清华大学固体物理作业2
清华大学固体物理:第六章 晶格动力学
清华大学固体物理:第六章晶格动力学6.1固体物理性质的变化依赖于他们的晶格动力学行为:红外、拉曼和中子散射谱;比热,热膨胀和热导;和电声子相互作用相关的现象如金属电阻,超导电性和光谱的温度依赖关系是其中的一部分。
事实上,借助于声子对这些问题的了解最令人信服地说明了目前固体的量子力学图像是正确的。
晶格动力学的基础理论建立于30年代,玻恩和黄昆1954年的专题论文至今仍然是这个领域的参考教科书。
这些早期的系统而确切地陈述主要建立了动力学矩阵的一般性质,他们的对称和解析性质,没有考虑到和电子性质的联系,而实际上正是电子性质决定了他们。
直到1970年才系统地研究了这些联系。
一个系统电子的性质和晶格动力学之间的联系的重要性不仅在原理方面,主要在于通过使用这些关系,才有可能计算特殊系统的晶格动力学性质。
现在用ab initio 量子力学技术,只要输入材料化学成分的信息,理论凝聚态物理和计算材料科学就可以计算特殊材料的特殊性质。
在晶格动力学性质的特殊情况下,基于晶格振动的线性响应理论,大量的ab initio 计算在过去十年中通过发展密度泛函理论已经成为可能。
密度泛函微扰理论是在密度泛函理论的理论框架之内研究晶格振动线性响应。
感谢这些理论和算法的进步,现在已经可以在整个布里渊区的精细格子上精确计算出声子色散关系,直接可以和中子衍射数据相比。
由此系统的一些物理性质(如比热、熱膨胀系数、能带隙的温度依赖关系等等)可以计算。
1从固体电子自由度分离出振动的基本近似是Born-Oppenhermer (1927) 的绝热近似。
在这个近似中,系统的晶格动力学性质由以下薛定谔方程的本征值,R和本征函数决定。
,22ERRR,,, (6.1.1) 22MRIII这里RRER是第I个原子核的坐标,是相应原子核的质量,是所有原子核坐标的集合,是RMIII系统的系统的限位离子能量,常常称为Born-Oppenhermer能量表面。
固体物理(清华大学)--N01_C03B
3.4 倒易点阵与布里渊区(Reciprocal Lattice and Brillouin Zone) 在晶格振动理论中原子的振动以机械波的形式在晶体中传播,在能带理论中电子的几率分布用波函数的形式描述,是在整个晶体中分布的几率波。
上述两种波都受制于晶格的周期性。
倒易空间就是定义在晶格上的波()r ψ的波矢k 的空间.从数学上讲,倒易点阵和Bravais 点阵互相是对应的傅里叶空间。
倒易点阵基矢(Reciprocal Basis)与晶格基矢正交归一: a a i j ij *⋅=2πδ。
倒易点阵基矢:()()()()a a a a a a a a a a a a ccc c 123231123312222***,=⨯=⨯=⋅⨯=⨯πππΩΩΩΩ即原胞体积。
倒易格矢量:*3*2*1a l a k a h G hkl ++=,其中h, k, l 为任意整数.构成倒易点阵。
Bravais 点阵的倒易点阵也是Bravais 点阵,在绝大多数情况傅里叶变换并不改变点阵的晶格结构.普遍而言倒易点阵属于点阵同一晶系.(1) 面心立方与体心立方互为正、倒易点阵。
例子:面心---体心互换。
)ˆˆˆ(2),ˆˆˆ(2),ˆˆˆ(2321z y x a a z y x a a z y x a a -+=+-=++-= (2) 体心四方变成面心四方,也就是回到体心四方.)ˆˆˆ(21),ˆˆˆ(21),ˆˆˆ(21321z c y a x a a z c y a x a a z c y a x a a -+=+-=++-= (3) 底心正交还是变成体心正交.z c a y a x a a y b x a a ˆ),ˆˆ(21),ˆˆ(21321=-=+= 倒易点阵在晶体学中的应用:晶面的定量描述。
倒格矢G ha ka la hkl =++123***垂直于()hkl 晶面。
面间距d G hkl hkl =2π/。
清华大学固体物理:第一章 自由电子论
1 金属中自由电子的量子态
金属中的传导电子好比理想气体,相互之间没有相互作用,各自独立地在平均势场中运动,通常取
平均势场为能量零点。要使自由电子逸出体外,必须克服电子的脱出功,因此金属中自由电子的能态,
可以从在一定深度的势阱中运动的粒子能态估算,通常设势阱深度是无限的,设金属中自由电子的平均
势能为零,金属外电子的平均势能为无穷大,则金属中自由电子的薛定谔方程为:
(1) 在两次碰撞间隙,忽略给定电子和其它电子及离子的相互作用。没有外加电磁场时,电子作匀速直 线运动,在有外加电磁场时,电子受电磁力,运动遵从牛顿运动定律。忽略其它电子和离子产生的复杂 的附加场。在两次碰撞间隙,忽略电子-电子之间的相互作用称为独立电子近似;忽略电子-离子之间 的相互作用称为自由电子近似。
x21 x y22 y
0 0
d
2 3 z
dz 2
k z2 3
z
0
(1.2.4)
这样问题简化为三个一维无限深势阱中粒子的量子态。设金属体是边长为 L 的立方体,周期性边界条件
为:
x L, y, z x, y, z x, y L, z x, y, z x, y, z L x, y, z
i
0
0 1
2
2
(1.1.26)
介质的复数折射率定义为:
n~ ~r12 n i
(1.1.27)
这里 n 是通常的折射率, 是消光系数。在光学实验中,通常不直接测量 n 和 ,而是测量反射率 R 和
吸收系数。它们之间的关系为:
R
n n
12 12
2 2
(1.1.28)
低频时 1 , ~r i r " ,因此:
H Ex
固体物理期末整理清华大学为电子系王燕
发信人: pmbmpg (勤奋工作,享受生活), 信区: Pretest标题: 关于王燕老师的固体物理课发信站: 自由空间 (2001年11月09日15:26:38 星期五), 站内信件我觉得王老师出题还是相当仁慈的,重点是对于概念的理解,物理为重,数学为辅。
因此各位师弟师妹一定要注意概念的理解.比如说,能带论的基本想法,包括两种近似方法的基本假定,异同等等,晶格振动 ,一维的模型应该是要会计算的,还有后面的什么费米能级什么的概念,晶体的结合的模型是比较简单的吧,掌握几个定义和概念就可以了,估计不会让你们推吧,我记得有好几个什么地方都是借助于傅立叶级数的分析方法的。
