电力系统继电保护实验三(距离保护)

合集下载

电力系统继电保护课程设计三段式距离保护

电力系统继电保护课程设计三段式距离保护

电力系统继电保护课程设计选题标号:三段式距离保护班级: 14电气姓名:学号:指导教师:谷宇航日期: 2017年11月8日天津理工大学电力系统继电保护课程设计评语:平时考核(30)实验(20)答辩(40)出勤(10)天津理工大学目录一、选题背景 ..............................................................................................................1.1选题意义 ............................................................................................................1.2设计原始资料.....................................................................................................1.3要完成的内容.....................................................................................................二、分析要设计的课题内容 .........................................................................................2.1设计规程 ............................................................................................................2.2 保护配置 ...........................................................................................................2.2.1 主保护配置 .................................................................................................2.2.2 后备保护配置..............................................................................................三、短路电流、残压计算.............................................................................................3.1等效电路的建立..................................................................................................3.2保护短路点的选取..............................................................................................3.3短路电流的计算 (8)........................................................................................................................................................................................................................................................四、保护的配合...........................................................................................................4.1 线路L1距离保护的整定与校验 .........................................................................4.1.1 线路L1距离保护第Ⅰ段整定.........................................................................4.1.2 线路L1距离保护第Ⅱ段整定........................................................................4.1.3 线路L1距离保护第Ⅲ段整定.......................................................................4.2 线路L3距离保护的整定与校验 .........................................................................4.2.1 线路L3距离保护第I段整定 ...............................................................................................................................................................................................................................................................................................................................五、实验验证 ..............................................................................................................六、继电保护设备选择 ................................................................................................6.1互感器的选择.............................................................................................................................................................................................................................................................................................................................................................6.2继电器的选择.............................................................................................................................................................................................................................................................................................................................. 错误!未定义书签。

电力系统继电保护-3 电网距离保护

电力系统继电保护-3 电网距离保护

3.1.1 距离保护的概念
测量阻抗和故障距离的关系 测量阻抗的定义(以单相系统为例)
Zm
U
m
zl
z为线路单位长度的阻抗
Im
试图找到与系统运行方式、短路类型无关,只与短路点到 保护安装处有关的测量参量
3.1.1 距离保护的概念

距离保护-利用短路发生时电压、电流同时变化的特征,测量电压与 电流的比值,反应故障点到保护安装处的距离而工作的保护。 整定距离Lset-与距离保护的范围相对应的距离。 工作原理大致如下:
3.1.3 三相系统中测量电压和测量电流的选取

不同故障类型电流、电压和测量阻抗的关系:
CASE3:两相短路接地故障 ABG故障边界条件 (I K 3I )z L 0 U U A A 0 1 k kA K 3I )z L U kB 0 U B ( I B 0 1 k I z L 0 U U I kAB A B 1 k kAB
3 电网距离保护
3.1 距离保护的基本原理与构成
电流保护的缺陷 缺点 灵敏度不足 运行方式对保护影响大 配合困难 问题 无法满足更高电压等级电网对保护的速动性、选择性、灵 敏性的要求
3.1 距离保护的基本原理与构成
故障特征分析 特征 故障时电流增大 故障时电压降低 思路 综合利用电流、电压可以提高灵敏度,所以就有了阻抗保 护,利用电流电压比值作为故障特征量
总结
只有采用与故障回路相关的电流、电压才能实现距离的测量。继电器接 入不同电压、电流仪,称为不同的接线方式。 存在相间故障回路时,采用保护安装处的故障相间电压和故障相间电流 差可以反应故障距离,称为相间距离保护。 存在接地故障回路时,采用保护安装处的相电压和经零序补偿的相电流 可以反应故障距离,称为接地距离保护。 为了保护接地故障和相间故障,需要配备接地距离保护和相间距离保 护,短路形成几个故障回路。就有几个阻抗继电器可以实现阻抗测量。

