排序算法十大经典方法

合集下载

C程序经典算法50例

C程序经典算法50例

C程序经典算法50例1.二分查找算法:在有序数组中查找指定元素。

2.冒泡排序算法:通过不断比较相邻元素并交换位置,将较大的元素向后冒泡。

3.快速排序算法:通过选择一个基准元素,将数组分割为左右两部分,并递归地对两部分进行快速排序。

4.插入排序算法:将数组划分为已排序和未排序两部分,每次从未排序中选择一个元素插入到已排序的合适位置。

5.选择排序算法:遍历数组,每次选择最小元素并放置在已排序部分的末尾。

6.希尔排序算法:将数组按照一定间隔进行分组并分别进行插入排序,然后逐步减小间隔并重复这个过程。

7.归并排序算法:将数组递归地划分为两部分,然后将两个有序的部分进行合并。

8.桶排序算法:将元素根据特定的映射函数映射到不同的桶中,然后对每个桶分别进行排序。

9.计数排序算法:统计每个元素的出现次数,然后根据计数进行排序。

10.基数排序算法:从低位到高位依次对元素进行排序。

11.斐波那契数列算法:计算斐波那契数列的第n项。

12.阶乘算法:计算给定数字的阶乘。

13.排列问题算法:生成给定数组的全排列。

14.组合问题算法:生成给定数组的所有组合。

15.最大连续子序列和算法:找出给定数组中和最大的连续子序列。

16.最长递增子序列算法:找出给定数组中的最长递增子序列。

17.最长公共子序列算法:找出两个给定字符串的最长公共子序列。

18.最短路径算法:计算给定有向图的最短路径。

19.最小生成树算法:构建给定连通图的最小生成树。

20.汉诺塔算法:将n个圆盘从一个柱子移动到另一个柱子的问题。

21.BFS算法:广度优先算法,用于图的遍历和查找最短路径。

22.DFS算法:深度优先算法,用于图的遍历和查找连通分量。

23.KMP算法:字符串匹配算法,用于查找一个字符串是否在另一个字符串中出现。

24.贪心算法:每次都选择当前情况下最优的方案,适用于求解一些最优化问题。

25.动态规划算法:将一个大问题划分为多个子问题,并通过子问题的解求解整个问题,适用于求解一些最优化问题。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

10个经典的C语言基础算法及代码

10个经典的C语言基础算法及代码

10个经典的C语言基础算法及代码1.冒泡排序算法冒泡排序是一种简单但效率较低的排序算法,在每一轮遍历中比较相邻的两个元素,如果顺序不正确则交换它们,直到整个数组有序为止。

```cvoid bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-1-i; j++)if (arr[j] > arr[j+1])int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```2.选择排序算法选择排序是一种简单直观的排序算法,它每次从待排序的数组中选择最小(或最大)的元素,并放到已排序的数组末尾。