发信人: jianliu (EE不舍★加油), 信区: Pretest标题: 固体物理 2008.1.14 王燕发信站: 自由空间 (Tue Jan 15 12:54:31 2008), 站内八道简答四十分固体物理中的绝热近似是什么意思从能带理论解释为什么存在导体、半导体、绝缘体波矢空间和倒格空间有什么关系?为什么说波矢空间可以看作准连续格波和平面波的区别三道计算各十分1.画正三角形晶格的倒格子h-bar^2 7 12.已知E(k)=————(— - coska + — cos2ka)ma^2 8 8求能带宽度和能带顶底的有效质量3.已知omiga=cq^2,求频谱?发信人: Pretest (我是匿名天使), 信区: Pretest标题: 固体物理学(微)考题07.1.19发信站: 自由空间 (Fri Jan 19 17:16:55 2007), 站内一填空(30分)固体物理中常用_________边界条件理想状态中导热能力最好的是___________热膨胀系数与格林爱森常数的关系金属导电载体?半导体导电载体?考虑了散射后的运动方程1.准自由电子近似,把_____作为0级波函数,把_______作为微扰项;紧束缚近似把____作为0级波函数,把____作为微扰项2.一维单原子链,如果已知色散关系w=c*q^2,求G(w)3.准经典近似下,速度v=_____ ,有效质量的表达式________4.一维单原子链,晶格常数a,N个原子,求紧束缚近似下的E(k)=______5.低温条件,晶格比热和____成正比,电子比热和_____成正比6.半导体中,载流子在外场力作用下是__运动,考虑了散射后的运动方程__,低场条件下的迁移率__7.一维N原子链,一个能带中有多少能级?容纳多少电子?……二简答(30分)1.晶体膨胀时,费米能级如何变化,温度升高时,费米能级如何变化?2.波矢空间与倒格空间有何关系?为什么说波矢空间内的状态点是准连续的?3.布里渊区边界上的能级4.什么叫简正振动模式,简正振动数目,格波数目,格波振动模式数目是否是一回事?5.极性,非极性晶体晶格散射机制,驰豫时间与温度的关系6.温度很低时时,对于无限长的晶体,是热超导材料还是热绝缘材料?三(15')1.一维单原子链的态密度2.用德拜模型四(15')正三角形1,2,3维布里渊区五(10')有两种金属,价电子的能带分别为:E=Ak^2,E=Bk^2,其中,A>B,并已测出它们的费米能相等,他们的费米速度哪个大?发信人: coolmoon (硅晶圆上的建筑师), 信区: Pretest标题: [固体物理学·王燕]2006.1.10发信站: 自由空间 (Tue Jan 10 11:22:24 2006), 站内填空:(30个空,往年没有的)1。
清华大学考研专业课839固体物理考试范围及历年真题汇编
第二卷固体物理知识点(参考黄昆的书,学有余力也建议学习韦丹固体物理,各有特色)第一章晶体结构1.1 晶格的相关概念及几种不同晶格1.2 理解原胞概念1.3 晶面晶向的标定1.4 倒易点阵的定义及相关性质1.5 立方体、正四面体、正六角柱的对称操作1.6 五种旋转对称的推导1.7 十四种布拉伐格子,结合材料科学基础,弄清楚。
1.8 表1-2记住,材科基会考第二章固体的结合2.1 离子性结合的特点,推导马德隆常数,系统内能的表示,求平衡距离和体变模量2.2 共价结合的特点2.3 金属性结合的特点,排斥作用来源2.4 范德瓦尔斯结合的特点,Lennard-Jones 势的相关推导第三章晶格振动与晶体的热学性质3.1 了解简谐近似、简正坐标、振动模的概念3.2 格波、声子概念,一维单原子链的色散关系等计算,q 的范围,长波极限特点3.3 一维双原子链相关推导,q 的取值范围,声学波光学波的概念,长波极限的特点3.4 声学波,光学波的数量判断,q 的分布密度,第一布里渊区的概念,画法3.5 了解LST 关系3.6 确定色散关系的几种方法及其原理3.8 爱因斯坦模型和德拜模型的假设、结果、适用范围、缺陷及全部推导过程3.9 不同条件下推导晶格振动模式密度3.10 热膨胀产生原因3.11晶格热传导原理,热导率的影响因素,N、U过程,不同温度下晶格热导原理第四章能带理论4.1 布洛赫定理内容,简约波矢概念4.2 一维周期长中求带隙大小,解释其成因4.3 三维周期场的布里渊区和能带,SC、BCC、FCC的简约布里渊区及相关数据。
结合2015年十一题和课后4.8弄懂图4-114.5 紧束缚近似的概念,该近似下求SC、BCC、FCC的能带函数E(k)4.7 不同维度下求能态密度,近自由电子的等能面,费米面,费米半径的相关计算第五章晶体中电子在电场和磁场中的运动5.1 波包概念,E、F、v、a、m*的相关公式及计算5.2 恒定电场下电子的运动过程,振荡频率5.3 导体、半导体、绝缘体的能带特点5.4 了解廊道能级概念5.5 回旋共振的应用5.6 德·哈斯-范·阿尔芬效应的原理及作用第六章金属电子论(可参考材科学习辅导第九章:功能材料基础)6.1 电子热容量公式(掌握大致证明过程),电子热容量与晶格热容量大小比较及原理6.3 了解定态导电过程中的玻尔兹曼方程6.4 了解弛豫时间的概念及电导率公式6.5 了解对各向同性散射过程中弛豫时间表达式的理解6.6 晶格散射的 U 过程和 N 过程,弛豫时间公式中包含的两个重要结论第七章至第十一章:出现频率极低,搞懂相关真题,学有余力关注其中一些概念即可。
高二物理人教版课堂练习《固体》作业
高二物理《固体》作业1.一个外形规则的固体,表面形状为六面体,则关于它的说法,正确的有()A.一定是单晶体B.一定是多晶体C.一定是非晶体D.可能是晶体,也可能是非晶体2.关于晶体和非晶体,下列说法中正确的是()A.有规则的几何外形的固体一定是晶体B.晶体在物理性质上一定是各向异性的C.非晶体在适当的条件下可能转化为晶体D.晶体有确定的熔点,非晶体没有确定的熔点3.在图甲、乙、丙三种固体薄片上涂蜡,由烧热的针接触其上一点,蜡熔化的范围如图甲、乙、丙所示,而甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图丁所示,以下说法正确的是()A.甲、乙为非晶体,丙是晶体B.甲、乙为晶体,丙是非晶体C.甲、丙为非晶体,乙是晶体D.甲为多晶体,乙为非晶体,丙为单晶体4.关于晶体和非晶体,下列说法中正确的是()A.可以根据各向同性或各向异性来鉴别晶体和非晶体B.一块均匀薄片,沿各个方向对它施加拉力,发现其强度一样,则此薄片一定是非晶体C.一个固体球,如果沿其各条直径方向的导电性不同,则该球一定是单晶体D.一块晶体,若其各个方向的导热性相同,则一定是多晶体5.下列叙述中正确的是()A.晶体的各向异性是由于它的微粒按空间点阵排列B.单晶体具有规则的几何形状是由于它的微粒按一定规律排列C.多晶体有确定的熔点是因为物质微粒的有规则排列D.石墨的硬度与金刚石相比差得多,是由于它的微粒没有按空间点阵分布6.关于石墨和金刚石的区别,下面说法正确的是()A.石墨和金刚石是同种物质微粒组成的空间结构相同的晶体B.金刚石晶体结构紧密,所以质地坚硬,石墨晶体是层状结构,所以质地松软C.石墨与金刚石是不同的物质微粒组成的不同晶体D.石墨导电,金刚石不导电是由于组成它们的化学元素不同7.下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变《固体》作业答案1.