MEA法煤气脱硫工艺
MEA 脱硫脱碳
贫液浓度 W%
CO2
H2S
MEA, DEA
15 ~ 20 25 ~ 35
0.5 0.45
0.35 0.3
Hale Waihona Puke TEA, MDEADGA DEA / MDEA MEA / MDEA
35 ~ 50
45 ~ 65 35 ~ 50 35 ~ 50
0.3
0.5 0.45 0.45
0.2
0.35 0.3 0.3
6
• 方法1: Kent & Eisenberg 混合物为; MEA/MDEA; DEA/MDEA • 方法2: Li – Mather Electrolyte 可处理任何二元混合物
7
技术原理: 气源首先进入分离罐中进行分离,分离出冷却凝结出的水。而汽相产品进入脱水吸收 塔下部,与塔上部进入的MEA贫液在塔内逆流接触,提取气源中的绝大多数甲烷和部分轻 烃组分,从吸收塔的顶部排出。MEA富液从吸收塔下部排出,经阀门调压(降压)后进入 闪蒸罐,在约0.6MPa压力下闪蒸出烃类及少量的CO2、H2S和H2O气体等,闪蒸后的 MEA 富液经MEA贫富液换热器与热的MEA 贫液换热后,进入MEA富液精馏柱。在MEA再 生系统中,MEA 溶液被提浓,同时脱除了绝大多数的CO2、H2S气体及部分水蒸气。 再生后的MEA贫液经MEA 贫富液换热器降温后进入空冷器中进行降温,在进入空冷器降温 前补给水,再经循环泵进一步加压后进入脱水吸收塔上部,完成MEA的吸收、再生以及徒 脱硫脱碳的循环过程。
8
流程图
9
本案例结束
10
2。叔胺(Teritary amine) TEA
(C2H4OH)3 -N
4
Gas Sweetening Training
焦炉煤气脱硫技术缩述
脱硫新技术在焦化厂生产中,焦炉煤气中所含的硫化氢及氰化氢是有害的杂质,它们腐蚀化产回收设备及煤气储存输送设施,还会污染厂区环境。
用此种煤气炼钢、轧钢加热,会降低钢材产品的质量,腐蚀加热设备;用作城市燃气,硫化氢及燃烧生产的二氧化硫、氰化氢及其燃烧生成的氮氧化物均有毒,会严重影响环境卫生。
所以焦炉煤气中的硫化氢和氰化氢应予清除。
脱硫技术综述焦炉煤气脱硫方法分为:干法脱硫和湿法脱硫。
干法脱硫是一种古老的煤气脱硫方法。
这种方法的工艺和设备简单,操作和维修比较容易。
但该法为间歇操作,占地面积大,脱硫剂的更换和再生工作的劳动强度较大,现代化的大型焦化厂已不再采用。
干法脱硫通常是以氢氧化铁为脱硫剂,当焦炉煤气通过脱硫剂时,煤气中的硫化氢与氢氧化铁接触,生成硫化铁,这是吸收反应。
硫化铁与煤气中氧接触,在有水分的条件下,硫化铁转化为氢氧化铁并析出单质硫,这是再生反应。
干法脱硫的过程就是吸收反应和再生反应的多次循环。
目前仅使用于煤气流量不大,用户对煤气硫化氢含量要求非常高,需进一步精制脱硫的工艺,如涟钢的民用煤气和冷轧薄板所需的精制脱硫。
焦化净化煤气脱硫一般采用湿法脱硫:湿法脱硫又分为吸收法和氧化法,氧化法脱硫是对吸收法脱硫的改进和完善,是脱硫工艺更流畅,脱硫效果进一步提高。
焦炉煤气脱硫脱氰湿法工艺分类吸收法脱硫脱氰是以碱性溶液作为吸收剂,吸收煤气中的硫化氢和氰化氢,然后用加热气提的方法将酸性气体从吸收液中解吸出来,用以制造硫磺或硫酸,吸收剂冷却后循环使用。
吸收法按所用吸收剂的不同分为氨水法(A.S法)、真空碳酸盐法(V.A.S.C法)、单乙醇胺法(索尔菲班法)三种。
氧化法脱硫脱氰是以含有氧化催化剂的碱性溶液作为吸收剂,吸收煤气中的硫化氢和氰化氢,再在催化剂作用下析出元素硫。
吸收液用空气氧化法再生后循环使用。
氧化法按催化剂的不同,分为砷碱法、萘醌二磺酸法(塔—希法T.H)、苦味酸法(F.R.C法)、蒽醌二磺酸法(改良A.D.A法)、对苯二酚法、H.P.F法。
《镁法烟气脱硫》课件
技术发展历程
20世纪70年代
01
镁法烟气脱硫技术开始研究与开发。
20世纪80年代
02
镁法烟气脱硫技术在工业上得到应用。
21世纪初
03
随着环保要求的提高,镁法烟气脱硫技术得到更广泛的应用和
改进。
镁法烟气脱硫的优势与局限性
脱硫效率高
可达到90%以上的脱硫效率。
适用范围广
适用于各种规模的燃煤锅炉和工业窑炉。
环保法规的严格化
关注环保法规的修订和实施,确保企业符合相关标准和要求。
产业政策调整
关注产业政策的调整,以便及时应对市场变化和竞争态势。
市场需求与竞争
市场需求的增长
随着环保意识的提高和工业烟气排放标准的趋严,市场需求将进一 步增长。
竞争格局的变化
关注竞争对手的动态,了解市场竞争格局的变化,以便制定相应的 竞争策略。
对设备腐蚀性较大
反应过程中产生的酸雾对设备有一定 的腐蚀作用。
02
镁法烟气脱硫工艺流程
吸收剂准备
1 2
吸收剂选择
选择高活性、高选择性的吸收剂,如轻烧氧化镁 等。
吸收剂制备
将选择的吸收剂进行适当的预处理和活化,以提 高其反应活性。
3
吸收剂储存
为保证吸收剂的活性,需在干燥、避光的环境中 储存。
吸收塔反应
镁法烟气脱硫的优势与局限性
副产物可回收利用
生成的硫酸镁或亚硫酸镁可作为化工原料。
技术成熟可靠
经过多年的研究与应用,技术已相当成熟。
镁法烟气脱硫的优势与局限性
成本较高
Байду номын сангаас
需要解决二次污染问题
相比其他脱硫技术,镁法烟气脱硫的 初始投资和运行成本较高。