线路微机继电保护中三段式距离保护原理与算法

线路微机继电保护中三段式距离保护原理与算法

线路微机继电保护中三段式距离保护原理与算法一、引言距离保护是电力系统继电保护中的一种重要类型,主要用于避免电网故障扩大,降低故障对电网的影响。

在微机继电保护中,三段式距离保护是一种常见的应用方式。

本论文将详细阐述三段式距离保护的原理及算法。

二、三段式距离保护原理三段式距离保护主要由近端保护、中端保护和远端保护三部分组成。

其基本原理是基于故障点到保护段的距离直接影响保护的动作时间。

当故障点靠近保护段时,响应时间应较长,反之则应较短。

这样就能根据故障点与保护段的距离来动态调整保护的响应时间,实现更好的保护效果。

三、微机实现方法在微机继电保护中,三段式距离保护的实现通常需要依靠微处理器或微控制器来完成。

根据距离测量结果和预设的保护段特性曲线,可以计算出对应的响应时间,并控制执行机构进行跳闸或隔离。

此外,微机还具有强大的数据处理能力和实时性,可以更精确地测量故障点到保护段的距离,从而提高保护的准确性。

四、算法分析三段式距离保护的算法主要包括故障点距离保护段的距离计算、响应时间的动态调整以及执行机构的控制等部分。

其中,距离计算通常采用测量值与预设阈值的比较,通过判断是否超过阈值来确定故障点到保护段的距离。

动态调整响应时间则需要根据实时测量的距离数据,通过算法计算出对应的响应时间,以适应不同距离的情况。

执行机构的控制则需要根据算法输出的跳闸或隔离指令,驱动相应的执行机构进行动作。

五、实际应用与优化在实际应用中,三段式距离保护需要考虑到各种可能的情况和影响因素,如线路阻抗变化、环境干扰等。

为了应对这些问题,需要进行相应的优化和调整。

例如,可以通过实时监测线路阻抗,调整保护段的特性曲线;可以通过优化算法,提高距离计算的准确性;可以通过加强硬件抗干扰能力,提高保护的稳定性等。

六、总结三段式距离保护是一种有效的电力系统继电保护方式,通过微机实现可以获得更高的精度和实时性。

在算法方面,需要根据实际情况进行优化和调整,以提高保护的准确性和稳定性。

电力系统继电保护--距离保护的基本原理、阻抗继电器及其动作特性 ppt课件

电力系统继电保护--距离保护的基本原理、阻抗继电器及其动作特性  ppt课件

PPT课件
8
三、三相系统中测量电压和测量电流的选取
K:零序电流补偿系数 PPT课件
9
三、三相系统中测量电压和测量电流的选取
单相接地短路(以A相接地为例)
PPT课件
10
三、三相系统中测量电压和测量电流的选取
两相接地短路1(以B,C两相接地为例)
PPT课件
11
三、三相系统中测量电压和测量电流的选取
两相短路、三相短路和两相短路接地:两故障相的电压差
和电流差。
PPT课件
15
四、距离保护的延时特性
距离保护的动作延时t与故障点到保护安装处的距离Lk 之间的关系称为距离保护的延时特性
PPT课件
16
五、距离保护的构成
1.启动部分:模拟式距离保护中,由硬件电路元
件实现,大多反应负序电流、零序电流或负序与 零序复合电流的判断原理;数字式保护中,由实 时逐点检测电流突变量或零序电流的变化的软件 来实现。
PPT课件
7
三、三相系统中测量电压和测量电流的选取
U A UkA I A1z1Lk I A2 z2Lk I A0 z0Lk
UkA

(I A1

I A2

I A0 ) 3I A0
z0 z1 3z1

z1Lk
UkA (I A K 3I0 )z1Lk
电气工程及其自动化专业课程
电力系统继电保护
PPT课件
1
距离保护的基本原理与构成
一、距离保护的概念 二、测量阻抗及其与故障距离的关系 三、三相系统中测量电压和测量电流的选取 四、距离保护的延时特性 五、距离保护的构成PPTຫໍສະໝຸດ 件2一、距离保护的概念

继电保护(距离保护)

继电保护(距离保护)

对于相间短路,故障环路为相—相故障环路,取测量电 压为保护安装处两故障相的电压差,测量电流为两故障相的 电流差,称为相间距离保护接线方式,能够准确反应两相短 路、三相短路和两相接地短路情况下的故障距离。
LINYI UNIVERSITY
LINYI UNIVERSITY
LINYI UNIVERSITY
UB = z1 l k B 、 C 相 测 量 I B + K3I 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
增大,短路阻抗比正常时测量到的阻抗大大降低。
LINYI UNIVERSITY
二、测量阻抗及其与故障距离的关系
Um Zm = = z1 l k Im Z set = z1 l set
♣ 距离保护反应的信息量测量阻抗在故障前后变化比电流变 化大,因而比反应单一物理量的电流保护灵敏度高。 ♣ 距离保护的实质是用整定阻抗 Zset 与被保护线路的测量阻 抗 Zm 比较: 当短路点在保护范围以内时,Zm<Zset,保护动作; 当短路点在保护范围以外时,Zm>Zset时,保护不动作。 因此,距离保护又称低阻抗保护。
U kA = 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C