解析:选D.物体具有规则的几何形状可能是机械加工造成的,它可能是单晶体、多晶体和非晶体,故选D.2.判断晶体与非晶体的关键是有没有确定的熔点.因为外形是否规则可以用人工的方法处理,所以A错误;多晶体在物理性质上是各向同性的,B错误;实验证明非晶体在适当的条件下可以转化为晶体,C正确;晶体与非晶体的区别表现在是否有确定的熔点,D正确.故选CD.3.由图甲、乙、丙可知:甲、乙各向同性,丙各向异性;由图丁可知:甲、丙有固定熔点,乙无固定熔点,所以甲、丙为晶体,乙为非晶体,其中甲为多晶体,丙为单晶体.故D正确.故选D.4.多晶体和非晶体都显示各向同性,只有单晶体显示各向异性,A、B错误,C正确;单晶体具有各向异性的特性,仅是指某些物理性质,并不是所有的物理性质都是各向异性的,换言之,某一物质的物理性质显示各向同性,并不意味着该物质一定不是单晶体,D错误.故选C5.晶体内部微粒排列的空间结构不同决定着晶体的物理性质不同,也正是由于微粒按一定规律排列,使单晶体具有规则的几何形状.石墨与金刚石的硬度相差很大是由于它们内部微粒的排列结构不同,石墨的层状结构决定了它的质地柔软,而金刚石的网状结构决定了碳原子间的作用力很强,所以金刚石有很大的硬度.多晶体在熔化时需破坏晶粒的空间点阵,故有确定的熔点.故选ABC6.由化学知识知道,石墨和金刚石是碳的同素异构体,其化学性质相同.它们的分子的空间结构不同,石墨中的碳原子排列为层状结构,层与层之间距离很大,所以其质地松软;金刚石中的碳原子排列紧密,相互间作用力很强,所以其质地坚硬.显然A、C、D错误,B正确.故选B7.将一块晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.熔化过程中,晶体的温度不变,但内能改变,故选项E错误.故选BCD.。
(完整)北京化工大学高等固体物理习题课有答案
北京化工大学第二学期研究生课程:固体物理(2)样题一、简答题1.请导出一维双原子链的色散关系,并讨论在长波极限时光学波和声学波原子的振动特点。
双原子(M>m)一维晶格运动方程:md2x2n+1/dt2=k s(x2n+2-2x2n+1+x2n)Md2x2n+2/dt2=k s(x2n+3+x2n+1-2x2n+2)方程的解是以角频率为ω的简谐振动:x2n+1=Ae i{ωt-q(2n+1)a} x2n=Be i{ωt-q2na}x2n+2=Be i{ωt-q(2n+2)a} x2n+3=Ae i{ωt-q(2n+3)a}由牛顿方程与简谐振动方程得:-mω2A=k s(e iqa+e -iqa)B-2k s A-Mω2B=k s(e iqa+e -iqa)A-2k s A上式可改写为:(2k s-mω2)A-(2k s cosqa)B=0-(2k s cosqa)A+(2k s-Mω2)B=0若A、B有异于零的解,则其行列式必须等于零,即有解条件2k s-mω2-2k s cosqa行列式为0-2k s cosqa 2k s-Mω2得:ω2={(m+M)±[m2+M2+2mMcos(2qa)]1/2}k s/mM说明:频率与波矢之间存在着两种不同的色散关系,即对一维复式格子,可以存在两种独立的格波(对于一维简单晶格,只能存在一种格波)。
两种不同的格波各有自己的色散关系:ω12={(m+M)-[m2+M2+2mMcos(2qa)]1/2}k s/mMω22={(m+M)+[m2+M2+2mMcos(2qa)]1/2}k s/mM声学波与光学波的比较2. 长光学支格波与长声学支格波本质上有何差别? 另外,你认为简单晶格存在强烈的红外吸收吗?《1》长光学支格波的特征是每个原胞内的不同原子作相对振动,振动频率较高,它包含了晶格振动频率较高的振动模式。
长声学支格波的特征是原胞内的不同原子没有相对位移,原胞作整体运动,振动频率较低,它包含了晶格振动频率较低的振动模式,波速是一常数。
固体物理(胡安)第二版课后习题答案 Word版 完整版 校核版 精品
Word版完整版校核版第一章 晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A 和点B 的格点在晶格结构中所处的地位不同,并不完全等价,平移A →B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量k l j l i l R l321++=,错误!未找到引用源。
i ,j ,k为单位向量。
错误!未找到引用源。
为整数。
问下列情况属于什么点阵?(a )当i l为全奇或全偶时; (b )当i l之和为偶数时。
解: 112233123l R l a l a l a l i l j l k=++=++ 错误!未找到引用源。
()...2,1,0,,321±±=l l l当l 为全奇或全偶时为面心立方结构点阵,当321l l l ++错误!未找到引用源。
之和为偶数时是面心立方结构1.3 在上题中若=++321l l l 错误!未找到引用源。
奇数位上有负离子,=++321l l l 错误!未找到引用源。
偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a )分别证明,面心立方(fcc )和体心立方(bcc )点阵的惯用初基元胞三基矢间夹角相等,对fcc 为错误!未找到引用源。
,对bcc 为错误!未找到引用源。
(b )在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为'1c o s109273a r c ⎛⎫-= ⎪⎝⎭'1c o s109273a r c ⎛⎫-= ⎪⎝⎭解:(1)对于面心立方()12a a j k =+ 错误!未找到引用源。
()22a a i k =+ ()32a a i j =+13222a a a a ===()1212121602a a COS a a a a ⋅⋅===()2323231602a a COS a a a a ⋅⋅===()1360COS a a ⋅=(2)对于体心立方()12a a i j k =-++ ()22a a i j k =-+ ()32a a i j k =+-12332a a a a ===()12'12121129273a a COS a a a a ⋅⋅==-=()'1313131129273a a COS a a a a ⋅⋅==-=()'2312927COS a a ⋅=(3)对于金刚石晶胞()134a i j k η=++()234a i j k η=--()2212122122314934a COS a ηηηηηη-⋅⋅===-错误!未找到引用源。
《固体物理学》基础知识训练题及其参考标准答案