镁法烟气脱硫技术的应用
镁法烟气脱硫技术的应用摘要:镁法烟气脱硫技术是一项发展前景广阔的脱硫技术,分析了镁法烟气脱硫技术的原理、技术特点,并对华能威海某电厂镁法烟气脱硫装置的工艺流程与设计特点作了介绍。
关键词:烟气脱硫;氧化镁0 引言我国很多城市空气二氧化硫污染十分严重,目前已有4,Y的城市环境空气二氧化硫平均浓度超过国家《环境空气质量标准》二级标准。
因此控制二氧化硫排放已成为社会和经济可持续发展的迫切要求,势在必行。
1.烟气脱硫技术的分类据统计,0UZ2 年世界上有二氧化硫控制工艺189 种,目前已超过,-- 种。
主要可分为四类:燃烧前控制T 原煤净化;燃烧中控制T 硫化床燃烧(WFS)和炉内喷吸收剂;燃烧后控制T 烟气脱硫;新工艺(如煤气化V 联合循环系统、液态排渣燃烧器)。
目前,世界上各国对烟气脱硫都非常重视,已开发了数十种行之有效的脱硫技术,大多数国家采用燃烧后烟气脱硫工艺。
烟气脱硫技术的主要分类见表1。
2. 镁法烟气脱硫的原理镁法烟气脱硫技术是用氧化镁作为脱硫剂进。
行烟气脱硫的一种湿法脱硫方式,也称为氧化镁湿法烟气脱硫技术。
氧化镁的脱硫机理与氧化钙的脱硫机理相似,都是碱性氧化物与水反应生成氢氧化物,再与二氧化硫溶于水生成的亚硫酸溶液进行酸碱中和反应,反应生成亚硫酸镁和硫酸镁,亚硫酸镁氧化后生成硫酸镁。
其主要化学反应过程如下。
氧化镁浆液制浆过程的化学反应为:MgO+H2O=Mg(OH)2MgO+2CO2+H2O=Mg(OH)2镁法烟气脱硫过程的基本化学反应为:Mg(OH)2+SO4=MgSO4+H2OMg(HCO3)2+SO2=MgSO3+H2O+2CO2MgSO3+H2O+SO2=Mg(HSO3)2MgO+Mg(HSO3)2+H2O=2MgSO3+H2O(要完成此过程MgO要有5%的过量)MgSO3+1/2O2=MgSO43.镁法烟气脱硫装置的设计工艺3.1 烟气脱硫装置的基本设计情况威海电厂二期2*225MW凝汽式汽轮发电机组配2*670t/h燃煤炉,根据环保要求,需进行烟气脱硫技术改造工作,建设两套湿式氧化镁法烟气脱硫装置,为中国第一个将氧化镁脱硫剂用于电厂烟气脱硫。
天然气中MDEA法脱硫技术的研究
天然气中MDEA法脱硫技术的研究天然气是一种清洁能源,当前已成为我国能源结构中很重要的部分。
据统计,我国天然气产量接近7×1010 m3,排名全球第九。
天然气中主要是存在H2S和有机硫化合物等酸性气体。
在运输过程中,会造成金属管道的材料腐蚀,引发重要的安全事故,造成巨大的人生、财产安全;另外在燃烧H2S的过程中,气味难闻,会污染大气环境;此外这些气体在低温过程中结冰堵塞仪表和管线;另外还会导致催化剂中毒等危害,影响产品质量。
所以必须对天然气进行脱硫工艺,使其符合国家标准。
开发安全、环保的天然气资源是势在必行。
论文对国内外MDEA法脱硫技术应用现状做了简要介绍。
对MDEA脱硫法做了详细的评述,介绍了其工艺原理和工作流程。
希望对我国天然气行业的脱硫技术的发展起一定的促进作用。
1 国内外天然气中MDEA法脱硫技术应用现状最早在天然气上采用MDEA脱硫的是美国的FlourCo。
在20世纪40年代末的时候,它就大力推荐使用MDEA法进行脱掉天然气中的H2S。
通过实验室以及工厂中的中试实验来证明此法可行。
到了70年代,美国的Dow chemical Co等对MDEA法脱硫进行了工业应用。
由此很多美国企业都开始采用此法,目前大约有10套左右的MDEA 装置在运转。
比如在伊朗,其Khangiran天然气净化厂也是采用的MDEA法进行脱硫的。
查询资料所知在加拿大,Burnt Timber天然气净化厂也进行了改造方案,采用MDEA溶液进行脱硫处理,预测到2020年时,其H2S的含量会大大降低。
查阅资料所知,我国对天然气使用MDEA法脱硫的研究开始于四川省内。
从1981年开始,四川的天然气研究所就开始了对天然气使用MDEA示脱硫的工业研究。
四川省内第一次将MDEA法脱硫装置应用在工业上是四川达州建设完成的日处理量为25kNm3的脱硫装置。
从这时开始,其它很多地方的天然气公司都开始学习采用此法进行脱硫,比如有渠县脱硫厂和万县脱硫厂。
镁法脱硫技术方案
镁法脱硫技术方案镁法脱硫(MgO法脱硫)是一种高效的燃煤电厂脱硫技术,它通过利用镁原料与SO2反应生成MgSO3/MgSO4及相应的MgO等反应产物,将燃煤电厂的SO2排放量降低到国家标准以下。
下面将给出镁法脱硫技术方案。
一、工艺流程镁法脱硫的工艺流程主要包括石灰石粉碎、煤粉预处理、喷吹预处理剂、燃烧脱硝、湿法脱硫等。
具体流程如下:1.石灰石粉碎:将所使用的石灰石经过粉碎处理,得到细小的石灰石粉末。
2.煤粉预处理:对烟煤进行预处理,如振动筛等,去除其中粉尘、杂质等。
3.喷吹预处理剂:在燃烧炉的上部喷吹预处理剂,作用是在燃烧过程中将SO2转化为SO3,利于后续脱硫。
4.燃烧脱硝:燃烧过程中产生的NOx会通过脱硝设备进行处理,降低NOx的排放浓度。
5.湿法脱硫:利用镁石粉、石灰石、水等混合成脱硫液,在脱硫装置内与烟气反应,将SO2转化为MgSO3/MgSO4等产物,达到脱硫的效果。
二、反应原理在燃煤电厂中,SO2是主要的污染物之一。
利用镁法脱硫技术,通过以下的反应原理将SO2转化为硫酸镁等无害物质。