```cvoid selectionSort(int arr[], int n)for (int i = 0; i < n-1; i++)int min_index = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[min_index])min_index = j;}}int temp = arr[i];arr[i] = arr[min_index];arr[min_index] = temp;}```3.插入排序算法插入排序的基本思想是将数组分为已排序和未排序两部分,每次将未排序的元素插入到已排序的合适位置。

```cvoid insertionSort(int arr[], int n)for (int i = 1; i < n; i++)int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key)arr[j+1] = arr[j];j--;}arr[j+1] = key;}```4.快速排序算法快速排序使用分治法的思想,每次选择一个基准元素,将小于基准的元素放到左边,大于基准的元素放到右边,然后递归地对左右两个子数组进行排序。

十大经典排序算法(动图演示)

十大经典排序算法(动图演示)

⼗⼤经典排序算法(动图演⽰)0、算法概述0.1 算法分类⼗种常见排序算法可以分为两⼤类:⽐较类排序:通过⽐较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为⾮线性时间⽐较类排序。

⾮⽐较类排序:不通过⽐较来决定元素间的相对次序,它可以突破基于⽐较排序的时间下界,以线性时间运⾏,因此也称为线性时间⾮⽐较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前⾯,⽽a=b,排序之后a仍然在b的前⾯。

不稳定:如果a原本在b的前⾯,⽽a=b,排序之后 a 可能会出现在 b 的后⾯。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执⾏时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述⽐较相邻的元素。

如果第⼀个⽐第⼆个⼤,就交换它们两个;对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,这样在最后的元素应该会是最⼤的数;针对所有的元素重复以上的步骤,除了最后⼀个;重复步骤1~3,直到排序完成。

1.2 动图演⽰1.3 代码实现function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) { // 相邻元素两两对⽐var temp = arr[j+1]; // 元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;}2、选择排序(Selection Sort)选择排序(Selection-sort)是⼀种简单直观的排序算法。

十大经典排序法

十大经典排序法

十大经典排序法
1. 冒泡排序(Bubble Sort):通过不断比较相邻元素并交换位置来排序,每一轮将最大的元素冒泡到最后。

2. 选择排序(Selection Sort):通过找到当前未排序部分的最小元素,将其放置到已排序部分的末尾,逐步构建有序序列。

3. 插入排序(Insertion Sort):将未排序元素逐个插入到已排序部分的正确位置,从而逐步构建有序序列。

4. 希尔排序(Shell Sort):是插入排序的改进版本,通过比较相隔一定间隔的元素进行排序,逐渐缩小间隔直至为1。

5. 归并排序(Merge Sort):采用分治策略,将待排序序列不断拆分为子序列,然后将子序列排序并合并得到最终有序序列。

6. 快速排序(Quick Sort):也是采用分治策略,通过选择一个基准元素将序列划分为左右两部分,分别对两部分进行排序。

7. 堆排序(Heap Sort):利用二叉堆的性质来进行排序,将待排序元素构建成最大(最小)堆,然后依次取出堆顶元素并调整堆结构。

8. 计数排序(Counting Sort):适用于元素值范围较小的情况,通过统计元素出现的次数,然后根据统计结果得到有序序列。

9. 桶排序(Bucket Sort):将元素根据大小分配到不同的桶中,每个桶内部再分别进行排序,最后将各个桶中的元素合并得到有序序列。

10. 基数排序(Radix Sort):将待排序元素按照位数进行排序,先按个位排序,再按十位排序,依此类推,直到最高位排序完成。

常见排序算法归纳总结

常见排序算法归纳总结

常见排序算法归纳总结排序算法是计算机科学中的重要基础知识,通过对一组数据进行排序,可以快速查找、统计和比较数据。

常见的排序算法包括冒泡排序、选择排序、插入排序、归并排序、快速排序等等。

本文将对这些常见排序算法进行归纳总结,以便读者更好地理解和应用这些算法。

一、冒泡排序(Bubble Sort)冒泡排序是一种简单直观的排序算法。

它的基本思想是重复地遍历要排序的序列,每次比较相邻的元素,如果顺序不对则交换它们。

经过一轮遍历,最大(或最小)的元素就会移动到序列的末尾,然后再对剩下的元素进行排序,直到整个序列有序。