《固体物理学》基础知识训练题及其参考标准答案《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
固体物理复习题整理
第二章
基本概念:
1、固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合这四种基本形式。
2、离子性结合是指固体中原子与原子之间的结合方式是以离子形式结合的单位。
3、结合能:两粒子结合成稳定结构时所释放出来的能量,或者是破坏稳定结构所需要的最小能量。也就是两粒子处在平衡状态时所具有的势能。
所以,能态密度为
5、例3:求简单立方s态能带的能态密度。
解:简单立方s态能带为
很明显, 。
在长波区域 时, ,此时等能面是一个半径为 的球面,
在 的其他地方,颇为复杂。从其等能面图上可以看到,有些地方, ,也就是 的地方,这些地方,导致能态密度发散,这样的点称为范霍夫奇点,也叫临界点。
6、作业:(1)求二维自由电子的能态密度。
方向性是指原子只在特定的方向上形成共价键。
7、电离度:描述共价结合中离子性的成份。
8、原子的负电性是用来标志原子得失电子能力的物理量,负电性越大越容易得到电子,负电性越小,越容易失去电子。负电性=0.18(电离能+亲和能),(单位:电子伏特)
9、亲和能用来度量原子束缚电子能力的量,即一个中性原子获得一个电子成为负离子时所放出的能量。
4.(作业)一维双原子链中, , ,计算: 1、光学波 和 以及声学波 ;
5.(作业)计算相应的声子能量 ( 声子的能量 )
6.(作业)在T=300K下,三种声子的数目各为多少?(利用 来求声子数)
7.课本p.580.第3.4题:考虑一个全同原子组成的平面方格子,用 记第 行,第m列的原子垂直于格平面的位移,每个原子质量为M,最近邻原子的力常源自为c,解:两格点连线的位矢为
固体物理练习()附答案复习进程
固体物理练习(2011)附答案一、简要回答以下问题:(每小题6分,共30分) 1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。
解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与7r 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。
该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。
3. 什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为)(q w j 的声子平均数为11)()/()(T k q w j B j eq n对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。
4. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。
清华大学《大学物理》试题及答案
热学部分一、选择题1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v [ ]2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等 [ ]4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ]5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 0 [ ]6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(EK /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(EK /V )不同,ρ不同 (B) n 不同,(EK /V )不同,ρ相同(C) n 相同,(EK /V )相同,ρ不同 (D) n 相同,(EK /V )相同,ρ相同 [ ]7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强 [ ]8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
2024届清华大学中学高三第二次模拟考试物理试卷含解析
2024届清华大学中学高三第二次模拟考试物理试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、一静止的铀核放出一个α粒子衰变成钍核,衰变方程为238234492902U Th+He .下列说法正确的是( )A .衰变后钍核的动能等于α粒子的动能B .衰变后钍核的动量大小等于α粒子的动量大小C .铀核的半衰期等于其放出一个α粒子所经历的时间D .衰变后α粒子与钍核的质量之和等于衰变前铀核的质量2、如图甲所示,用传感器和计算机可以方便地描出平抛运动物体的轨迹。
它的设计原理如图乙所示。
物体A 在做平抛运功,它能够在竖直平面内向各个方向同时发射超声波脉冲和红外线脉冲,在它运动的平面内安放着超声波-红外接收装置,B 盒装有B 1、B 2两个超声波-红外接收器,并与计算机相连,B 1、B 2各自测出收到超声脉冲和红外脉冲的时间差,并由此算出它们各自与物体A 的距离,下列说法正确的是( )A .该实验中应用了波的干涉规律B .该实验中应用了波的反射规律C .该实验中应用了波的直线传播规律D .该实验中所用超声波信号和红外线脉冲信号均属于无线电波3、在核反应方程中,X 表示的是A .质子B .中子C .电子D .α粒子4、如图甲所示为历史上著名的襄阳炮,因在公元1267-1273年的宋元襄阳之战中使用而得名,其实质就是一种大型抛石机。
它采用杠杆式原理,由一根横杆和支架构成,横杆的一端固定重物,另一端放置石袋,发射时用绞车将放置石袋的一端用力往下拽,而后突然松开,因为重物的牵缀,长臂会猛然翘起,石袋里的巨石就被抛出。
将其工作原理简化为图乙所示,横杆的质量不计,将一质量m =10kg ,可视为质点的石块,装在横杆长臂与转轴O 点相距L =5m 的末端口袋中,在转轴短臂右端固定一重物M ,发射之前先利用外力使石块静止在地面上的A 点,静止时长臂与水平面的夹角α=37°,解除外力后石块被发射,当长臂转到竖直位置时立即停止运动,石块被水平抛出,落在水平地面上,石块落地位置与O 点的水平距离s =20m ,空气阻力不计,g 取10m/s 2。
固体物理第二章答案