首先,在喷吹预处理剂的作用下,SO2被氧化为SO3,如下所示:SO2 + 1/2O2 → SO3然后,SO3与镁原料反应,生成MgSO4,如下所示:MgO + SO3 → MgSO4最后,MgSO4与石灰反应,生成硫酸镁和CaSO4,如下所示:MgSO4 + CaO → MgO + CaSO4反应结束后,CaSO4可被制成石膏板等建筑材料,实现资源循环利用。
三、技术优势镁法脱硫技术相较于其他脱硫技术,有如下优势:1. 高效:镁法脱硫吸收塔内通过喷淋镁石浆料获得10~15s的接触时间,比其他脱硫技术的接触时间更长,故脱硫效率高。
2.适用性强:镁法脱硫技术适用于高温、高湿、高硫、高脱硝等复杂工况下,且可以灵活调节反应参数,适应不同的燃煤电厂要求。
3.反应产物无污染:镁法脱硫技术所产生的硫酸镁等有用产物可以回收利用,不会造成排放物的二次污染。
MDEA脱硫原理及工艺流程
MDEA法脱除CO2工艺是德国BASF公司20世纪80年代开发的一种低能耗脱CO2工艺。
此工艺在世界上几十个大型氨厂使用。
生产实践表明:该法不仅能耗低,而且吸收效果好,能使净化气中CO2降至1%以下,溶液稳定性好,不降解,挥发性小,腐蚀性好,对碳钢设备腐蚀性小,对烃类溶解度低等优点。
1、工艺原理MDEA的化学名是N-甲基二乙醇胺,它是一种叔胺。
与CO2反应如下:CO2 + H2O → H+ + HCO3- (7)H+ + R2CH3N → R2CH3NH+ (8)R2CH3N + CO2 + H2O→ R2CH3NH+ + HCO3- (9)反应(7)是水合反应,其反应速度很慢,为了加快反应速度,就是在N-甲基二乙醇胺溶液中加入活性剂,改变反应过程,当加入伯胺或仲胺后,反应就按下式进行:R2NH + CO2→ RNCOOH (10)RNCOOH + R2CH3N + H2O →R2NH + R2CH3NH+·HCO3(11)以上反应式可以看出,活化剂在表面吸收CO2反应生成羟酸基,迅速向液相传递CO2,生成稳定的碳酸氢盐,而活化剂本身又被再生。
N-甲基二乙醇胺溶液兼有化学吸附剂和物理溶剂的特点。
2、工艺流程粗原料气在2.8MPa下进行二段溶液洗涤的吸收塔,下段用降压闪蒸脱吸的溶液进行吸收,为了提高气体的净化度,上段再用经过蒸汽加热再生的溶液进行洗涤。
从吸收塔出来的富液相继通过两个闪蒸槽而降压,溶液第一次降压的能量由透平回收。
回收的能量用于驱动半贫液循环泵。
富液在高压闪蒸槽释放出的蒸汽中有较多的氢和氨,可压缩送回脱碳塔,出高压闪蒸槽溶液继续降压后,在低压闪蒸槽中释放出绝大部分CO2。
获得的半贫液大部分用循环泵打入吸收塔下段,一小部分送入蒸汽加热的再生塔再生,所得贫液送入吸收塔上段使用。
再生塔塔顶所得含水蒸气的CO2气体,送入低压闪蒸槽作为脱气介质使用。
3、工艺操作要点(1) 贫液与半贫液的比例贫液/半贫液比例一般为1/3~1/6,它决定于原料中CO2的分压。
(完整)11-ASPEN_MDEA脱硫
(完整)11-ASPEN_MDEA脱硫MDEA 脱硫流程模拟计算一、工艺流程简述炼厂气和乙烯裂解气都含有一定量H2S和CO2等酸性气体,为防止设备腐蚀和最终产品的合格,在加工过程中都需要H2S和CO2等酸性气体脱除,胺类吸收剂性能好,并可再生循环使用,在炼厂气和乙烯裂解气脱除酸性气体中得到文泛应用。
但胺类吸收剂吸收H2S和CO2等酸性气体过程为强非理想过程,一般的软件和热力方法对该过程的模拟,结果都欠佳,PRO/II软件中有胺类吸收剂脱酸性气体的专用数据包(AMINE),对于该过程的模拟较适用。
AMINE数据包可用于含水胺系统和包括H2S、CO2、H2O、MEA、DEA、DGA、DIPA和MDEA酸性气体体系。
甲基二乙醇胺(MDEA)由于具有选择性,能吸收大部分的H2S而对CO2的吸收较少,因而广泛用于炼厂气的脱酸性气体中。
本例题就是用MDEA脱除炼厂气中的酸性气体模拟计算,其工流流程如图6—1所示,界区来的炼厂气进到吸收塔(T301),该塔没有再沸器和冷凝器,贫胺液从塔顶进入,酸性气从塔底进入,贫胺液和酸性气再塔内逆流接确,脱除酸性气体后的贫气从塔顶出来,吸收了酸性气体的富胺液从塔底出来与到再生塔底出来的贫胺换热后进入到再生塔;胺液再生塔(T302),该塔有再沸器和冷凝器,由吸收塔底出来的富胺液进到该塔,酸性气体从塔顶出来,脱除酸性气体后的贫胺液与富胺液换热,再冷却后,回到吸收塔(T301)。
所涉及主要模块有吸收塔(T301)、胺液再生塔(T302),贫胺液泵P1。
22图6—1 MDEA脱硫装置模拟计算流程图GAS含酸炼厂气进料; MDEA贫胺液;PGAS1贫气;L1富有胺液;LMDEA再生后贫胺液;H2S酸气;MA-MDEA补充MDEA;MA—H2O补充水;循环MDEA贫胺液23二、需要输入的主要参数1、装置进料数据2、单元操作参数243、设计规定三、软件版本采用ASPEN PLUS 软件12.1版本,文件保KMDEA。
镁法脱硫工艺流程
镁法脱硫工艺流程镁法脱硫,又称镁石法脱硫,是一种常用于燃煤电厂和工业锅炉中的烟气脱硫工艺。
它采用镁石作为脱硫剂,通过与烟气中的二氧化硫发生反应,将其转化为硫酸镁,从而达到脱硫的目的。
下面是一份镁法脱硫的工艺流程。
首先,烟气从锅炉中排出,并经过预处理设备,如袋式除尘器和脱硫前镜管,以去除颗粒物和其他污染物。
