册数学知识点

高一必修一上册数学知识点一、整式与分式1. 整式整式是由有理数和代数符号通过加、减、乘、乘方运算得到的表达式。

整式可以是常数、单项式、多项式或零多项式。

例如: -2, 3xy, 2x^2 + 3y - 5, 02. 分式分式是由一个整式的分子和分母组成的表达式,其中分母不能为0。

分式可以是有理数、单项式的比、多项式的比或零多项式的比。

例如:3/4, (2x)/(3y), (x^2 + 1)/(x - 1)二、一次函数与二次函数1. 一次函数一次函数是指函数表达式为f(x) = ax + b的函数,其中a和b为常数,且a不为0。

一次函数的图像为一条直线,斜率为a,截距为b。

2. 二次函数二次函数是指函数表达式为f(x) = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为0。

二次函数的图像为开口向上或向下的抛物线。

三、函数的概念与初等函数1. 函数的概念函数是指对于集合A和集合B之间的关系f,如果对于A中的每个元素x,都存在唯一的B中的元素y与之对应,则称f为从A到B的函数,记作f: A → B。

函数可以表示为一种映射关系,将自变量x映射到因变量y上。

2. 初等函数初等函数是指由代数函数、三角函数、指数函数和对数函数所组成的函数。

常见的初等函数包括多项式函数、指数函数、对数函数、三角函数、反三角函数等。

四、平方根与解二次方程1. 平方根平方根是指一个数的平方等于该数的非负实数解。

例如,√4= 2,√9 = 3。

2. 解二次方程二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b和c为常数,且a不为0。

解二次方程可以使用因式分解、配方法、求根公式等方法。

五、三角函数与解直角三角形1. 三角函数三角函数是指以一个锐角的两条直角边的比值为变量的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

2. 解直角三角形解直角三角形是指根据已知的某些角度或边长,利用三角函数的性质求解未知角度或边长的过程。

高一数学必背知识点大全:二次函数的定义

高一数学必背知识点大全:二次函数的定义

高一数学必背知识点大全:二次函数的定义当高中倒计时的钟声开始响起,一段全新的旅程也即将开启。

那是一个新的环境,那更是一座新的高峰!等着你去攀登!你准备好了吗?现将高一数学必背知识点大全整理如下。

高一数学必背知识点大全:二次函数的定义一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

调整心态,正确对待考试首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。

对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

高一数学必背知识点大全介绍到这里了,想必大家已经积累了不少文化知识,同时也一定不要忘了及时调整自己的【学习计划】,提前做好开学的准备!高一数学必背知识点2017:两个平面的位置关系之平行高一数学知识重点:两个平面的位置关系之二面角。

高中数学必修一函数专题:二次函数值域

高中数学必修一函数专题:二次函数值域

高一数学必修一函数专题:二次函数值域第一部分:计算二次函数的值域题型一:计算二次函数c bx ax x f ++=2)(在定义域R x ∈上的值域。

解法设计:第一步:计算二次函数的对称轴ab x 2-=。

第二步:第一种情况:当0>a 时:二次函数c bx ax x f ++=2)(开口向上。

二次函数)(x f 在对称轴abx 2-=处取得最小值。

最大值为∞+。

第二种情况:当0<a 时:二次函数c bx ax x f ++=2)(开口向下。

二次函数)(x f 在对称轴abx 2-=处取得最大值。

最小值为∞-。

例题一:已知:二次函数121)(2+-=x x x f 。

计算:二次函数)(x f 在定义域R x ∈上的值域。

本题解析:第一步:计算二次函数的对称轴12121=⇒⨯--=x x 。

第二步:二次函数121)(2+-=x x x f 图像开口向上。

2111121)1()(2min =+-⨯==f x f 。

+∞=max )(x f 。

所以:二次函数)(x f 在定义域R x ∈上的值域:),21[)(+∞∈x f 。

例题二:已知:二次函数2)(2+--=x x x f 。

计算:二次函数)(x f 在定义域R x ∈上的值域。

本题解析:第一步:计算二次函数的对称轴21)1(21-=⇒-⨯--=x x 。

第二步:二次函数2)(2+--=x x x f 图像开口向下。

49221412)21()21()21()(2max =++-=+----=-=f x f 。

-∞=min )(x f 。

所以:二次函数)(x f 在定义域R x ∈上的值域:]49,()(-∞∈x f 。

跟踪训练一:已知:二次函数x x x f 32)(2+=。

计算:二次函数)(x f 在定义域R x ∈上的值域。

跟踪训练二:已知:二次函数2)(2++-=x x x f 。

计算:二次函数)(x f 在定义域R x ∈上的值域。

高一数学必修一 教案 2.3 二次函数与一元二次方程、不等式

高一数学必修一 教案 2.3 二次函数与一元二次方程、不等式

2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c 的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅预习小测自我检验1.下面所给关于x的几个不等式:①3x+4<0;②x2+mx-1>0;③ax2+4x-7>0;④x2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1} 解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式: (1)-x 2+5x -6>0; (2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式. 跟踪训练2 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0⇔⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a ,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}.5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-ba ,-2×3=c a, ∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0, 故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立, ∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ; ②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。