第21. 有一晶体,平衡时体积为 0V , 原子间相互作用势为0.如果相距为 r 的两原子互作用势为 ()n m r r a r u β+-= 证明(1) 体积弹性模量为 K=.90V mnU (2) 求出体心立方结构惰性分子的体积弹性模量.[解答]设晶体共含有 N 个原子,则总能量为U(r)=()∑∑i jij r u '21. 由于晶体表面层的原子数目与晶体内原子数目相比小得多,因此可忽略它们之间的基异,于是上式简化为 U=().2'∑jijr u N设最近邻原子间的距离为R 则有j ij a r =R再令 A ,1'∑=j m j m a A ,1'∑=jn j n a 得到 U=.200⎪⎪⎭⎫ ⎝⎛+-n n m m R A R A N βα 平衡时R=R 0,则由已知条件U(R 0) = 0U 得0002U R A R A N n n m m =⎪⎪⎭⎫⎝⎛+-βα 由平衡条件 0)(0=R dRR dU得021010=⎪⎪⎭⎫⎝⎛-++n nm m R A n R A m N βα. 由(1),(2)两式可解得.)(2,)(20000n n m m nR n m N U A nR n m N U A -=-=βα利用体积弹性模量公式[参见《固体物理教程》(2.14)式]K=0220209R R U V R ⎪⎪⎭⎫ ⎝⎛∂∂得K= ⎥⎦⎤⎢⎣⎡+++-n n m m R A n n R A m m N V 000)1()1(291βα = ⎥⎦⎤⎢⎣⎡-++-+-)(2)1()(2)1(2910000000n m N mR U R n n n m N nR U R m m N V nnm m = .900V mn U - 由于,00<U 因此,00U U -= 于是 K= .90V mnU (1) 由《固体物理教程》(2.18)式可知,一对惰性气体分子的互作用能为.)(126r B r A r u +-=若令 61,42⎪⎭⎫⎝⎛==A B B A σε,则N 个惰性气体分子的互作用势能可表示为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122)(R A R A N r U σσε.由平衡条件0)(0=R dRR dU 可得 R .2616120⎪⎪⎭⎫ ⎝⎛=A A σ进一步得 .2)(122600A A N R U U ε-==代入K=.900V mn U 并取 m =6,n =12,V 300334R N =得 K=5126123233⎪⎪⎭⎫⎝⎛A A A σε.对体心立方晶体有 A .11.9,25.12126==A 于是.1.703σε=K 2. 一维原子链,正负离子间距为a ,试证:马德隆常数为2=μ1n2. [解答] 相距ij r 的两个离子间的互作用势能可表示成.4)(2n ijij ij r br q r u +=πμ设最近邻原子间的距离为R 则有 R a r j ij =, 则总的离子间的互作用势能 U=()∑∑∑-⎪⎪⎭⎫ ⎝⎛±-=jn jn j j j ij a bRa R q N r u N ''0'114[22πε. 基中 jja 1'±=∑μ 为离子晶格的马德隆常数,式中+;- 号分别对应于与参考离子相异和相同的离子.任选一正离子作为参考离子,在求和中对负离子到正号,对正离子取负号,考虑到对一维离子两边的离子是正负对称分布的,则有.413121112)1('⎥⎦⎤⎢⎣⎡+-+-=±=∑Λj ja μ利用正面的展开式 1n(1+x ),432432Λ+-+-x x x x 并令 1=x 得Λ+-+-41312111=1n(1+1)=1n2.于是,一维离子链的马德常数为2=μ1n23. 计算面心立方面简单格子的6A 和12A(1) 只计最近邻; (2) 计算到次近邻; (3) 计算到次近邻.[解答]图2.26示出了面心立方简单格子的一个晶胞.角顶O 原子周围有8个这样的晶胞,标号为1的原子是原子O 的最近邻标号为2的原子是O 原子的最近邻,标号为3的原子是O 原子的次次近邻.由此得到,面心立方简单格子任一原子有12个最近邻,6个次近邻及24个次次近邻.以最近邻距离度量,其距离分别为:.3,2,1===j j j a a a 由 .1,112'126'6⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∑∑jj j j a A a A图2.6 面心立方晶胞得(1) 只计最近邻时1211*12)1(66=⎪⎭⎫⎝⎛=A , 1211*12)1(1212\=⎪⎭⎫⎝⎛=A .(2) 计算到次近邻时.094.1221*611*12)2(,750.1221*611*12)2(121212666=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A(3) 计算到次次近邻时.127.12033.0094.1231*2421*611*12)3(,639.13899.0750.1231*2421*611*12)3(121212126666=+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A 由以上可以看出,由于12A中的幂指数较大,12A 收敛得很快,而6A 中的幂指数较小,因此 6A 收敛得较慢,通常所采用的面心立方简单格子的 6A 和 12A 的数值分别是14.45与12.13.4. 用埃夫琴方法计算二维正方离子(正负两种)格子的马德隆常数. [解答]马德隆常数的定义式为 jja 1'±=∑μ,式中+、-号分别对应于与参考离子相异和相同的离子,二维正方离子(正负两种)格子,实际是一个面心正方格子,图 2.7示出了一个埃夫琴晶胞.设参考离子O 为正离子,位于边棱中点的离子为负离子,它们对晶胞的贡献为4*(1/2).对参考离子库仑能的贡献为图2.7二维正方离子晶格.121*4顶角上的离子为正离子,它们对晶胞的贡献为4*(1/4), 对参考离子库仑能的贡献为 .241*4-因此通过一个埃夫琴晶胞算出的马德隆常数为 .293.1241*4121*4=-=ν再选取422=个埃夫琴晶胞作为考虑对象,这时离子O 的最的邻,次近邻均在所考虑的范围内,它们对库仑能的贡献为,2414-而边棱上的离子对库仑能的贡献为 ,521*8221*4+- 顶角上的离子对为库仑能的贡献为 ,841*4-这时算出的马德隆常数为图 2.8 4个埃夫琴晶胞同理对932=个埃夫琴晶胞进行计算,所得结果为611.11841*41321*81021*8321*48458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ 对 1642=个埃夫琴晶胞进行计算,所得结果为614.13241*42521*81721*81021*8421*4184138108348458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ当选取 n 2个埃夫琴晶胞来计算二维正方离子(正负两种)格子的马德隆常数,其计算公式(参见刘策军,二维NaC1 晶体马德隆常数计算,《大学物理》,Vo1.14,No.12,1995.)