冒泡排序的时间复杂度为O(n^2),其中n为要排序的元素数量。

虽然冒泡排序算法简单,但是对于大规模数据的排序效率较低,通常用于教学和简单的排序场景。

二、选择排序(Selection Sort)选择排序是一种简单但低效的排序算法。

它的基本思想是在序列中找到最小(或最大)的元素,将其放到序列的起始位置,然后再在剩下的元素中寻找最小(或最大)的元素,放到已排序的子序列的末尾。

重复进行这个过程,直到整个序列有序。

选择排序的时间复杂度也为O(n^2),它的交换次数较冒泡排序要少,因此在一些特殊场景下,选择排序可能会比冒泡排序稍微高效一些。

三、插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。

它的基本思想是将待排序的序列分为两部分,一部分是已排序的序列,另一部分是未排序的序列。

每次从未排序的序列中取出一个元素,插入到已排序的序列中的合适位置,直到所有元素都插入完毕。

插入排序的时间复杂度也为O(n^2),但是在某些特定情况下,插入排序的性能要优于冒泡排序和选择排序。

例如,当序列几乎有序时,插入排序的时间复杂度可以接近O(n)。

四、归并排序(Merge Sort)归并排序是一种高效的排序算法,它基于分治的思想。

它的基本思路是将待排序的序列一分为二,对每个子序列进行排序,然后将排好序的子序列合并,最终得到完全有序的序列。

python实现十大经典算法

python实现十大经典算法

python实现⼗⼤经典算法排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进⾏排序,⽽外部排序是因排序的数据很⼤,⼀次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插⼊排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

⽤⼀张图概括:关于时间复杂度:1. 平⽅阶 (O(n2)) 排序各类简单排序:直接插⼊、直接选择和冒泡排序。

2. 线性对数阶 (O(nlog2n)) 排序快速排序、堆排序和归并排序。

3. O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。

希尔排序。

4. 线性阶 (O(n)) 排序基数排序,此外还有桶、箱排序。

关于稳定性:稳定的排序算法:冒泡排序、插⼊排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:n:数据规模k:“桶”的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同冒泡排序冒泡排序(Bubble Sort)也是⼀种简单直观的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果他们的顺序错误就把他们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。

作为最简单的排序算法之⼀,冒泡排序给我的感觉就像 Abandon 在单词书⾥出现的感觉⼀样,每次都在第⼀页第⼀位,所以最熟悉。

冒泡排序还有⼀种优化算法,就是⽴⼀个 flag,当在⼀趟序列遍历中元素没有发⽣交换,则证明该序列已经有序。

但这种改进对于提升性能来说并没有什么太⼤作⽤。

1. 算法步骤1. ⽐较相邻的元素。

如果第⼀个⽐第⼆个⼤,就交换他们两个。

2. 对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对。

10种排序法(冒泡、选择、插入、希尔、归并、快速、堆、拓扑、重点

10种排序法(冒泡、选择、插入、希尔、归并、快速、堆、拓扑、重点

各种排序算法总结排序算法有很多,所以在特定情景中使用哪一种算法很重要。

为了选择合适的算法,可以按照建议的顺序考虑以下标准:(1)执行时间(2)存储空间(3)编程工作对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:一、冒泡(Bubble)排序——相邻交换二、选择排序——每次最小/大排在相应的位置三、插入排序——将下一个插入已排好的序列中四、壳(Shell)排序——缩小增量五、归并排序六、快速排序七、堆排序八、拓扑排序九、锦标赛排序十、基数排序一、冒泡(Bubble)排序----------------------------------Code 从小到大排序n个数------------------------------------ void BubbleSortArray({for(int i=1;i{for(int j=0;i{if(a[j]>a[j+1]//比较交换相邻元素{int temp;temp=a[i]; a[j]=a[j+1]; a[j+1]=temp;}}}}-------------------------------------------------Code------------------------------------------------ 效率 O(n²),适用于排序小列表。