数学二次函数高一知识点

数学二次函数高一知识点

数学二次函数高一知识点一、二次函数的定义与性质二次函数是函数中最常见也最重要的一类函数,其定义形式为:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。

二次函数的图像是抛物线。

1. 定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a ≠ 0。

- a决定抛物线开口的方向和抛物线的开口程度(正数为开口向上,负数为开口向下)。

- b决定抛物线的位置,也称为抛物线的对称轴。

- c决定抛物线与y轴交点的纵坐标。

2. 零点:二次函数的零点是指使得函数值为0的x值。

如果二次函数有两个不同的零点,那么抛物线与x轴有两个交点。

- 零点可以通过求解二次方程ax^2 + bx + c = 0来获得。

3. 对称轴:二次函数的图像关于一条垂直于x轴的直线对称。

这条直线称为对称轴,可通过利用二次函数的特点可知对称轴的横坐标为-x坐标的一半。

4. 领域:二次函数的定义域为全体实数。

即二次函数对任意实数x都有定义。

5. 单调性:二次函数的单调性取决于a的正负,当a > 0时,二次函数单调递增;当a < 0时,二次函数单调递减。

6. 极值点:若二次函数的开口向上,则二次函数的最小值为极值点;若开口向下,则二次函数的最大值为极值点。

二、二次函数的图像及其性质1. 垂直方向的平移:通过改变常数c的值,可以实现二次函数整体上下平移。

当c > 0时,抛物线上移;当c < 0时,抛物线下移。

2. 水平方向的平移:通过改变常数b的值,可以实现二次函数整体左右平移。

对于函数y = ax^2 + bx + c,当b > 0时,抛物线右移;当b < 0时,抛物线左移。

3. 拉伸与压缩:通过改变常数a的值,可以实现二次函数整体的拉伸或压缩。

当|a| > 1时,抛物线沿x轴方向压缩;当|a| < 1时,抛物线沿x轴方向拉伸。

4. 顶点坐标:二次函数的顶点坐标可以通过计算得到,顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。

高一《一次函数和二次函数》知识点总结人教B版

高一《一次函数和二次函数》知识点总结人教B版

高一《一次函数和二次函数》知识点总结人教B版高一《一次函数和二次函数》知识点总结人教B版一次函数一、定义与定义式:自变量x和因变量y有如下关系:x+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。

当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

二次函数数学知识点高一

二次函数数学知识点高一

二次函数数学知识点高一二次函数是高中数学中的一个重要知识点,它是一种常见的函数类型,在现实生活和各个学科中都有广泛的应用。

本文将从二次函数的定义、特点、图像、性质等多个方面进行论述,帮助读者更好地理解和掌握二次函数的相关知识。

一、二次函数的定义与特点二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$都是实数且$a\neq 0$。

其中,$a$决定了二次函数的开口方向(正负号),$b$决定了二次函数的对称轴位置,$c$决定了二次函数与纵轴的交点。

二次函数的图像通常为抛物线,它有以下几个特点:1. 开口方向:若$a > 0$,则抛物线开口向上;若$a < 0$,则抛物线开口向下。

2. 对称轴:对称轴是一条垂直于横轴的直线,其方程为$x = \frac{-b}{2a}$。

3. 最值:当$a > 0$时,二次函数的最小值为$c - \frac{b^2}{4a}$;当$a < 0$时,二次函数的最大值为$c - \frac{b^2}{4a}$。