预处理后的烟气进入脱硫塔,开始进行脱硫过程。
脱硫塔是镁法脱硫工艺的核心设备,通常采用湿法脱硫方式。
在脱硫塔内部,布置有一系列喷嘴,用来将镁石浆料喷入烟气中。
镁石浆料是一种由水和细碎的镁石混合而成的混合物,通过喷嘴喷洒出来,与烟气中的二氧化硫发生反应。
镁石与二氧化硫反应的过程可以分为两个阶段。
首先,在高温下,镁石会与二氧化硫发生快速的氧化反应,生成二氧化硫、硫酸氢镁、水等物质。
随后,在低温下,残留的二氧化硫与硫酸氢镁继续发生反应,生成硫酸镁。
脱硫塔内部的反应温度和湿度的控制非常重要。
温度过高会导致反应速率过快,降低脱硫效率,而温度过低会导致反应速率过慢,影响脱硫效果。
因此,通常需要在脱硫塔内部设置恒温控制装置,以保持适宜的反应温度。
完成脱硫反应后,脱硫塔中的反应产物会随着烟气一起进入脱硫塔下方的集尘装置。
集尘装置通常采用湿式集尘器,将烟气中的颗粒物和反应产物从烟气中分离出来。
收集到的硫酸镁溶液会经过后续处理,如浓缩、结晶等步骤,再生产成可重复利用的二氧化硫或制备其他化学产品。
最后,经过集尘后的净化烟气可以经过排气筒排放到大气中,同时也可以进一步经过处理,如脱氮和除尘等,以达到更严格的环保标准。
总体来说,镁法脱硫是一种成熟可靠的烟气脱硫工艺,具有高效、经济、环保等优点。
通过合理的工艺流程设计和运行管理,可以实现良好的脱硫效果,为保护环境和改善空气质量做出贡献。
脱硫装置工艺设计
摘 要摘要:随着天然气工业的发展,高含硫气田不断出现,一般说,主要指含有大量H 2S 气体,由于H 2S 气体遇到冷凝水时,不仅会给管道和容器带来全面腐蚀,而且会引起硫化物应力腐蚀裂开(SSCC )。
就管输来说,主要根据安全平衡供气并兼顾到人身健康安全而确定各项具体指标,一般天然气中H 2S 含量应低于20mg/m 3,CO 2的含量最好不超过2%~3%。
本文根据原料气质和净化气要求,设计了一套d m •/108034⨯的脱硫净化装置,选定甲基二乙醇胺(MDEA)作为脱硫溶剂,确定了适宜的工艺流程,进行了详细的工艺计算,对其部分主要设备进行了设计。
该设计工艺流程简单,采用的方法成熟可靠,手段先进,能耗低,出口的气质完全满足管输要求。
关键词:天然气脱硫 工艺流程 甲基二乙醇胺 设备计算目录摘要 (1)ABSTRACT...........................................错误!未定义书签。
1 概述 (1)1.1脱硫的目的和意义 (1)1.2 技术路线及方案比较 (1)1.3国内外发展现状及发展 (3)1.3.1 胺法脱硫 (3)1.3.2 脱硫新工艺 (3)1.4 脱硫方法考虑因素和选择原则 (3)1.4.1 考虑因素 (3)1.4.2选择原则 (4)1.5 设计内容及要求 (4)1.5.1设计内容 (4)1.5.2设计要求 (4)2 工艺方案 (5)2.1 脱硫溶剂的选择 (5)2.2 工艺流程的确定 (5)2.2.1 工艺流程图 (5)2.2.2 工艺流程说明 (5)2.2.3 工艺参数的确定 (6)3 工艺计算 (8)3.1基础数据 (8)3.1.1原料气物性数据 (8)3.1.2 脱硫剂物性数据 (8)3.2 物料衡算 (8)3.2.1 原料气 (8)3.2.2醇胺液的计算 (11)3.3能量衡算 (12)3.3.1吸收塔内热量衡算 (12)3.3.2换热器内的热量衡算 (12)3.3.3再沸器能量衡算 (13)4 设备设计 (13)4.1 入口分离器的设计 (13)4.1.1 分离器筒体设计 (13)4.1.2分离器的壁厚计算 (15)4.2 吸收塔设计 (17)4.2.1 塔体设计 (17)4.3汽提塔设计 (29)4.3.1塔内物料计算 (29)4.3.2设计条件 (29)4.3.2热量及蒸汽流量计算 (29)4.3.3 塔体设计 (30)4.4 MDEA贫富液换热器设计 (33)4.4.1设计条件 (34)4.4.2贫液出口温度及t∆的计算 (34)m4.4.3换热器结构设计及计算 (35)4.5 汽提塔再沸器的设计 (36)5 存在的问题及处理方法 (37)5.1 腐蚀 (37)5.1.1 机理与部位 (37)5.1.2 设备选材 (37)5.1.3 防腐措施 (37)5.2 溶液发泡 (38)5.2.1 胺溶液发泡的原因 (38)5.2.2 引起胺溶液发泡的因素 (39)5.2.3 预防及溶液发泡后的处理 (39)5.3 溶剂损失 (40)6 总结 (41)致谢 (42)参考文献 (43)1 概述1.1脱硫的目的和意义天然气中通常含有H2S、CO2和有机硫化物等酸性组分存在,这些气相杂质在水存在的情况下会腐蚀金属,并污染环境。
焦炉煤气脱硫制酸技术
焦炉煤气脱硫制酸技术1、技术原理:焦炉煤气脱硫制酸技术分两部分: 一部分是脱除焦炉煤气中H2S气体, 其关键技术是采取单乙醇胺溶液(MEA)喷洒焦炉煤气, 将焦炉煤气中所含H2S气体脱除出来, 而吸收了H2S气体单乙醇胺溶液再经过加热分解, 将单乙醇胺溶液中H2S气体解析出来, 解析出H2S气体单乙醇胺溶液再去吸收煤气中H2S气体, 循环利用。
另一部分是将脱除出H2S气体转化为98%浓硫酸。
由脱硫来H2S气体经过燃烧后生成SO2, SO2气体经过装有专用催化剂反应器转化为SO3气体, 再与水蒸汽接触, 冷却后生成浓度为98%浓硫酸。