大学课件 电力系统继电保护 第三章第五节 距离保护的振荡闭锁

大学课件 电力系统继电保护 第三章第五节 距离保护的振荡闭锁

1 2
即振荡中心在保护的反方向上,振荡时测量阻抗末端轨迹
的直线OO’在第三象限内与Z∑相交,不会引起方向阻抗特 性保护的误动作。
• 3 电力系统振荡对距离测量元件特性的影响
在图3-29所示的双侧电源系统
中,假设M、N两处均装有距离保
护,其测量元件均采用圆特性的
方向阻抗元件,距离Ⅰ段的整定
阻抗为线路阻抗的80%,则两侧
TDW的选择原则:
正向区内 Ⅰ段保护有足够时间可靠跳闸 故障时 Ⅱ段保护能可靠起动并实现自保持
时间不应小于0.1s
区外故障引 测量阻抗不会在故障后的 起振荡时 TDW时间内进入动作区
将故障线路跳开
所以,通常情况下取TDW=0.1s~0.3s,现代数字保护中, 开放时间一般取0.15s左右。
系统正常运行或静态稳定被破坏时:
KZ1----整定值 较高的阻抗元件 KZ2----整定值 较低的阻抗元件
在Z1动作后开 放△t的时间
这段时 Z2动作 间内
Z2不动作
开放保护直到Z2返回 保护不会被开放
它利用短路时阻抗的变化率较大,Z1、Z2的动作时间差
小于△t,适时开放。测量阻抗每次进入Z1的动作后,都会
开放一定时间。
由于对测量阻抗变化率的判断是由两个不同大小的阻抗 圆完成的,所以这种振荡闭锁通常俗称“大圆套小圆”振荡闭 锁原理。
系统振荡时,安装在M点处的测量元件的测量阻抗为:
Zm
UM IM
EM
IM ZM IM
EM IM
ZM
1 1 e j
Z ZM (3 130)
Im
E Z
EM (1 e j ) Z
1 e j
1 cos
j sin

距离保护综合实验报告

距离保护综合实验报告

一、实验目的1. 理解距离保护的基本原理和工作特性。

2. 掌握距离保护的调试方法和步骤。

3. 分析距离保护在不同故障情况下的动作行为。

4. 提高对电力系统保护装置的维护和管理能力。

二、实验原理距离保护是一种根据电力系统故障点的距离来判定故障位置并实施保护的继电保护装置。

它利用故障点距离保护装置的距离与系统各元件阻抗的关系,通过测量保护装置处的电压和电流,计算出故障点的距离,从而实现对故障的快速切除。

距离保护的基本原理如下:1. 利用故障点的电压和电流的相位差,确定故障点与保护装置之间的距离。

2. 根据距离计算结果,判断是否发出跳闸信号,实现对故障的切除。

三、实验仪器与设备1. 距离保护实验装置2. 电力系统模拟器3. 数字示波器4. 电流表5. 电压表6. 计算器四、实验步骤1. 熟悉实验装置的结构和原理,了解各部件的功能。

2. 将实验装置按照实验要求进行接线,确保接线正确无误。

3. 打开电力系统模拟器,设置实验参数,如故障类型、故障位置等。

4. 启动实验装置,观察保护装置的动作情况,记录相关数据。

5. 改变故障参数,重复步骤4,观察保护装置的动作行为。

6. 分析实验数据,验证距离保护的工作原理和特性。

五、实验内容1. 故障类型:短路故障、接地故障、过负荷故障。

2. 故障位置:线路末端、线路中部、保护装置附近。

3. 故障类型与位置组合:共9种组合。

六、实验结果与分析1. 短路故障:在故障点附近,距离保护装置能够迅速动作,切除故障;在故障点较远的位置,距离保护装置动作时间有所延迟。

2. 接地故障:距离保护装置对接地故障的灵敏度较高,能够迅速动作,切除故障。

3. 过负荷故障:距离保护装置对过负荷故障的灵敏度较低,不能有效切除故障。

七、实验结论1. 距离保护能够根据故障点的距离,实现对电力系统故障的快速切除。

2. 距离保护在不同故障类型和位置下的动作行为有所不同,需要根据实际情况进行调整和优化。

3. 距离保护在实际应用中,需要定期进行维护和校验,确保其可靠性和准确性。

实验三距离保护

实验三距离保护

实验三、距离保护及方向距离保护整定实验一、实验目的1.熟悉阶段式距离保护及方向距离保护的工作原理和基本特性。

2.掌握时限配合、保护动作阻抗(距离)和对DKB、YB的实际整定调试方法。

二、预习与思考1.什么是距离保护?距离保护的特点是什么?2.什么是距离保护的时限特性?3.什么是方向距离保护?方向距离保护的特点是什么?4.方向距离保护的Ⅰ段和Ⅱ段为什么在单电源或多电源任何形状的电网中都能够保证有选择性地切除故障线路?5.阶段式距离保护中各段保护是如何进行相关性配合的?6.在整定距离保护动作阻抗时,是否要考虑返回系数。