二、选择排序----------------------------------Code 从小到大排序n个数-------------------------------- void SelectSortArray({int min_index;for(int i=0;i{min_index=i;for(int j=i+1;j 每次扫描选择最小项if(arr[j]if(min_index!=i//找到最小项交换,即将这一项移到列表中的正确位置{int temp;temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;}}}-------------------------------------------------Code------------------------------------------------------效率O(n²),适用于排序小的列表。

十大编程算法

十大编程算法





1. 最优子结构性质。如果问题的最优解所包含的子问题的 解也是最优的,我们就称该问题具有最优子结构性质(即 满足最优化原理)。最优子结构性质为动态规划算法解决 问题提供了重要线索。 2. 子问题重叠性质。子问题重叠性质是指在用递归算法自 顶向下对问题进行求解时,每次产生的子问题并不总是新 问题,有些子问题会被重复计算多 次。 动态规划算法正 是利用了这种子问题的重叠性质,对每一个子问题只计算 一次,然后将其计算结果保存在一个表格中,当再次需要 计算已经计算过的子问题 时,只是 在表格中简单地查看 一下结果,从而获得较高的效率。




归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有 效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型 的应用。 算法步骤: 1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的 序列 2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置 3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动 指针到下一位置 4. 重复步骤3直到某一指针达到序列尾 5. 将另一序列剩下的所有元素直接复制到合并序列尾
1.快速排序算法 2.堆排序算法 3.归并排序 4.二分查找算法 5.BFPRT(线性查找算法) 6.DFS(深度优先搜索) 7.BFS(广度优先搜索) 8.Dijkstra算法 9.动态规划算法 10.朴素贝叶斯分类算法


快速排序是由东尼· 霍尔所发展的一种排序算 法。在平均状况下,排序 n 个项目要Ο(n log n) 次比较。在最坏状况下则需要Ο(n2)次比 较, 但这种状况并不常见。事实上,快速排序通常 明显比其他Ο(n log n) 算法更快,因为它的内 部循环(inner loop)可以在大部分的架构 上 很有效率地被实现出来。 快速排序使用分治法(Divide and conquer)策 略来把一个串行(list)分为两个子串行(sublists)。

C语言经典算法大全精选

C语言经典算法大全精选

C语言经典算法大全精选1.排序算法1.1冒泡排序:通过不断交换相邻元素的位置,将最大(最小)值“冒泡”到序列的末尾(开头)。

1.2插入排序:将未排序的元素逐个插入已排序的序列中,保持序列始终有序。

1.3选择排序:每次从未排序的元素中选择最小(最大)的元素,放到已排序序列的末尾(开头)。

1.4快速排序:通过递归地将序列分割为较小和较大的两部分,然后分别对两部分进行排序。

1.5归并排序:将序列递归地分割为两个子序列,分别排序后再将结果合并。

1.6堆排序:构建最大(最小)堆,然后逐步将堆顶元素与最后一个元素交换,并调整堆结构。

2.查找算法2.1顺序查找:逐个比较元素,直到找到目标元素或遍历完整个序列。

2.2二分查找:在有序序列中,通过不断缩小查找范围,找到目标元素。

2.3插值查找:根据目标元素与序列中最大、最小元素的关系,按比例选择查找范围。

2.4哈希查找:利用哈希函数将目标元素映射到一个唯一的位置,从而快速定位目标元素。

3.字符串算法3.1字符串匹配算法:在文本串中查找给定的模式串,并返回匹配位置。

3.2字符串翻转:将一个字符串逆序输出。

3.3字符串压缩:将连续出现多次的字符压缩为一个字符,并输出压缩后的字符串。

3.4字符串拆分:按照指定的分隔符将字符串拆分为多个子串,并返回子串列表。

3.5字符串反转单词:将一个句子中的单词顺序逆序输出。

4.图算法4.1深度优先:从起始顶点出发,递归地访问所有能到达的未访问顶点。

4.2广度优先:从起始顶点出发,逐层地访问与当前层相邻的未访问顶点。

4.3最小生成树:找到连接所有顶点的具有最小权值的无环边集合。

4.4最短路径:找到两个顶点之间最短路径的权值和。

4.5拓扑排序:找到一个顶点的线性序列,满足所有有向边的起点在终点之前。

5.数学算法5.1质数判断:判断一个数是否为质数(只能被1和自身整除)。

5.2求最大公约数:找到两个数的最大公约数。

5.3求最小公倍数:找到两个数的最小公倍数。

八大排序详解

八大排序详解

八大排序详解八大排序算法包括插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序和基数排序。