使用该工艺可将焦炉煤气中H2S脱除到50mg/m3以下, 整个过程中产生废液为小于130Kg/h, 而利用制酸技术直接生产出浓硫酸, 抛弃了传统生产硫磺生产工艺, 既降低了环境污染, 又增加了经济效益。
所以脱硫制酸工艺是一套最大发挥经济效益环境保护项目, 在焦炉煤气脱硫工艺中应大力推广。
2、工艺步骤3、 关键设备脱硫部分: 吸收塔、 解析塔、 换热器制酸部分: 燃烧室、 SO 2反应器、 WSA 冷凝器 4、 关键技术经济指标MEA 脱硫技术可将煤气中H2S 含量脱除到小于50 mg/m3,不用再增加深脱硫装置, 就可使焦炉煤气达成冶炼不锈钢要求标准, 可节省工艺配置资金, 制酸工艺直接生成98%H 2SO 4, 不用生产硫磺产生二次污染, 且浓H 2SO 4可在焦化硫铵项目使用。
5、 投资分析本项目为根本环境保护项目, 经济效益不是很大, 但环境保护效益巨大, 项目投资估算以下:脱硫工艺 制酸工艺6、技术应用情况MEA脱硫技术最初是乌克兰国家焦化耐火设计院研究发明, 最早使用在前苏联, 中国最早使用是宝钢二期脱硫工程, 多年使用表明: 该工艺脱硫效率高, 产生二次废液少, 且技术成熟, 环境保护效果好。
制酸技术是丹麦托普索企业专利技术, 在欧洲使用较多, 但近几年来中国石化行业相继引进投产使用, 如株州石化、柳州化肥厂、上海焦化厂、南京石化等已投产使用。
焦炉煤气脱硫制酸技术
焦炉煤气脱硫制酸技术1、技术原理:焦炉煤气脱硫制酸技术分两部分:一部分是脱除焦炉煤气中H2S气体,其核心技术是采用单乙醇胺溶液(MEA)喷洒焦炉煤气,将焦炉煤气中所含的H2S气体脱除出来,而吸收了H2S气体的单乙醇胺溶液再经过加热分解,将单乙醇胺溶液中的H2S气体解析出来,解析出H2S气体的单乙醇胺溶液再去吸收煤气中的H2S气体,循环利用。
另一部分是将脱除出的H2S 气体转化为98%的浓硫酸。
由脱硫来的H2S气体经过燃烧后生成SO2,SO2气体经过装有专用催化剂的反应器转化为SO3气体,再与水蒸汽接触,冷却后生成浓度为98%的浓硫酸。
使用该工艺可将焦炉煤气中的H2S脱除到50mg/m3以下,整个过程中产生的废液为小于130Kg/h,而利用制酸技术直接生产出浓硫酸,抛弃了传统的生产硫磺的生产工艺,既减少了环境污染,又增加了经济效益。
因此脱硫制酸工艺是一套最大发挥经济效益的环保项目,在焦炉煤气脱硫工艺中应大力推广。
2、工艺流程脱硫工艺制酸工艺3、主要设备脱硫部分:吸收塔、解析塔、换热器制酸部分:燃烧室、SO2反应器、WSA冷凝器4、主要技术经济指标MEA脱硫技术可将煤气中H2S含量脱除到小于50 mg/m3,不用再增加深脱硫装置,就可使焦炉煤气达到冶炼不锈钢要求的标准,可节省工艺配置的资金,制酸工艺直接生成98%H2SO4,不用生产硫磺产生二次污染,且浓H2SO4可在焦化硫铵项目使用。
5、投资分析本项目为彻底的环保项目,经济效益不是很大,但环保效益巨大,项目投资估算如下:6、技术应用情况MEA脱硫技术最初是乌克兰国家焦化耐火设计院研究发明,最早使用在前苏联,我国最早使用的是宝钢二期脱硫工程,多年使用表明:该工艺脱硫效率高,产生的二次废液少,且技术成熟,环保效果好。
制酸技术是丹麦托普索公司的专利技术,在欧洲使用较多,但近几年来我国石化行业相继引进投产使用,如株州石化、柳州化肥厂、上海焦化厂、南京石化等已投产使用。
MDEA天然气脱硫工艺流程
《仪陇天然气脱硫》项目书目录1总论 (3)1.1项目名称、建设单位、企业性质 (3)1.2编制依据 (3)1.3项目背景和项目建设的必要性 (3)1、4设计范围 (5)1、5编制原则 (5)1.6遵循的主要标准、规范 (8)1.7 工艺路线 (8)2 基础数据 (8)2.1原料气和产品 (8)2.2 建设规模 (9)2.3 工艺流程简介 (9)2.3.1醇胺法脱硫原则工艺流程: (9)2.3.2直流法硫磺回收工艺流程: (10)3 脱硫装置 (11)3.1 脱硫工艺方法选择 (11)3.1.1 脱硫的方法 (11)3.1.2醇胺法脱硫的基本原理 (12)3.2 常用醇胺溶液性能比较 (13)3.1.2.1几种方法性质比较 (14)3.2醇胺法脱硫的基本原理 (17)3.3主要工艺设备 (18)3.3.1主要设备作用 (18)3.3.2运行参数 (19)3.3.3操作要点 (20)3.4乙醇胺降解产物的生成及其回收 (21)3.5脱硫的开、停车及正常操作 (22)3.5.1乙醇胺溶液脱硫的开车 (22)3.5.2保证乙醇胺溶液脱硫的正常操作 (22)3.6胺法的一般操作问题 (23)3.6.1胺法存在的一般操作问题 (23)3.6.2操作要点 (24)3.7选择性脱硫工艺的发展 (25)4 节能 (25)4.1装置能耗 (25)装置中主要的能量消耗是在闪蒸罐、换热器和再生塔。