三、原理说明1.距离保护的作用和原理电力系统的迅速发展,使系统的运行方式变化增大,长距离重负荷线路增多,网络结构复杂化。

在这些情况下,电流、电压保护的灵敏度、快速性、选择性往往不能满足要求。

电流、电压保护是依据保护安装处测量电流、电压的大小及相应的动作时间来判断故障是否发生以及是否属于内部故障,因而受系统的运行方式及电网的接线形式影响较大。

针对被保护的输电线路或元件,在其一端装设的继电保护装置,如能测量出故障点至保护安装处的距离并与保护范围对应的距离比较,即可判断出故障点的位置从而决定其行为。

这种方式显然不受运行方式和接线的影响。

这样构成的保护就是距离保护。

以上设想,表示在图5-1中。

图中线路A侧装设着距离保护,由故障点到保护安装处间的距离为l,按该保护的保护范围整定的距离为l zd,如上所述,距离保护的动作原理可用方程表示:l≤l zd。

满足此方程时表示故障点在保护范围内,保护动作;反之,则不应动作。

图5-1 距离保护原理说明Z—表示距离保护装置距离比较的方程两端同乘以一个不为零且大于零的z1(输电线每千米的正序阻抗值)得到:Z d = z1l ≤ z1l zd ( 5-1 )式(5-1)称为动作方程或动作条件判别式。

表明距离保护是反应故障点到保护安装处间的距离(或阻抗)并与规定的保护范围(距离或阻抗)进行比较,从而决定是否动作的一种保护装置。

继电保护实验报告三(理工类)

继电保护实验报告三(理工类)

西华大学实验报告(理工类)开课学院及实验室: 实验时间 : 年 月 日一、实验目的1)熟悉阻抗继电器原理、特性及调整整定值的方法。

2)掌握阻抗继电器在线路距离保护中的应用和实现方法,以及与重合闸继电器的配合方式。

3)了解不同的运行方式对距离保护的影响。

4)了解同一变电站阻抗保护各段之间配合的动作过程。

二、实验原理随着电力系统的发展,出现了容量大、电压高或结构复杂的网络,这时简单的电流、电压保护难于满足电网对保护的要求。

例如,对于高压、长距离、重负荷线路,由于负荷电流大,线路末端短路时,短路电流的数值与负荷电流相差不大,故电流保护往往不能满足灵敏度的要求;对于电流速断保护,其保护范围随电网运行方式的变化而改变,保护范围不稳定,某些情况下甚至无保护区。

所以,如何使继电保护的灵敏度不受(或少受)系统运行方式的影响,这就是系统发展对继电保护提出的新要求。

阻抗保护就是适应此要求的一种保护。

1) 阻抗保护的基本原理所谓阻抗保护,就是指反映保护安装处至短路故障点的距离,并根据这一距离的远近而确定是否动作的一种保护装置,其基本原理图右图所示。

系统正常工作时,保护安装处测量到的电压为w U ,它接近于额定电压。

保护安装处测量到的电流为负荷电流L I ,则比值wm L U Z I =,基本上是负荷阻抗L Z ,其值较大,负荷阻抗角1k ϕ较小(一般为30°~40°)。

当右图所示k1点短路时,保护安装处测量到的电压为k1点短路时的残压111k k k U Z I =,测量到的电流为1k I ,则比值111k k k U Z I =。

当k2点短路时,则有222222()k k AB k AB k k k U I Z Z Z Z I I +==+ 后两种状态下的阻抗值均较小,而阻抗角为k ϕ其值较大。

显然利用电压和电流的比值,不但能清楚地判断系统的正常工作状态和短路状态,还能反映短路点到保护安装处的电气距离。

电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性

电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性
电力系统继电保护原理3电网的距离保护31距离保护的作用原理32各种单相式阻抗继电器的动作特性33阻抗继电器的接线方式34方向阻抗继电器的死区和特性分析35距离保护的整定计算和评价36影响距离保护正确动作的因素及防止方法37距离保护装置框图举例31距离保护的作用原理问题的提出电流保护的优点和缺点电流保护的使用量电流只是反映了故障的一个特征实际上线路故障时除了电流增大还有电压的降低可以考虑联合使用电压的降低和电流的增加构成的保护阻抗保护距离保护1
Zset
UP 240 arg 120 U jX
Zm Zset
Z0
Zm
O
R
Z0
R
U P Um
U P Um
U =Um I m Zset
U = I m Z0
10. 具有四边形特性的阻抗继电器
jX
A
B
折线A-O-C可以由动作 范围小于1800的功率方 向继电器来实现
直线A-B可由一个电抗 型继电器实现
电力系统继电保护原理
主讲教师:范春菊
3 电网的距离保护 3.1 距离保护的作用原理 3.2 各种单相式阻抗继电器的动作特性 3.3 阻抗继电器的接线方式
3.4 方向阻抗继电器的死区和特性分析
3.5 距离保护的整定计算和评价
3.6 影响距离保护正确动作的因素及防止方法
3.7 距离保护装置框图举例
3.1 距离保护的作用原理
Z m Z set
Zm
O
m
R
Z m Z set
R
(a)
(b)
| Zm | Zset
| U m | I m Z set
幅值比较方式
Z m Z set 270 arg 90o Z m Z set