1. 插入排序:这是一种简单直观的排序算法,其工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

在插入过程中,如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面,因此插入排序是稳定的。

2. 希尔排序:也称递减增量排序算法,是插入排序的一种更高效的改进版本。

3. 选择排序:它的工作原理是首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4. 冒泡排序:这种排序算法会重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

5. 归并排序:归并排序是一种采用分治法的排序算法。

它将待排序的序列分成若干个子序列,每个子序列单独进行排序,然后将已排序的子序列进行合并,得到最终的排序结果。

6. 快速排序:快速排序采用分治法进行排序。

在每一步中,它选择一个“基准”元素,并将数组分为两部分,其中一部分的所有元素都比基准元素小,另一部分的所有元素都比基准元素大。

然后,对这两部分独立地进行快速排序。

7. 堆排序:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆是一种特殊的树形数据结构,它的每个父节点都大于或等于(小于或等于)其子节点(通常称为大顶堆或小顶堆)。

8. 基数排序:基数排序是一种非比较整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

以上就是八大排序算法的详解,这些算法各有特点和使用场景,可以根据实际情况选择合适的算法。

十大经典排序算法详解(动图演示+代码实现)

十大经典排序算法详解(动图演示+代码实现)

十大经典排序算法详解(动图演示+代码实现)排序算法总览十大排序算法可以分为比较类排序以及非比较类排序。

1.比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn)O(nlogn)O(nlogn),因此也称为非线性时间比较类排序。

2.非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

用一张图概括:比较类排序算法交换排序(1) 冒泡排序算法思想:冒泡排序(Bubble Sort)也是一种简单直观的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。

冒泡排序还有一种优化算法,就是立一个flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。

但这种改进对于提升性能来说并没有什么太大作用。

算法步骤:1.比较相邻的元素。

如果第一个元素比第二个元素大,就交换他们两个。

2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。

这步做完后,最后的元素会是最大的数。

3.针对所有的元素重复以上的步骤,除了最后一个。

4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

动图演示:代码实现:def Bubble_Sort(arr):for i in range(len(arr)-1):# 如果某一趟排序并没有发生交换,那么可以认为数组有序,终止排序即可。

计算机题库中的经典排序算法有哪些

计算机题库中的经典排序算法有哪些

计算机题库中的经典排序算法有哪些在计算机科学领域,排序算法是非常重要的一部分。

它们用于将一组无序的数据按照特定的顺序进行排列,以便于查找、处理和分析。

下面,我们就来介绍一些计算机题库中常见的经典排序算法。

冒泡排序(Bubble Sort)冒泡排序是一种简单直观的排序算法。

它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

其基本思想就像水中的气泡,较小的元素会像气泡一样慢慢“浮”到数列的顶端。

例如,对于数列 5, 3, 8, 4, 2 ,首先比较 5 和 3 ,交换位置得到 3, 5, 8, 4, 2 ,然后比较 5 和 8 ,位置不变,接着比较 8 和 4 ,交换得到 3, 5, 4, 8, 2 ,再比较 8 和 2 ,交换得到 3, 5, 4, 2, 8 。

这是第一轮比较,经过多轮这样的比较和交换,最终数列会变得有序。

冒泡排序的优点是实现简单,容易理解。

但其缺点也很明显,效率较低,对于大规模的数据排序,它的时间复杂度较高。

选择排序(Selection Sort)选择排序的工作原理是首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

比如对于数列 6, 2, 9, 1, 7 ,第一轮先找到最小的元素 1 ,与第一个元素 6 交换位置,得到 1, 2, 9, 6, 7 。

第二轮在剩余的 2, 9, 6, 7 中找到最小的 2 ,与第二个元素交换,得到 1, 2, 9, 6, 7 。

依此类推,完成排序。

选择排序的优点是每一轮交换只需要交换一次,空间复杂度低。

但它同样效率不高,比较次数较多。