(25)4.2节能措施 (25)5 环境保护 (26)5.1建设地区的环境现状 (26)5.2、主要污染源和污染物 (26)5.3、污染控制 (26)6 物料衡算与热量衡算 (28)6.1天然气的处理量 (28)7.天然气脱硫工艺主要设备的计算 (33)7.1MDEA吸收塔的工艺设计 (33)7.1.1选型 (33)7.1.2塔板数 (33)7.1.3塔径 (34)7.1.4堰及降液管 (36)7.1.5浮阀计算 (37)7.1.6 塔板压降 (37)7.1.7塔附件设计 (39)7.1.8塔体总高度的设计 (40)7.2解吸塔 (41)7.2.1 计算依据 (41)7.2.2塔板数的确定 (41)7.2.3解吸塔的工艺条件及有关物性的计算 (42)7.2.4解吸塔的塔体工艺尺寸计算 (43)8参数校核 (44)8.1浮阀塔的流体力学校核 (44)8.1.1溢流液泛的校核 (44)8.1.2液泛校核 (44)8.1.3液沫夹带校核 (45)8.2塔板负荷性能计算 (45)8.2.1漏液线(气相负荷下限线) (45)8.2.2 过量雾沫夹带线 (45)8.2.3 液相负荷下限 (46)8.2.4 液相负荷上限 (46)8.2.5 液泛线 (46)9 附属设备及主要附件的选型和计算 (47)10.心得体会 (49)11.参考文献 (50)1总论1.1项目名称、建设单位、企业性质项目名称:天然气脱硫建设单位:中石油仪陇净化厂企业性质:国营企业1.2编制依据天然气可分为酸性天然气和洁气。
《镁法烟气脱硫》课件
2 资源循环利用
脱硫产生的硫酸镁可作为肥料或工业原料,实现资源的循环利用。
3 低能耗
与其他脱硫技术相比,镁法烟气脱硫具有低能耗、低投资和低运维成本的优势。
镁法烟气脱硫装置介绍
吸收塔
用于吸收烟气中的硫化物,形 成硫酸镁。
氧化镁
作为脱硫剂,与硫化物发生反 应。
《镁法烟气脱硫》PPT课 件
欢迎阅览《镁法烟气脱硫》PPT课件。本课件将详细介绍镁法烟气脱硫的原理、 技术优势、装置介绍、工艺流程以及在环保中的应用和未来发展前景。
镁法烟气脱硫原理
镁法烟气脱硫通过利用镁石中的氧化镁与烟气中的硫化物反应,形成硫酸镁,从而实现脱硫目的。
镁法烟气脱硫技术优势
1 高效脱硫
镁法烟气脱硫技术在火力发电厂中得到广泛 应用,有效减少了烟气污染物的排放。
化工行业
脱硫产生的硫酸镁可作为化肥、防腐剂等化 工产品的原料,实现资源的循环利用。
钢铁行业
镁法脱硫技术在钢铁冶炼过程中能够降低烟 气中二氧化硫的含量,减少环境污染。
石油行业
镁法烟气脱硫技术可以净化烟气中的硫化物, 降低石油精炼过程中的环境污染。
镁法烟气脱硫的发展前景
随着环保意识的提高和法规要求的加强,镁法烟气脱硫技术有着广阔的应用 前景。
总结与展望
镁法烟气脱硫作为一种高效、低能耗的脱硫技术,将在工业和环保领域发挥 重要作用,为可持续发展做出贡献。
产生的废弃物
脱硫后产生的废气中含有硫酸 镁和石膏等副产品。
镁法烟气脱硫工艺流程
1
烟气净化
将烟气中的颗粒物和污染物进行净化处理,保障后续脱硫过程的稳定运行。
2
单碱烟气脱硫技术方案
单碱烟气脱硫技术方案引言烟气脱硫是指将燃煤过程中产生的烟气中的二氧化硫(SO2)去除的工艺。
单碱烟气脱硫技术是目前应用较为广泛的一种脱硫技术之一。
本文将介绍单碱烟气脱硫的原理、工艺流程以及优缺点。
单碱烟气脱硫原理单碱烟气脱硫技术基于乙醇胺(MEA)等有机胺与二氧化硫之间的化学反应。
具体而言,当含有SO2的烟气与溶液中的MEA接触时,SO2与MEA发生反应生成硫代乙酰胺(CS2)和硫代醚等产物,并将SO2从烟气中去除。
单碱烟气脱硫工艺流程单碱烟气脱硫技术的工艺流程通常包括吸收、再生和尾气处理三个步骤。
1. 吸收吸收是单碱烟气脱硫工艺中的核心步骤。
这一步骤中,烟气与MEA 溶液进行接触,并在吸收塔中完成SO2的去除。
MEA溶液通过喷淋或喷雾方式与烟气进行接触,通过物理吸收和化学反应去除SO2。
2. 再生再生是指将吸收塔中吸收的SO2从MEA溶液中脱附出来的过程。
通常采用蒸汽加热的方式,将MEA溶液进行升温,将SO2脱附出来。
脱附出的SO2可以进一步用于制取硫酸等产品。
3. 尾气处理在单碱烟气脱硫工艺中,经过吸收和再生后的烟气被称为尾气。
尾气中的残余SO2浓度较低,可以通过进一步处理达到排放标准。
常用的尾气处理方式有干法脱硫和湿法脱硫。
单碱烟气脱硫技术的优缺点单碱烟气脱硫技术相比于其他脱硫技术具有以下优点:优点•高脱硫效率:单碱烟气脱硫技术能够实现较高的脱硫效率,在满足排放标准的同时降低SO2对环境的污染。
•适应性强:单碱烟气脱硫技术对烟气组分的适应性较强,能够适用于不同煤种和炉型的燃烧排放。
•可回收利用SO2:通过再生过程,单碱烟气脱硫技术能够回收利用脱附出的SO2。
缺点•草酸盐沉淀:在单碱烟气脱硫过程中,MEA溶液中的草酸盐容易析出沉淀,对设备运行造成一定的影响。
•药剂消耗量大:单碱烟气脱硫工艺需要消耗较大量的MEA 溶液作为吸收剂,增加了成本和操作复杂性。
结论单碱烟气脱硫技术是一种成熟、高效的烟气脱硫技术。
镁法脱硫工艺简介与运行注意事项
•
九、氧化镁湿法工艺流程图
十、氧化镁湿法脱硫运行注意事项
• 我厂5#6#脱硫塔采用碳钢罐内衬玻璃鳞片防腐,玻璃鳞片耐温只有800C,这就 要求在锅炉点火前必须投入脱硫系统运行。 要确保脱硫系统的各循环泵运行正常,循环液充足,一旦3个喷淋层循环泵 都无法工作时,要立即通知锅炉停止引风机运行。 锅炉停炉后,在炉膛温度高于800C时不可以转引风机。 在能完成脱硫的情况下,必须确保较低ph值运行,防止发生亚硫酸镁包裹氢 氧化镁的现象。
•
• •
十一、湿式钙法与镁法脱硫对比