为 [][].1,8411>+++=--n D C B A n n n n μ其中 ,21)1(,1)1(11111nB t A n n n t t n +-=+--=-=∑,1)1(1)1()2()1(1)1()1(2112212221112122122222222221⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+--+-+-+--++⎪⎪⎭⎫⎝⎛+++-+⎪⎪⎭⎫ ⎝⎛+---n n n n n C n n ΛΛ.121)1()1(2181222222+-+-++++-=n n n n n D n n Λ5. 用埃夫琴方法计算CsCl 型离子晶体的马德隆常数(1) 只计最近邻 (2) 取八个晶胞 [解答](1) 图2.29是CsCl 晶胸结构,即只计及最近邻的最小埃夫琴晶胞,图2.29()a 是将Cs +双在体心位置的结构,图2.9(a)是将 Cl -取在体心位置的结构,容易求得在只计及最近邻情况下,马德隆常数为1.图2.29 (a )Cs 取为体心的CsC1晶胞,(b) C1取为体心的CsC1晶胞(2)图2.10是由8个CsCl 晶胞构成的埃夫琴晶胞,8个最近邻在埃夫琴晶胞内,每个离子对晶胞的贡献为1,它们与参考离子异号,所以这8个离子对马德隆常数的贡献为8埃夫琴晶胞6个面上的离子与参考离子同号,它们对埃夫琴晶胞的贡献是21,它们与参考离子的距离为32R 它们对马德隆常数的贡献为-()3/2*621图 2.10 8个CsCl 晶胞构成的一个埃夫琴晶胞埃夫琴晶胞楞上的12个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是41它们与参考离子的距离为322R 它们对马德隆常数的贡献为-()3224/1*12埃夫琴晶胞角顶上的 8个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是81它们与参考离子的距离为2R 它们对马德隆常数的贡献为 -()281*8,由8个CsCl 晶胞构成的埃夫琴晶胞计算的马德隆常数.064806.32)8/1(*8322)4/1(*123/2)2/1(*68=---=μ 为了进一步找到马德常数的规律,我们以计算了由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数,结果发现,由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数是0.439665.马德隆常数的不收敛,说明CsCl 晶胞的结构的马德隆常数不能用传统的埃夫琴方法计算.为了找出合理的计算方法,必须首先找出采用单个埃夫琴晶胞时马德隆常数不收敛的原因.为了便于计算,通常取参考离子处于埃夫琴晶胞的中心.如果以Cs +作参考离子,由于埃夫琴晶胞是电中性的要求,则边长为pa 2(p 是大于或等于1的整数)的埃夫琴晶胞是由(2p )3个CsCl 晶胞所构成,埃夫琴晶胞最外层的离子与参考离子同号,而边长为(2p +1)的埃夫琴晶胞是由(2p +1)3 个 CsCl 晶胞所构成,但埃夫琴晶胞的最外层离子与参考离子异号,如果以C1-作参考离子也有同样的规律,设参考离子处于坐标原点O ,沿与晶胞垂直的方向(分别取为x,y,z 图2.11示出了z 轴)看去,与参考郭同号的离子都分布在距O 点ia 的层面上,其中i 是大于等于 1的整数,与 O 点离子异号的离子都分布在距O 点(i -0.5)a 的层面上,图 2.11(a) 示出了同号离子层,图2.11(b)示出了异号离子层.图2.11 离子层示意图(a)表示同号离子层, O 离子所在层与 O '离子所在层相距ia(b)表示异号离子层, O 离子所在层和O ' 离子所在层相距(i -0.5)a当 CsCl 埃夫琴晶胞边长很大时,晶胞最外层的任一个离子对参考离子的库仑能都变得很小,但它们对参考离子总的库仑能不能忽略.对于由(2p )3个CsCl 晶胞所构成的埃夫琴晶胞来说,最外层有6*(2p )2个与参考离子同号的离子,它们与参考离子的距离为(1/2)pa ~(23)pa ,它们与参考离子的库仑能为a pe 024πε量级,这是一个相对大的正值.对于由(2p +1)3个CsCl 晶胞所构成的埃夫琴晶胞来说,离外层有6*(2p +1)2个与参考离子异号的离子,它们与参考离子的库仑能为a pe 024πε-量级,这是一个绝对值相对大的负值,因此,由(2p )3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能,与由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能会有较大的差异.即每一情况计算的库仑能都不能代表CsCl 晶体离子间相互作用的库仑能.因此这两种情况所计算的马德隆常数也必定有较大的差异,由1个CsCl 晶胞、8个CsCl 晶胞和27个CsCl 晶胞构成的埃夫琴晶胞的计算可知, CsCl 埃夫琴晶胞体积不大时,这种现象已经存在.为了克服埃夫琴方法在计算马德隆常数时的局限性,可采取以下方法,令由 (2p )3个CsCl 晶胞构成的埃夫琴晶胞计算的库仑能为1U ,由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能为1U ,则CsCl 晶体离子间相互作用的库仑能可近似取作 )(2121U U U +=(1) 因子1/2 的引入是考虑除了(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞最外层离子外,其他离子间的库仑能都累计了两偏,计算1U 和2U 时要选取体积足够大的埃夫琴晶胞,此时埃夫琴晶胞最外层离子数与晶胞内的离子数相比是个很小的数,相应的马德隆常数应为 )(2121μμμ+=(2) 其中:=1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'是由(2p )3个CsC1晶胞构成的埃夫琴晶胞计算的值; =1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'由 (2p +1)3 个CsC1晶胞构成的埃夫琴晶胞所计算成本的值.为简化计算,特选取晶胞边长a 为计算单位,由于,32a R =所以,23'μμ= ⎪⎪⎭⎫ ⎝⎛±=∑'''1i i a μ (3) 其中'i a 是某一离子到参点的距离与a 的比值.考虑到对称性,对选定的埃夫琴晶胞,把晶胞的离子看成分布在一个个以参考离子为对称心的正六面体的六个面上,体积不同的正六面六个面上的离子分别计算.