4. 零点:二次函数与$x$轴的交点称为零点。

二次函数有可能有1个、2个或0个零点,这取决于判别式$D = b^2 - 4ac$的值。

二、二次函数的图像与性质1. 完整图像:为了绘制二次函数的图像,我们可以找到对称轴上的一个点,然后根据对称性质绘制其他部分。

还可以根据开口方向、最值等信息来确定图像的大致形状。

2. 平移与伸缩:对于一般的二次函数,平移与伸缩可以通过改变对称轴和系数来完成。

平移可以通过将对称轴上的点坐标改变相应量来实现,而伸缩可以通过改变系数$a$来实现。

3. 零点与轨迹:对于二次函数中的零点,可以通过求解方程$f(x) = 0$来求得。

如果将二次函数平移或伸缩,零点的位置会相应地改变。

当二次函数开口向上时,轨迹低于抛物线;当二次函数开口向下时,轨迹高于抛物线。

三、二次函数的应用二次函数是应用数学中的一个重要工具,被广泛运用于各个领域。

高一数学知识点必修一:二次函数.doc

高一数学知识点必修一:二次函数.doc

高一数学知识点必修一:二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax +bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax +bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h) +k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B (x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b )/4ax?,x?=(-b±√b -4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x 的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b )/4a)当-b/2a=0时,P在y轴上;当Δ=b -4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b -4ac>0时,抛物线与x轴有2个交点。

Δ=b -4ac=0时,抛物线与x轴有1个交点。

Δ=b -4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b±√b -4ac的值的相反数,乘上虚数i,整个式子除以2a)V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax +bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax +bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。

高一必修一数学复习知识点梳理

高一必修一数学复习知识点梳理

高一必修一数学复习知识点梳理一、函数及其图像1.1 函数的概念函数是一种特殊的关系,它把一个数集映射到另一个数集。

在数学上,函数可以表示为 f(x),其中 x 是自变量,f(x) 是因变量。

1.2 常见的函数类型•幂函数:y = x^n•指数函数:y = a^x•对数函数:y = log_a(x)•三角函数:y = sin(x)、y = cos(x)、y = tan(x) 等1.3 函数的图像函数的图像是指将函数的自变量和因变量分别作为坐标轴的横纵坐标,在平面直角坐标系上绘制的图形。

函数的图像能够帮助我们更好地理解函数。

1.4 常见的函数图像•幂函数 y = x^n,当 n>1 时,图像是单调递增的并且过原点;当 n<1 时,图像是单调递减的并且过原点;当 n=1 时,图像是一次函数 y=x。

•指数函数 y = a^x,当 a>1 时,图像是单调递增的并且经过(0,1);当 0<a<1 时,图像是单调递减的并且经过 (0,1);当 a=1时,图像是一条水平直线 y=1。

•对数函数 y = log_a(x),当 a>1 时,图像是单调递增的并经过 (1,0);当 0<a<1 时,图像是单调递减的并过 (1,0);当 a=1 时,图像是一条垂直直线 x=1。

•三角函数 y=sin(x)、y=cos(x)、y=tan(x) 等。

二、二次函数2.1 二次函数的概念二次函数是一种标准形式为 f(x) = ax^2 + bx + c (其中a≠0) 的函数。

二次函数的图像为一个开口方向向上或向下的抛物线。

2.2 二次函数的性质•图像的开口方向:若 a>0,则开口向上;若 a<0,则开口向下。

•对称轴:过抛物线的顶点,是抛物线的对称轴,方程为 x = -b/2a。

•零点:指二次函数的图像与 x 轴交点的横坐标,可通过求解方程 ax^2+bx+c=0 来确定。

高一数学上册知识点 一次函数和二次函数

高一数学上册知识点 一次函数和二次函数

高一数学上册知识点一次函数和二次函数一次函数和二次函数是人教B版高一数学必修一第二单元的学习内容,下面了一些一次函数和二次函数的知识点,希望对大家有所帮助!自变量x和因变量y有如下关系:y=kx+b那么此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