插入排序(Insertion Sort)插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、长度增 1 的有序数据。

常用排序操作方法

常用排序操作方法

常用排序操作方法
常用的排序操作方法有:
1. 冒泡排序(Bubble Sort):比较相邻的元素,如果前面的元素大于后面的元素则交换位置,依次比较直到最后一对元素。

2. 选择排序(Selection Sort):每次从未排序的序列中选择最小(最大)的元素,放到已排序的序列的末尾,直到全部元素排序完成。

3. 插入排序(Insertion Sort):将未排序的元素逐一插入到已排序的序列中的合适位置,从而实现排序。

4. 快速排序(Quick Sort):选择一个基准元素,将小于基准元素的放在左侧,大于基准元素的放在右侧,然后对左右两个子序列进行递归排序。

5. 归并排序(Merge Sort):将待排序序列不断二分为子序列,对子序列进行排序后再合并成有序序列。

6. 堆排序(Heap Sort):将待排序序列构建成最大(最小)堆,然后将堆顶元素与末尾元素交换,然后重新调整堆为最大(最小)堆。

这些排序方法都具有不同的时间复杂度和适用场景,可以根据实际情况选择使用。

计算机10大经典算法

计算机10大经典算法

计算机10大经典算法1. 排序算法排序算法是计算机领域中最基础和常用的算法之一。

其目的是将一组数据按照特定的顺序进行排列。

最常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

冒泡排序(Bubble Sort)是一种简单但效率较低的排序算法。

其基本思想是通过相邻元素的比较和交换,逐步将待排序的元素移动到正确的位置。

插入排序(Insertion Sort)的核心思想是将待排序的元素插入到已排序序列中的适当位置,从而得到一个新的有序序列。

选择排序(Selection Sort)是一种简单直观的排序算法。

其原理是每次从待排序序列中选择最小(或最大)的元素,放到已排序序列的末尾。

快速排序(Quick Sort)是一种高效的排序算法。

它采用分治法的思想,将待排序序列分割成两个子序列,并递归地进行排序。

归并排序(Merge Sort)是一种稳定的排序算法。

它的核心思想是将待排序序列划分成若干个子序列,分别进行排序,最后再合并这些有序子序列。

2. 搜索算法搜索算法用于在给定的数据集合中查找特定的元素或满足特定条件的元素。

其中最著名的搜索算法为二分查找算法。

二分查找(Binary Search)是一种高效的搜索算法,适用于有序的数据集合。

它通过将待查找区间逐步缩小,直到找到目标元素。

3. 图形算法图形算法主要用于处理具有图形结构的问题,如网络分析、路径搜索等。

其中最常用的图形算法包括广度优先搜索算法和迪杰斯特拉算法。

广度优先搜索(Breadth-First Search,BFS)是一种基于图的搜索算法。

它以广度为优先级,逐层遍历图中的节点,用于查找最短路径、连通性分析等问题。

迪杰斯特拉算法(Dijkstra's Algorithm)用于解决带权有向图中单源最短路径问题。

它采用贪心策略,逐步确定从起点到其他节点的最短路径。

4. 动态规划算法动态规划算法常用于解决具有重叠子问题和最优子结构性质的问题。

十大算法

十大算法

算法一:快速排序算法快速排序是由东尼·霍尔所发展的一种排序算法。

在平均状况下,排序 n 个项目要Ο(n log n)次比较。

在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:1 从数列中挑出一个元素,称为“基准”(pivot),2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。

在这个分区退出之后,该基准就处于数列的中间位置。

这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。

虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。

堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:创建一个堆H[0..n-1]把堆首(最大值)和堆尾互换3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置4. 重复步骤2,直到堆的尺寸为1算法三:归并排序归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。

该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置4. 重复步骤3直到某一指针达到序列尾5. 将另一序列剩下的所有元素直接复制到合并序列尾算法四:二分查找算法二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。

十大排序方法

十大排序方法

十大排序方法排序是计算机科学中常用的一种算法,它将一组元素按照特定的规则进行重新排列。

排序方法的选择对于算法的效率和性能至关重要。

本文将介绍十种常用的排序方法,并对它们的原理和应用进行详细解析。

一、冒泡排序冒泡排序是一种简单直观的排序方法,它重复地遍历待排序的元素,比较相邻的两个元素,并将较大的元素向后交换。