石灰石-石膏法 脱硫反应效果 脱出等量SO2的消耗量 脱硫剂价格 脱硫剂来源 脱硫效率95%液气比 不彻底,容易产生包裹 1吨 约300元/吨 可靠 15L/Nm3 氧化镁法 反应彻底 0.4吨 约650元/吨 辽宁地区可靠 5L/Nm3
循环液量和电耗 运行可靠性
氧化曝气处理后,可以达到综合污水排放标准,可以排入锅炉冲渣沉淀池中 或城市污水中。
八、副产物综合利用的市场前景好
•
MgO湿法脱硫后的副产物经过氧化曝气脱水,生成硫酸镁结晶,硫酸镁可作 为农用肥料。高纯度硫酸镁可以用于制药,用途广泛。 MgO湿法脱硫后的副产物不经氧化直接脱水形成亚硫酸镁,亚硫酸镁低温煅 烧,可得到高纯度二氧化硫和氧化镁,二氧化硫可制取硫酸,氧化镁可以继 续做为脱硫剂使用。
工 艺 特 点
(2)脱硫效率高 (3)脱硫剂消耗量小,原料来源可靠 (4)运行费用较低 (5)运行可靠 (6)关键设备体积小,投资省 (7)工艺流程短 (8)副产物综合利用的市场前景好
一、工艺技术成熟
• 氧化镁(MgO)法是工艺技术十分成熟的烟气脱硫工艺之一。该工艺在日本、 美国、德国等地的火电厂应用广泛,在我国山东、辽宁、台湾等省也有较多 应用。
MDEAMEA混合醇胺脱硫脱碳的模拟计算
() 2
式中V 为摩尔体积,其中的混合规则为: m
石一习( , 。 x a , =见(b ; ) x; , )
、
‘r
,
、
口
产
-・ 4- 3— L Z - - a .= U 4 - 0 一 R 工\子 . G/ U 其中T, P‘ . . , 为组分i 的临界常数。
13 溶液中各组分活度系数的计算 .
收稿 日期:20-22 ;修订 日期 :20-31 061-6 07 -6 0
作者简介: 剑 ( 7-) 男, - 孙 1 5 , T Emis. s uc 9 程师. -a, i . o . ls in h o aa m
万方数据
20 8
化学反应工程与工艺
20 年 6 07 月
的考虑, 才能使得所建立的计算模型可以扩展至混合气体的吸收计算。
11 吸收反应 .
ME A混合醇胺溶液吸收酸性气体C 和 H S 在水溶液中存在的各种反应如表 1 D A和ME q 2 时, 所示。 其中包括水的离解、M E D A和ME A的质子化、 q 和H S C , 的一级和二级电离。 表中 各反应的平衡常数K的计算考虑了组分的活度系数, 浓度C以组分的摩尔分数表示。 对于 MD A ME E , A和 H O的活度系数参考态是纯态;各种离子和气体的活度系数参考态是在水中的无 , 限稀释态。这些参考态与后面介绍的活度系数计算方程以及气体溶解度 H ny er常数的参考态一致。
要对 MD A和 ME E A混合醇胺溶液同时脱除 H S C : 2 和 O 的能力进行深人研究。本工作采用 MD A E 和ME A混合有机胺水溶液对含H S 0 混合气体进行吸收, 2 和C 2 在模拟计算软件A P N U 中采 SE P S L 用 e c o tN T lt l e R L方程建立了气体吸收的热力学计算模型,计算了 H S C 混合气体在 MD A e ry - 2 q , E 和ME A混合醇胺水溶液中的吸收情况,通过对该工艺进行分析研究,为混合胺法气体脱硫工艺的工
镁法烟气脱硫PPT课件
第16页/共25页
氧化镁脱离的优势
• (1) 镁法脱硫工艺可避免石灰石法所遇到的副产品难处理问题。 • (2)镁法脱硫工艺克服了石灰石,石膏法脱硫工艺运行存在结垢、
堵塞问题。 • (3)镁法活性好,脱硫效率高,对于高含硫量煤种脱硫效率可达
到95%以上。 • 亚硫酸镁工艺,脱硫剂可以再生和循环利用.所以大大降低了
第6页/共25页
半干法烟气脱硫
• 半干法烟气脱硫技术是结合了湿法和干法脱硫的部分特点,吸收剂在湿的状态下脱硫.在干燥状态下处理 脱硫产物。也有在干状态下脱硫、在湿状态下处理脱硫产物的。半于法是利用烟气显热蒸发吸收剂中的水 分,同时在干燥过程中,石灰与烟气中的S02反应生成亚硫酸钙等.并使最终产物为干粉状。半干法中应用 最广的是旋转喷雾干燥法、烟气循环流化床烟气脱硫
第8页/共25页
湿法脱硫
石灰石一石膏湿法脱硫工艺
氧化镁脱硫
海水脱硫工艺 氨法脱硫工艺 高钙粉煤灰脱硫
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SULFIBAN法煤气脱硫工艺
SULFIBAN法即索尔菲班法脱硫工艺,酸性气体制取硫酸,简称MEA法
1 工艺流程和技术特点
1.1 工艺流程
SULFIBAN工艺由脱硫脱氰和硫酸制造两部分组成。
脱硫脱氰部分用15%的
单乙醇胺(MEA)作为脱硫剂,在低温条件下吸收焦炉煤气中的H
2S、HCN和CO
2
,
再用蒸汽解析出溶液中的酸性气体,酸性气体作为制硫酸原料。
为减少脱硫液中
的副产物和杂质含量,需将一定量的脱硫液引入再生器中加热再生,所得固体残渣经沉降分离后排出系统外。
从解析塔逸出的酸性气体在燃烧炉内与空气混合,在煤气助燃条件下燃烧生成SO
2。
高温的燃烧废气经废热锅炉回收余热后送入酸冷却塔,用12%~13%的
稀硫酸冷却。
然后在脱湿器中用3~7℃的冷冻水间接冷却,以除去SO
2
气体中的水分。
再经电除酸器除去酸雾后进入干燥塔,在此用95%的浓硫酸进一步除去
SO
2
气体中的水分。
最后,经转化和吸收工序后生产98%浓硫酸。