继电保护教程 第三章 距离保护

继电保护教程 第三章 距离保护

第三章 电网的距离保护 第一节距离保护的作用原理一﹑基本概念电流保护的优点:简单﹑可靠﹑经济。

缺点:选择性﹑灵敏性﹑快速性很难满足要求(尤其35kv 以上的系统)。

距离保护的性能比电流保护更加完善。

Z dU d....1fe f dd d ld I U Z I U Z Z =<==,反映故障点到保护安装处的距离——距离保护,它基本上不说系统的运行方式的影响。

二﹑距离保护的时限特性距离保护分为三段式: I 段:AB Idz Z Z )85.0~8.0(1=,瞬时动作 主保护 II 段:)(21Idz AB IIK IIdz Z Z K Z +=,t=0.5’’III 段:躲最小负荷阻抗,阶梯时限特性。

————后备保护第二节 阻抗继电器阻抗继电器按构成分为两种:单相式和多相式单相式阻抗继电器:指加入继电器的只有一个电压U J (相电压或线电压)和一个电流I J (相电流或两相电流之差)的阻抗继电器。

JJ J I U Z ..=——测量阻抗Z J =R+jX 可以在复平面上分析其动作特性它只能反映一定相别的故障,故需多个继电器反映不同相别故障。

多相补偿式阻抗继电器:加入的是几个相的补偿后的电压。

它能反映多相故障,但不能利用测量阻抗的概念来分析它的特性。

本节只讨论单相式阻抗继电器。

一﹑阻抗继电器的动作特性PTld PT l lPT JJ J n n Z n n I U n I n U I U Z ⨯=⨯===1.1.1.1...BC 线路距离I 段内发生单相接地故障,Z d 在图中阴影内。

由于1)线路参数是分布的, Ψd 有差异2)CT,PT 有误差 3)故障点过渡电阻 4)分布电容等 所以Z d 会超越阴影区。

因此为了尽量简化继电器接线,且便于制造和调试,把继电器的动作特性扩大为一个圆,见图。

圆1:以od 为半径——全阻抗继电器(反方向故障时,会误动,没有方向性) 圆2:以od 为直径——方向阻抗继电器(本身具有方向性) 圆3:偏移特性继电器另外,还有椭圆形,橄榄形,苹果形,四边形等二﹑利用复数平面分析阻抗继电器它的实现原理:幅值比较原理 B A U U ..≥J相位比较原理 90arg 90..≤≤-DC U U(一) 全阻抗继电器 特点),以Z zd 为半径的圆。

电力系统继电保护-3 电网距离保护

电力系统继电保护-3 电网距离保护
( Z set1 Z set 2 ) 处,半径为 ( Z set1 Z set 2 ) 。 特性圆不包括坐标原点,圆心位于 Z Zm 2 (3-22) 2 90o arg set 90o Z set Z m 偏移圆特性阻抗继电器的绝对值比较动作方程 Z set 2 0 , Z set1 Z set 代入式(3-18) 将 ,可得到方 偏移圆特性阻抗继电器的相位比较动作方程 1 1 (3-13) Z m ( Z set1 Z set ( Z set1全阻抗圆特性 Z set 2 ) 2) 阻抗元件本身不具方向性 —— Z set 抛圆阻抗特性的动作方程与偏移圆阻抗特性 o o 1 Z m 向园特性的相位比较动作方程: 2 2 (3-18) 90 arg 90 Z m Z set 2 在各个方向上的动作阻抗都相同,它在正向
3.1.5 距离保护的构成
• 启动部分要求——当作为远后备保护范围末端发生故障时,启动部分 应灵敏、快速(几毫秒)动作,使整套保护迅速投入工作。 • 测量部分要求--在系统故障的情况下,快速、准确地测定出故障方向 和距离,并与预先设定的方向和距离相比较,区内故障时给出动作信 号,区外故障时不动作。
3.2.2 动作特性和动作方程
• 动作特性——阻抗继电器动作区域的 形状,称为动作特性。 • 圆特性——动作区域为圆形; • 四边形特性——动作区域为四边形。 • 动作方程——描述动作特性的复数的 数学方程。 • 绝对值(或幅值)比较动作方程—— 比较两个量大小的绝对值比较原理表 达式。 • 相位比较动作方程:比较两个量相位 的相位比较原理表达式。
电力系统继电保护
3 电网距离保护
3.1 距离保护的基本原理与构成
ቤተ መጻሕፍቲ ባይዱ

继电保护实验数据记录(精装)