通过多次遍历,最大的元素将逐渐“冒泡”到最后的位置。

冒泡排序的时间复杂度为O(n^2),适用于小规模数据的排序。

二、选择排序选择排序是一种简单但低效的排序方法,它将待排序的元素分为已排序和未排序两部分,每次从未排序部分选取最小的元素,并将其放到已排序部分的末尾。

通过多次迭代,最终得到一个有序序列。

选择排序的时间复杂度也为O(n^2),适用于小规模数据的排序。

三、插入排序插入排序是一种直观且高效的排序方法,它将待排序元素分为已排序和未排序两部分,每次从未排序部分取出一个元素,并将其插入到已排序部分的适当位置。

通过不断地插入操作,最终得到一个有序序列。

插入排序的时间复杂度为O(n^2),适用于小规模或基本有序的数据排序。

四、希尔排序希尔排序是对插入排序的改进,它通过设置一个间隔序列,对待排序元素进行分组,并对每个分组进行插入排序。

随着排序的进行,间隔逐渐减小,最终达到插入排序的效果。

希尔排序的时间复杂度为O(nlogn),适用于中等规模的数据排序。

五、归并排序归并排序是一种高效的排序方法,它采用分治法的思想,将待排序序列分成两个子序列,分别进行排序,然后将两个有序子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),适用于大规模数据的排序。

六、快速排序快速排序是一种高效的排序方法,它采用分治法的思想,通过一趟排序将待排序序列分成两个子序列,其中一个子序列的所有元素都小于另一个子序列的元素。

然后对两个子序列分别进行快速排序,最终得到一个有序序列。

快速排序的时间复杂度为O(nlogn),是最常用的排序方法之一。

16个ACM经典算法介绍

16个ACM经典算法介绍

16个ACM经典算法介绍一、排序算法:1.冒泡排序:基于比较的排序算法,通过不断交换相邻元素将最大元素逐渐向后移动。

2.插入排序:基于比较的排序算法,通过将元素逐个插入到已排好序的部分中,最终得到完全有序的序列。

3.归并排序:基于分治的排序算法,将待排序序列划分为一系列子序列,然后将子序列进行合并,最终得到完全有序的序列。

4.快速排序:基于分治的排序算法,通过选择一个基准元素将序列划分为两部分,然后递归地对两部分进行排序。

5.堆排序:基于堆的排序算法,通过构建最大堆或最小堆来实现排序。

二、查找算法:6.二分查找:基于有序序列的查找算法,通过将待查找值与序列中间元素进行比较,逐渐缩小查找范围。

7.哈希表:基于哈希函数的查找算法,通过将键值对存储在哈希表中,实现高效的查找。

三、图算法:8.深度优先(DFS):基于栈的算法,通过递归地访问顶点的邻接顶点,实现图的遍历。

9.广度优先(BFS):基于队列的算法,通过访问顶点的邻接顶点,实现图的遍历。

10. 最小生成树算法:用来求解无向图的最小生成树,常用的有Prim算法和Kruskal算法。

11. 最短路径算法:用来求解有向图或带权重的无向图的最短路径,常用的有Dijkstra算法和Floyd-Warshall算法。

四、动态规划算法:12.最长上升子序列(LIS):用来求解一个序列中最长严格递增子序列的长度。

13.背包问题:用来求解在给定容量下,能够装入尽量多的物品的问题。

五、字符串算法:14.KMP算法:用来在一个文本串S中查找一个模式串P的出现位置的算法,通过预处理模式串,利用已经匹配过的子串,跳过一定长度进行下一轮匹配。

15. Boyer-Moore算法:用来在一个文本串S中查找一个模式串P的出现位置的算法,通过从模式串末尾开始匹配,利用好后缀和坏字符规则,跳过一定长度进行下一轮匹配。

16.字符串匹配算法:用来在一个文本串S中查找多个模式串的出现位置的算法,常用的有AC自动机和后缀树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。

以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。

2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。

3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。

4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。

5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。

6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。

7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。

8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。

9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。

10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。

以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。

相关文档
最新文档