由(2p )3个CsC1晶胞构成埃夫琴晶胞时,由分析整理可得,231111⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i C B A μ (4) 由(2p +1)3个 CsC1 晶胸构成埃夫琴晶胞时,,231112⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i D B A μ (5)其中:),1(''''22'2'p i i y x k A i x iy y x i <≤++-=∑∑(6)i A 表示与 O 点距离为ia 的6个面上所有的离子对马德隆常数的面贡献,因为这些离子与参考离子同号,故到负号.'x 、'y 是离子在平面 '''y x o 上的坐标, ''y x k 代表 6个面上等价离子的个数,其取值规则为:(1) 在角上(如E 点),即'x =i 且 'y = i. 时, ''y x k =8;(2) 在棱与坐标轴的交点(如 F 点),'x =i 且'y = 0或 'x =0且'y = 0时, ''y x k =6 (3) 在棱上的其他点(如H 、I 点)即不满足上述条件,且'x =i 或'y = i.时, ''y x k =12 (4) 在'O 点,即'x =0且'y = 0时, ''y x k =6(5) 在除'O 点外的面上的点(如J 点),即不满足上述条件时,''y x k =24.),1()5.0(5.05.05.05.022'2''''''p i i y x k B i x i y yx i ≤≤-++=∑∑-=-=(7)i B 代表距O 点距离为(i -0.5)a 的6个面上的离子对马德隆常数的贡献,因为这种些离子与参考离子异号,故取正号. 'x ,'y 是离子在平面'''y x o 上的坐标, '''y x k 代表这6个面上等价离子的个数,其取值规则为:(1) 在角上(如K 点),即'x =i 且 'y = i.时, '''y x k =8;(2) 在棱下(如L 、M 点),即不满足不述条件,且'x =i 或'y = i 时,'''y x k =12; (3) 在面上(如N 点)好不满足上述条件时, '''y x k =24.),(0022'2'"''''p i i y x k C i x iy i yx =++-=∑∑==i C 表示在边长为2pa 的晶胞最外层,即与参考离子相距pa 的6个面上的离子对马德隆常数的贡献,应取负号,与iA 的不同在于"''y x k的取值: (1) 在角上, "''y x k =''y x k /8; (2) 在棱上, "''y x k =''y x k /4; (3) 在面上, "''y x k=''y x k /2.),()5.0(5.05.05.05.022'2''''''''p i i y x k D i x i y yx i =-++=∑∑-=-=i D 表示在边长为2a p )1(+的晶胞最外层,即与参考离子相距(p +0.5)a 的离子层对马德隆常数的贡献,应取正号,与i B 的不同在于'''''yx k 的取值: (1) 在角上, '''''y x k ='''y x k /8; (2) 在棱上, '''''y x k ='''y x k /4; (3) 在面上, '''''y x k ='''y x k /2.表2.1给出了计算结果,给出的μ是由分别对应2p 和2p+1的1μ和2μ求得的,实际上, 1μ和2μ只需对应边长相近的埃夫琴晶胞即可,如取对应2p 和2p-1的埃夫琴晶胞也可得到一样的收敛结果,由以上数据可见,马德隆常数μ随晶胞边长的增大而迅速收敛.该方法适用于NaC1结构以外离子晶体马德隆常数的计算.6.只计及最近邻间的排斥作用时,一离子晶体离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±-=-)2(,)1(,)(22r e R e e r u R ρλ(1)最近邻(2)最近邻以外 式中ρλ,是常数,R 是最近邻距离,求晶体平衡时,原子间总的互作用势.[解 答]设离子数目为2N,以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示为U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑-ρλR j j e R a e 2' (∑表示最近邻)=N ,2⎥⎦⎤⎢⎣⎡+--ρλμR e Z R e其中⎪⎪⎭⎫⎝⎛±=∑j ia 1'μ 为马德隆常数,+号对应于异号离子,-号对应于同号离子;Z 为任一离子的最近邻数目,设平衡时R=R 0 ,由平衡条件,02020=⎥⎦⎤⎢⎣⎡+=-ρρλμR R e Z R e N dRdU 得.0202ρλμρR e Z R e -=平衡时的总相互作用为.1)(0020200⎪⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡+-=-R R e N e Z R e N R U R ρμλμρ 7. 设离子晶体中,离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±+-=最近邻以外最近邻,,)(22re R b R e r u m(1) 求晶体平衡时,离子间总的相互作用势能)(0R U (2) 证明: )(0R U 11-⎪⎪⎭⎫⎝⎛∝m mZ μ其中μ是马德隆常数,Z 是晶体配位数 [解答](1)设离子数目为2N , 以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑m j j R b R a e 2'(∑表示最近邻) =N ,2⎥⎦⎤⎢⎣⎡+-m R b Z Re μ其中⎪⎪⎭⎫ ⎝⎛±=∑j i a 1'μ,为马德隆常数,+号对应于异号离子,-号对应于同号离子.Z 为任一离子的最近邻数目,设平衡时R=R 0由平衡条件,0102020=⎥⎦⎤⎢⎣⎡-=+m R R Zmb R e N drdUμ得10-m R Zmb=2e μ即1120-⎪⎪⎭⎫ ⎝⎛=m e Zmb R μ.于是,晶体平衡时离子间总的相互作用势能0U =).1(000--=⎥⎦⎤⎢⎣⎡+-m R NZbR b Z R Zmb N m m m(2)晶体平衡时离子间的相互作用势能可进一步化为0U =.)()()1()1(1111121211--------=⎪⎪⎭⎫ ⎝⎛--m m m m mm m m m m mb Ze Nbm e Zmb ZNbm μμ由上式可知 .110-⎪⎪⎭⎫⎝⎛∝m mZ U μ8.