继电保护实验数据记录(精装)

流 (安) 状态(动作) 1LJ
3
实验三、 实验三、距离保护实验
表5 保护项目 故障类型 电流 电抗 报文 动 作 时 重合闸时间 间(秒) (秒)
X=0.7XD1 AN 瞬时 IAN=In X=1.1XD2
X=0.9XD2 接地距离 BN 瞬时 IBN=In X=1.1XD2
X=0.9XD3 CN 永久 ICN=In X=1.1XD3 注:做接地距离保护实验时,测试仪人-机对话界面设置: 故障电流:5 安培;故障电阻:1Ω;初始角:0°;PT 位置:母线侧;零序电阻补偿系数 Kr=2.3;零序电抗补偿系数 Kx=0.6。
4
表8 保护项目 故 障 类 型 电流 电抗 报文 动作时 间 (秒) 重合闸时间 (秒)
X=0.7XX1 AB 瞬时 IAB=In X=1.1XX1
X=0.9XX2 相间距离 BC 瞬时 IBC= In X=1.1XX2
X=0.9XX3 CA 永久 ICA= In X=1.1XX3
5
附录: 附录:
电力系统继电保护实验
数 据 记 录 表 格
华 北 电 力 大 学 电气与电子工程学院 2008 年 3 月
实验一 电磁型电流继电器和时间继电器实验
表(一)电流继电器的调整实验 两线圈串联 整定把手位置 注 刻度最小 刻 度 中 间 刻 度 最 大 刻 度 最 小 刻 度 中 间 刻 度 最 大 两线圈并联 备
流 (安) 状态(动作) 1LJ
表(五): 故障 类型 两相 2LJ 短路 3LJ 1LJ 两相 2LJ 短路 3LJ 1LJ 两相 2LJ 短路 3LJ 1LJ 两相 2LJ 短路 3LJ 1LJ 两相 2LJ 短路 3LJ 3SJ 3XJ 2SJ 2XJ ZJ 3SJ 3XJ 1XJ 2SJ 2XJ ZJ 3SJ 3XJ 1XJ 2SJ 2XJ ZJ 3SJ 3XJ 1XJ 2SJ 2XJ ZJ 3SJ 3XJ 1XJ 2SJ 2XJ ZJ 短路电 电流继电器 时间继电器 状态(启动) 信号继电器 状态(动作) 1XJ 中间继电器 状态(动作) 保护 类型 动作时 限(秒)

电力系统继电保护—距离

电力系统继电保护—距离
jX
Z set
Z set
Z op
Z op cos( set L )
set
R
L — 负荷角度,约26 0 以内 set — 希望等于线路的阻抗角
Z set K rel
'''
0.9U N K ss K re I L .max cos set L
' set .3
“与相邻线路距离Ι段相配合”的要求基本上对
应于:“相邻线路距离Ι段末端短路不误动” , 即:
Z set .1 Z m .1 ( Z set .3 )
12/75
1)与相邻线路距离Ι段相配合
A 1
I1
2
B
3
I2
4
C
' Z set .3
要求:Z set .1 Z m .1 ( Z set .3 )
因此,整定原则:
Z set .1 K rel ( Z AB K b .min Z set .3 )
取:K rel 0.8
这样整定之后,再遇到 Kb 增大的其他运行方式 时,距离Ⅱ段的保护范围只会缩小,而不至于失去 选择性——最小感受阻抗都保证不误动。
13/75
7/75
A
1
2
B
3
4
C
保护1的正确II段
A
1
2
B
3
4
C
保护1的错误II段 保护3的II段 错误的设计 ——>保护1、3的II段都动作 保护1属于误动!
8/75
2、距离保护Ⅱ段的整定
为弥补距离Ι段不能保护本级线路全长的缺陷,增 设距离Ⅱ段保护,要求它能够保护本线路的全长,保 护范围需与下级线路的距离Ι段或距离Ⅱ段相配合。 电网结构复杂,还有其他回路的影响,因此,需要