1.当时间t一定,距离s是速度v的一次函数。

高一数学人教b版必修一知识点

高一数学人教b版必修一知识点

高一数学人教b版必修一知识点在高一数学人教B版必修一中,学生将学习到许多重要的数学知识点。

这些知识点是数学学习的基石,对于学生建立数学思维和解决实际问题至关重要。

本文将介绍几个重要的知识点,并对每个知识点进行详细的解释和举例说明。

一、二次函数二次函数是高一数学中的重要内容。

在学习二次函数时,我们首先需要了解二次函数的标准形式及其特点。

二次函数的标准形式为$$f(x) = ax^2 + bx + c$$其中,a、b、c为常数,a ≠ 0。

二次函数的图象为抛物线,其开口方向由a的正负确定。

当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

b影响抛物线的位置,c影响抛物线的纵坐标平移。

二、三角函数三角函数是数学中的重要分支,在高一数学中也占有一席之地。

我们需要掌握正弦、余弦和正切等常见三角函数的定义及其性质。

例如,正弦函数的定义为$$\sin(\theta) = \frac{{\text{对边}}}{{\text{斜边}}}$$其中,θ为三角函数的自变量。

在实际问题中,三角函数常常用于计算角度、距离和高度等。

三、平面向量平面向量在几何中有广泛的应用。

平面向量由模和方向两个要素组成。

我们需要学习平面向量的加法、减法和数量乘法等基本运算。

此外,我们还需要了解向量的共线、共面及平行垂直等重要性质。

平面向量在解决几何问题和物理问题中起到了关键的作用。

四、概率论概率论是数学的一个重要分支,也是高一数学人教B版必修一的内容之一。

我们需要了解概率的基本定义和性质,学习如何计算概率以及应用概率解决实际问题。

例如,在掷骰子的问题中,我们可以通过概率来计算各种结果的出现概率,进而做出相应的决策。

五、数列与数列的运算数列是数学中常见的一种数学对象。

我们需要了解数列的定义及其特点,学习如何求解数列的通项公式和前n项和公式。

此外,我们还需要掌握数列的运算规律,如数列的加法、减法以及乘法等。

数列在数学和物理中有广泛的应用,例如等差数列可以用于计算数列的平均值和总和,等比数列可以用于计算投资的收益。

高一数学必修一人教b版知识点

高一数学必修一人教b版知识点

高一数学必修一人教b版知识点高中数学是学生学习的重点科目之一,而数学必修一则是高中数学课程中的基础部分。

本文将简要介绍高一数学必修一人教B版的知识点,以帮助学生更好地学习和理解这些概念。

一、集合与函数在数学必修一中,首先介绍了集合与函数的基本概念。

集合是由若干个元素构成的整体,通过花括号{}来表示。

而函数则是一种特殊的关系,它将一个集合的每个元素映射到另一个集合的元素上。

二、二次函数二次函数是高中数学中的重要概念之一。

它的函数表达式为y=ax²+bx+c。

其中,a、b、c为常数,a≠0。

二次函数的图像是一个抛物线,其开口方向由a的正负号决定。

学生需要掌握二次函数图像的性质,如顶点坐标、对称轴等。

三、函数的图像与性质在高一数学必修一中,还介绍了其他函数的图像与性质。

例如,一次函数的图像是一条直线,其函数表达式为y=kx+b。

学生需要理解直线的斜率和截距对图像的影响。

另外,指数函数、对数函数以及三角函数等都是高中数学中常见的函数类型,学生需要学习它们的特点和性质。

四、立体几何数学必修一中的几何部分主要涉及到平面几何和立体几何。

其中,立体几何是较为复杂的部分之一。

学生需要掌握立体图形的名称、性质以及相关的计算方法。

例如,正方体、球体和圆锥等都是常见的立体图形,学生需要了解它们的表面积和体积计算公式。

五、统计与概率统计与概率是高中数学中的重要内容之一。

在必修一中,学生将学习有关数据的收集和整理方法,以及对数据进行分析和解读的技巧。

此外,概率部分也是必修一的重点之一。

学生需要掌握事件概率的计算方法,如样本空间、事件等的概念。

总结起来,高一数学必修一人教B版的知识点主要涵盖集合与函数、二次函数、函数的图像与性质、立体几何以及统计与概率等内容。

这些知识点是高中数学学习的基础,也是学生进一步学习数学的前提。

通过系统地学习和理解这些概念,学生能够建立起扎实的数学基础,为高中数学的深入学习打下坚实的基础。

高一数学必修一第二章知识点归纳

高一数学必修一第二章知识点归纳

高一数学必修一第二章知识点归纳高一数学必修一第二章知识点1方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学必修一第二章知识点2空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高一数学必修一第二章知识点3(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