一维离子链,其上等间距载有正负2N 个离子,设离子间的泡利排斥只出现在最近邻离子之间,且为b/R n,b,n 是常R 是两最近邻离子的间距,设离子电荷为q ,(1) 试证明平衡间距下 )(0R U =;114212002⎪⎭⎫⎝⎛--n R n Nq πε(2) 令晶体被压缩,使0R )1(0δ-→R , 试证明在晶体被压缩单位长度的过程中外力作功的主项为c 2δ其中c=;21)1(02R n q n -(3) 求原子链被压缩了2)1(0<<e e NR δδ时的外力[解答](1) 因为离子间是等间距的,且都等于R ,所以认定离子与第j 个离子的距离j r 总可表示成为R a r j j =ja 是一整数,于是离子间总的互作用势能⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛±-=⎥⎥⎦⎤⎢⎢⎣⎡+=∑∑n i in j j j R b a R q N r b r q N R U 214242)('202'0πεπεμ,其中+、-分别对应相异离子和相同离子的相互作用.一维离子晶格的马德隆常数(参见本章习题2)为=⎪⎪⎭⎫ ⎝⎛±∑i ia 1'21n2. 利用平衡条件0)(0=R dRR dU得到b=nq 01-n 0241n2R πε,)(R U =⎪⎪⎭⎫ ⎝⎛---n n nR R R Nq 102141n22πε. 在平衡间距下⎪⎭⎫⎝⎛--n R Nq R U 1141n22)(0020πε.(2) 将互作用势能在平衡间距附近展成级数Λ+-⎪⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+=202200)(21)()()(0R R dR U d R R dR dU R U R U R R 由外力作的功等于晶体内能的增量,可得外力作功的主项为W=20220)(21)()(0R R dR U d R U R U R-⎪⎪⎭⎫ ⎝⎛=-, 其中利用平衡条件,将R=R )1(0δ- ,代入上式,得到W=δδπε)2(421)1(2102002NR R n q n ⎥⎥⎦⎤⎢⎢⎣⎡-. 晶体被压缩单位长度的过程中,外力作的功的主项δ02W NR =δπε⎥⎥⎦⎤⎢⎢⎣⎡-2002421)1(21R n q n 令c=202421)1(R n q n πε-(CGS)得到在晶体被压缩单位长度的过程中,外力作的功的主项为2δc . (3)设e δδ=时外力为F e ,由于在弹性范围内,外力与晶格的形变成正比,所以 F= )2(0δαNR , F e = )2(0e NR δα,其中α为比例系数离子链被压缩e NR δ02过程中外力作的功W e =δδαδδd NR NR Fdx e eNR e 020002)]2([0⎰⎰== e e e F NR NR δδα022022121)2(=.由于 W e =)2(20e eNR c δδ,所以离子链被压缩了e NR δ02时的外力为F e =202)1(21R n n q c ee δδ-=.9.设泡利排斥项的形式不变,讨论电荷加倍对NaC1晶格常数,体积弹性模量以及结合能的影响。
固体物理学
(如Si,Ge,GaAs)
晶体又可分为:单晶和多晶,本节主要讲单晶。
单晶:在整块材料中,原子都是规则地、周期性地重
复排列的,一种结构贯穿整体,这样的晶体称 为单晶,如石英单晶,硅单晶。
多晶:是由大量的微小单晶体(晶粒)随机堆积成的
整块材料,如各种金属材料和电子陶瓷材料。
非晶(体)的基本特点:
无规则的外形和固定的熔点,内部结构也
本章主要介绍晶体中原子排列的几何规则。
理想晶体:组成晶体的粒子以某种排列规则无 限排列下去形成的晶体,其中不存在任何杂质 和缺陷。
缺陷:就是一种违反现存的排列规律而出现的
一种异常现象。
简而言之,晶体结构就是组成晶体的微粒的排 列规则
由于晶体具有周期性,因此在固体物理中通常都是从分析一
个完整而无限的单晶模型开始(理想晶体)。
期性特征。
在十九世纪末,费多夫、熊夫利(A.Shoenflies)、巴罗(W. Barlow)等独立地发展了关于晶体几何结构的空间群理论。
1912年劳厄(Laue)首先提出的X射线衍射方法,从实验上验证
了群理论。经过几十年研究,对晶体的特征有了一定了解,但对 非晶研究远不如晶体,对准晶的研究更不全面。
准晶: 有长程的取向序,沿取向序的对称轴方向有准周期 性,但无长程周期性
准晶是介于周期晶体和非晶玻璃之间的一种新的固体物质 形态。
目前已经发现的准晶材料多数为金属键化合物,结构独特, 性质优异。
具有5重旋转对称性,但不具有长程的平移对称性,不能 用一个原胞平移复制出全部晶格。
Al65Co25Cu10合金 准 晶
Y
(11) 红镍矿
清华大学固体物理:第五章固体能带理论II5.2
5.2恒定电场磁场作用下布洛赫电子的运动 1 恒定电场作用下布洛赫电子的运动 恒定电场中布洛赫电子在k 空间的振荡以一维晶体为例讨论在恒定电场中布洛赫电子的运动。
设电场力F = - qE ( E 为电场强度 ) 沿x 轴正方向,根据F dtdk = (5.2.1)布洛赫电子在k 空间作匀速运动,在准经典运动中,布洛赫电子没有足够的能量从一个能带跃迁到另一个能带,只能保持在同一个能带中运动。
由于布洛赫电子的能量E (k ) 是k 空间的周期函数,布洛赫电子在k 空间作匀速运动时,它的能量沿E (k ) 函数曲线周期性变化。
若用约化布里渊区表示,当电子运动到布里渊区边界 (k = π/a ) 时,由于k = -π/a 与k = π/a 相差倒格矢 2π/a ,实际描述同一个量子态,因此布洛赫电子从k = π/a 运动出简约区,实际上同时从k = -π/a 运动进入简约区,布洛赫电子在k 空间作来回循环运动。
恒定电场中布洛赫电子在r 空间的振荡布洛赫电子在k 空间作来回循环运动,能量随时间作周期性变化,由于布洛赫电子的速度是能量E (k ) 对k 的一阶导数,有效质量的倒数是能量E (k ) 对k 的二阶导数,表现在其在r 空间的运动速度和有效质量也随时间作周期性变化。
布洛赫电子速度的周期性变化,意味着它在r 空间的振荡。
有外电场时,布洛赫电子的能量附加有静电势能,沿x 轴正方向下降,能带发生倾斜。
设开始时,一能带底部电子在电场力作用下运动到能带顶部,遇到了能隙,相当于存在有一势垒,在准经典运动中,电子局限在同一能带中运动,遇到势垒后将全部被反射回来,速度改变方向,布洛赫电子由能带顶部返回能带底部,这就是布洛赫电子在r 空间的振荡。
布洛赫电子在运动过程中将要不断受到声子、杂质和缺陷的散射,相邻两次散射之间的平均时间间隔称为电子的平均自由运动时间,用τ表示,如果τ很小,布洛赫电子来不及完成振荡运动就被散射了,τ的典型值为10-13秒,布洛赫电子在k 空间振荡的圆频率为:qEa qE a =⎪⎪⎭⎫ ⎝⎛=-122ππω (5.2.2)观测到布洛赫电子在k 空间振荡的条件为1>>ωτ (5.2.3) 如果取a = 3 Å,需要电场强度E 大于2 ⨯ 105 V -cm -1。