《电力系统继电保护》第3章电网的距离保护-第1234节学习资料

《电力系统继电保护》第3章电网的距离保护-第1234节学习资料
Z set 1
ZOP1
保护范围最长
Z0
ZOP2
方向性:能够消除方向阻抗元件在正 向出口处的保护死区,但同时反方向
Z set 2
《电力系统继电保护》第3章电 网的距离保护-第1234节
K3M 1
K1
Lset K 2
2N
Zm UI mm Zmm
jX
Z k2
区内: Zm Zset 区外: Zm Zset
Z Set
Z k1
ZL
反方向:m(0,90) Z k3
R
依据测量阻抗在不同情况下幅值和相位的“差异”, 区分系统是否发生故障、故障发生的范围。
k 3 M 1 Ik
k1
k 2 2N
Lset
测量故障环路的测量阻抗Zm,与整定阻抗Zset比较, 确定故障所处的区段,决定保护是否应该动作。
由于互感器误差、故障点
jX
过渡电阻,Zm落在 Zset 附
Z k2
近的一个区域中。
Z Set
圆形
动作区域
四边形 苹果形
Z k1
ZL
橄榄形等
Z k3
R
k 3 M 1 Ik
=0
U A U k A (I A K 3 I 0 )z 1 lk
ZmU I m mI AU K A3I 0 z1lk
Zm lk 一个接地阻抗元件动作
3) 两相接地短路(AB)
M 1 Ik
K (1,1)
2N
U
U U k (I K 3 I 0)z1 lk
=0
U A U k A (I A K 3 I 0 )z 1 lk
M 1 Ik
K (3)
2N
U
=0
U A U k A (I A K 3 I 0 )z 1 lk

电力系统继电保护 第三章电网的距离保护1-5节

电力系统继电保护 第三章电网的距离保护1-5节
※ 零序电流保护不能满足要求时,考虑采用接地距离保护。
相间距离接线方式:
保护相间短路故障 采用相-相故障环路 测量电压取保护安装处两故障相的电压差 测量电流取保护安装处两故障相的电流差 可反映两相短路、两相接地故障和三相短路故 障 不能反映单相接地短路
※ 相间短路电流保护不能满足要求时,采用相间短路距离保护。
A相
U&mA U&A
I&mA I&A K 3I&0
B相
U&mB U&B
I&mB I&B K 3I&0
C相
U&mC U&C
I&mC I&C K 3I&0
3.1.4 距离保护的时限特性
距离保护的动作时间t与保护安装处到故障点之间的
距离的关系称为距离保护的时限特性,目前获得广 泛应用的是阶梯型时限特性,称为距离保护的Ⅰ、 Ⅱ、Ⅲ段。
测量电压
UmAB UA UB
UmBC UB UC UmCA UC UA
测量电流
ImAB IA IB
ImBC IB IC
ImCA IC IA
当功率因数为1时,加在继电器端子上的电压与 电流的相位差为0°,故称为0°接线。
接地距离保护的接线方式(具有零序电流补偿的0°接线)
测量电压 测量电流
继电器电流、电压的选取方式就是阻抗继电器的接线 方式。
阻抗继电器的接线方式主要有两种: 1、0° 接线方式,反应相间短路故障; 2、相电压和具有K3I0补偿的相电流接线,反应接地 短路故障。
接线方式:给距离继电器接入电压和电 流的方式
加入继电器的电压Um和电流Im应满足 基本要求:

三段式距离保护实验总结

三段式距离保护实验总结

在电力系统的稳定运行与安全保障中,距离保护装置起着至关重要的作用。

为了深入了解和评估距离保护的性能,我们开展了一系列严谨的三段式距离保护实验。

通过精心的设计、严格的实施以及全面的数据分析,本次实验取得了丰富的成果,现将实验总结如下。

一、实验背景与目的距离保护是一种基于测量故障点到保护安装处距离的继电保护原理。

它能够快速、准确地切除故障,确保电力系统中设备和线路的安全。

本次三段式距离保护实验的目的在于:验证三段式距离保护装置在不同故障类型、故障位置和系统运行条件下的动作特性和可靠性;分析距离保护的动作时间、灵敏度等关键参数的变化规律;探究影响距离保护性能的因素,并提出相应的改进措施和优化建议。

通过实验,为电力系统的运行、维护和管理提供科学依据,提高电力系统的安全性和稳定性。

二、实验设备与方法(一)实验设备本次实验选用了先进的数字式继电保护测试仪、高精度电流电压互感器、微机保护装置等设备。

这些设备具备高精度、高稳定性和良好的可操作性,能够满足实验的要求。

(二)实验方法采用模拟故障的方法进行实验。

根据电力系统的实际参数和运行情况,设置不同的故障类型、故障位置和系统运行条件。

通过继电保护测试仪向保护装置施加故障电流和电压,观察保护装置的动作情况,并记录相关的数据,如动作时间、动作电流、动作电压等。

对实验过程进行实时监测和数据分析,确保实验的准确性和可靠性。

三、实验结果与分析(一)动作特性分析在实验中,我们分别模拟了各种不同类型的故障,包括单相接地故障、两相接地故障、两相短路故障和三相短路故障。

通过对实验结果的分析,发现三段式距离保护装置能够准确地识别故障类型,并在规定的时间内可靠地动作。

在不同故障类型下,装置的动作时间和动作特性基本符合设计要求,具有良好的选择性和速动性。

在单相接地故障实验中,装置的第一段距离保护在故障点靠近保护安装处时迅速动作,切除故障;第二段距离保护在故障点稍远时动作,进一步扩大了切除故障的范围;第三段距离保护在故障点更远时动作,确保了故障的完全切除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 输电线路的微机距离保护实验
(多边形阻抗保护动作特性实验)
一、 实验目的
1.熟悉阻抗继电器原理、特性及调整整定值方法。