高一数学知识点归纳总结重难点

高一数学知识点归纳总结重难点

高一数学知识点归纳总结重难点在高中数学学习过程中,高一阶段是数学基础知识的重要阶段。

在这一年里,学生们将接触到许多数学概念和知识点,为进一步深入学习打下坚实的基础。

本文将对高一数学知识点进行归纳总结,重点关注一些重要且难以理解的知识点。

1. 二次函数与图像在高一数学中,二次函数是重要的内容之一。

了解二次函数的基本形式和图像特点非常重要。

二次函数的一般形式为:y = ax^2 + bx + c其中,a、b和c为常数。

a决定了二次函数的开口方向,正值表示向上开口,负值表示向下开口;b决定了二次函数图像的位置;c则是二次函数图像与y轴交点的纵坐标。

掌握二次函数图像的平移、翻折等变换规律,能够帮助我们更好地理解和解题。

另外,了解二次函数的顶点坐标、对称轴等概念也是非常重要的。

2. 等差数列与等差数列求和等差数列也是高一数学中的一个重要内容。

等差数列是指一个数列中,任意两个相邻的项之间的差值都是相等的。

等差数列的通项公式为:an = a1 + (n-1)d其中,an表示第n项,a1表示第一项,d表示公差。

了解等差数列的求和公式也很关键。

等差数列的前n项和Sn的公式为:Sn = (a1 + an) * n / 2通过掌握等差数列的通项公式和求和公式,我们可以更有效地进行等差数列的计算和应用。

3. 概率与统计概率与统计也是高一数学中的重要内容。

了解概率的基本概念和计算方法,能够帮助我们预测事件发生的可能性。

了解统计学中的各种统计量,能够帮助我们从数据中获取有用的信息。

在概率与统计中,理解条件概率和事件独立性的概念至关重要。

同时,掌握排列组合和二项式定理等数学方法,能够更好地解决与概率和统计相关的问题。

4. 三角函数与三角恒等式三角函数是高一数学中的另一个重要内容。

熟练掌握正弦、余弦和正切等三角函数的定义和性质,能够帮助我们理解和解决各种三角函数相关的问题。

另外,熟练掌握三角恒等式也是非常重要的。

通过运用三角恒等式,我们可以将复杂的三角函数表达式转化为简单的形式,从而更好地解决问题。

高一数学必修一第二章知识点总结

高一数学必修一第二章知识点总结

高一数学必修一第二章知识点总结在高一学习数学的过程中,必修一是重要的基础课程之一。

第二章是其中的一个重要部分,以下是对该章节的知识点总结。

1. 二次函数二次函数是高中数学中的重要内容,它是由形如y=ax^2+bx+c的函数所组成。

其中,a、b、c分别代表二次函数的系数,a决定了二次函数的开口方向,b决定了抛物线的位置,c决定了二次函数的纵坐标截距。

需要特别注意的是,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 二次函数的图像与性质二次函数的图像是一个抛物线,其形状和位置与二次函数的系数有关。

可以通过求解二次函数的顶点、轴对称线、零点等内容来探究二次函数的性质。

顶点是抛物线的最低点(最高点),轴对称线是通过顶点的一条垂直线,零点是函数与x轴的交点。

利用顶点坐标可以得到二次函数的最值,即最大值或最小值。

3. 二次函数的变化规律通过改变二次函数的系数,可以观察到其图像的变化规律。

例如,改变a的值可以改变抛物线的开口方向;改变b的值可以改变抛物线的位置;改变c的值可以改变抛物线的纵坐标截距。

此外,二次函数还可以通过平移、伸缩等变换来改变其图像。

4. 二次函数的解及其应用解二次函数的方法包括配方法和求根公式。

通过配方法,将二次函数转化为完全平方的形式,然后求解方程。

求根公式是通过根据二次函数的系数来计算零点的方法。

在实际应用中,二次函数经常用于解决最值、距离、速度等问题。

5. 二次函数与一次函数的关系一次函数是高中数学中的基础内容,而二次函数可以看作是一次函数的补充和扩展。

可以通过观察二次函数与一次函数的图像和性质,探讨二者之间的关系。

一次函数的图像是一条直线,而二次函数则是一个抛物线。

此外,二次函数与一次函数的图像有关系。

以上是高一数学必修一第二章的知识点总结。

通过对这些知识点的理解和掌握,同学们可以更好地应对数学学习和应用中的问题。

希望同学们在学习数学的过程中,能够更加深入地理解和应用这些内容,提升数学思维能力。

高一数学知识点必修一二次函数

高一数学知识点必修一二次函数

高一数学知识点必修一二次函数I.定义与定义表达式一般地,自变量x和因变量y之间客观存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定向量的开口方向,a;0时,开口方向向上,a;0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边为二次三项式。

II.二次函数的三种数组一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像可以看出,二次函数的图像是一条抛物面。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴抛物面与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的直角是y轴(即直线x=0)2.抛物线有一个立方体P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口大方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)V.二次函数与一元二次方程即ax^2+bx+c=0此时,函数图像与x轴有无交点即交叉点方程有无实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学知识点必修一:二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就
越大.)
则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质
1.抛物线是轴对称图形。

对称轴为直线
x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单
位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得
到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得
到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为
y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的
x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实
数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可
设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:
y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:
y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.。

相关文档
最新文档