从硫酸吸收塔顶逸出的尾气进入第一除害塔,用pH=6~6.7的氨水洗涤后送入第二除害塔,废气经清循环水洗涤后排入大气。
1.2 技术特点
(1) SULFIBAN法是以MEA为脱硫剂的脱硫脱氰工艺,可将煤气中的H
2
S脱除到200mg/m3以下,基本可满足钢铁企业对煤气的质量要求。
(2)煤气中的CO
2、COS、CS
2
等杂质与脱硫液中的MEA易生成不能再生的聚
合物,故MEA的耗量较高。
解析时所需的蒸汽量也较大。
另外,为过滤去除富液中>10μm、贫液中>5μm的悬浮粒子,还需消耗一定量的纤维滤芯。
(3) 硫酸装置燃烧炉的炉体结构简单,操作和维护方便。
在SO
2
气体净化时,
采用了低温冷却和电除酸雾工艺。
用V
2O
5
作为SO
2
转化成SO
3
的催化剂,其转化
效率≥97% 。
SO
3
的吸收效率≥99.5%,硫酸制造工艺成熟。
但在装置出现故障时,酸性气体无其他出路,虽可将酸性气体引入一期脱硫装置的脱硫塔中,但对脱硫操作有一定影响。
(4) 煤气中的苯类物质易使MEA溶液发泡,造成系统恶化。
大量的氨被吸收
到溶液中后,NH
3可以与CO
2
、H
2
S反应生成(NH
2
)
2
CS(硫尿),硫尿在热态下又
可分解成CO
2、H
2
S和NH
3
,使冷却器热阻增加。
为此,SULFIBAN法脱硫装置必须
设在脱氨和脱苯工序后。
(5) 工艺流程短,设备简单,设备所需的材质要求较T-H法和FRC法低,一次性投资相对较低。
2 结论
SULFIBAN工艺是成熟的脱硫脱氰工艺,不仅脱硫脱氰效率高,而且不需要催化剂,不产生硫磺,酸性气体作为生产硫酸的原料,不会产生二次污染。
还具有工艺流程短、占地面积小、设备简单和一次性投资低等优点,但也存在MEA 和蒸汽消耗量大,运行费用高的问题。
上海宝钢二期焦炉煤气脱硫装置
1、脱硫装置的运行实绩
(1)煤气质量。
SULFIBAN法脱硫装置在1991年5月投产时,由于煤气中的含量远高于设计值,致使脱硫和脱氰效率均偏低。
从表1可看出,前5年的CO
2
S和HCN 脱硫效率在93%~95%,脱氰效率最低时仅88%。
1996年后,煤气中的H
2
量有了明显改善,脱硫装置至今一直保持在良好的状态。
表1 SULFIBAN装置的脱硫脱氰效率
表2 脱硫装置2001年的生产实绩
(2) 经济技术指标。
随着SULFIBAN脱硫装置运行的稳定,生产指标也有了明显改善,表2列出了2001年的主要操作指标和经济技术指标。
(3) CO
2对脱硫的影响。
在脱硫装置投产初期,因煤气中的CO
2
含量高达
2.6%~
3.2%,远高于≤2%的设计值,致使生产调整非常困难。
循环脱硫液吸收
的CO
2量随之增加,直接影响对H
2
S和HCN的吸收量,也增加了解析塔的酸性气
体负荷和硫酸装置的热负荷,使吸收和解析的平衡难以控制,煤气的脱硫效率明
显变差。
特别是当煤气中的CO
2
含量达到3%时,对脱硫效率的影响就更为明显。
此外,脱硫液中吸收的CO
2
与MEA反应生成口恶唑烷酮-2加速了MEA的劣化,致使换热器和再生器结垢和堵塞,再沸器的加热效率和贫液冷却器的冷却效率明显下降。
副反应中生成的白色片状聚合物覆盖在脱硫塔的超鞍型填料表面及堵塞喷淋管,造成脱硫液在塔内产生偏流,并使脱硫效率下降。
为降低CO
2
对脱硫操作的影响,虽可采取将脱硫塔由单段吸收改为双段吸收的方法加以解决,但实施难度很大。
为此,我们只在操作上采取了一些改进措施。
首先,为满足1.4~1.7L/m3的液气比, 将上层的全量喷洒改为上、下层按比例
喷洒,以缩短溶液与煤气的接触时间,减少溶液吸收的CO
2
;其次是针对溶液吸
收的CO
2
量与MEA浓度成正比的关系,将循环脱硫液中的MEA浓度从15%降低到
12%~15%。
又根据低温有利于脱硫反应的原理,将脱硫液温度控制在32~35℃。
采取上述措施后,CO
2的吸收率从1.6%下降到1.2%~1.3%,贫液中CO
2
的含量可
控制在3600~4200ppm,脱硫脱氰效率明显提高。
总之,硫酸装置投产十多年来,运行一直很稳定,SO
2
的转化率保持在97%
以上,SO
3
的吸收率>99.5%。
在冬季生产95%硫酸,夏季生产98%硫酸,酸中的强热残分和含铁量均低于设计指标,外排尾气合格,表3为2002年硫酸生产的操作数据。
表3 2002年硫酸生产的操作数据
另外,为确保硫酸装置的稳定运行,还必须保证过程气体的充分干燥和尽可能除去酸雾。
过程气体的水分应严格控制在0.10g/m3以下,以防止结露而造成
V 2O
5
催化剂的粉化和设备的腐蚀。
同时还要严格控制干燥酸和吸收酸的浓度和温
度,防止硫酸对设备的腐蚀。
2、脱硫装置经济技术分析
1995年以来,SULFIBAN脱硫装置运转状态良好,表4列出了2001年的生产负荷和消耗情况,以分析评价SULFIBAN的各项经济指标。
表4 2001年全年的生产负荷和消耗情况
表5 2001年的煤气脱硫成本
2001年实际运行仅225天。
而表4中MEA和能源耗量已折算成运行355天,MEA的消耗量大于设计值,蒸汽约占能源总耗的80%。
表5中列出的煤气脱硫成本则是以宝钢价格结算和实际运行225天数据做出的。
表5中列出的自产硫酸用于硫铵生产,二期工程的脱硫和硫酸装置的总投资是11817.38万元,设备折旧按6.4%计算。