2.根据实验数据确定I 段阻抗保护的动作区域,绘出动作区域简图。

二、 接线方式及微机保护相关事项
阻抗保护实验一次系统图如图1所示。

实验原理接线图如图2所示。

A相负载
B相负载
C相负载
图2实验原理接线图
微机的显示画面:画面切换——用于选择微机的显示画面。

微机的显示画面由正常运行画面、故障显示画面、整定值浏览和整定值修改画面组成,每按压一次“画面切换”按键,装置显示画面就切换到下一种画面的开始页,画面切换是循环进行的。

信号复位 —— 用于装置保护动作之后对出口继电器和信号指示灯进行复位操作。

主机复位 —— 用于对装置主板CPU 进行复位操作。

表1 微机保护装置故障显示项目
图1 阻抗保护实验一次系统图
图3 微机距离保护软件基本框图
为了提高耐过渡电阻的能力,以及提高躲负荷的能力,方向阻抗继电器的特性如图4所示较为理想。

图中A可以沿R移动,C点可沿jX轴移动,以改变保护动作区域范围。

本试验台微机阻抗保护部分的阻抗特性采用了图4的特性。

图4 多边形阻抗保护动作
图4 多边形阻抗保护动作
阻抗特性电阻分量r1(A点),电抗分量H1(C点)是整定值,可以整定。

改变移相器的角度ϕ,相当于改变了线路阻抗角(测量电压与测量电流间的相角),不同移相角ϕ下,I段的保护范围Z I是不同的,如图4所示
三、实验内容与步骤
实验内容:多边形阻抗保护动作特性实验。

实验要求:调整移相器移相角,改变滑动变阻器阻值的大小(阻值为滑动变阻器刻度除以10)。

合上故障模拟断路器3KM,模拟系统发生三相短路故障。

将多边形阻抗保护特性实验数据记录于表3中(1表示动作,0表示不动作)。

通过在不同的移相角度和短路电阻下,经过多次实验,确定I段保护的动作区域。

四、实验过程及步骤
(1)按图2完成实验接线。

(2)合上三相电源开关和直流电源开关,合上模拟断路器1KM、2KM,调节调压器输出,使试验台微机保护单元电压显示值升到50V,负载灯全亮。

(3)合上微机装置电源开关,将微机阻抗保护整定值按表2进行整定。

整定值设置方法:
按压“画面切换”键,进入整定值修改显示画面“-------”,之后,通过同时按压触摸按键“▲”、“▼”可选择不同的整定项目,再通过按“▲”或“▼”选择准备修改的整定项目。

对投退型(或开关型)整定值,通过按压触摸按钮“+”可在投入/退出之间进行切换;对数值型整定时,通过触摸按钮“+”、“-”对其数据大小进行修改。

当整定值修改完成之后,按压“画面切换”触摸键进入定值修改保存询问画面,这时,选择按压触摸键“+”表示保存修改后的整定值;若选择按压触摸键“-”,则表示放弃保存修改后的整定值,仍使用上次设置的整定值参数。

例如,要修改微机距离保护相间距离II段保护动作延时时间为1.5秒,可依下面的步骤进行:
(1)按压“画面切换”键,进入整定值修改显示画面“-------”;
(2)同时按压触摸按键“▲”和“▼”直接进入整定值修改画面,这时显示画面应为“E1-OFF”;
(3)按压触摸按键“▼”,使显示画面为“t2-XXX”(XXX为上次设置的相间距离II段保护动作延时时间);
(4)按压触摸按键“+”或“-”键,使显示画面中的XXX为1.5;
(5)按压触摸按键“画面切换”键,这时显示画面应该为“y n-”(它提醒操作人员:选择按压触摸按键“+”键,就可保存已经修改了的整定值;若选择按压触摸按键“-”键,则表示放弃当前对整定值参数所进行的修改,继续使用上次设置的整定值。

);
(6)按压触摸按键“+”键,保存对整定值参数所作的修改。

整定值修改完成之后,可通过整定值浏览画面观察修改后的参数设置情况。

(4)将台面右上角的LP1(微机出口连接片)接通。

(5)合上模拟线路的SA、SB和SC短路模拟开关。

(6)合上故障模拟断路器3KM。

模拟系统发生三相短路故障。

此时负荷灯全熄灭,微机装置显示“11-XXX”(第一个“1”,表示I段保护动作,第二个“1”表示AB相短路;XXX为测量阻抗模值的大小),“I段动作”指示灯点亮,由I段保护动作跳开模拟断路器,从而实现保护功能。

(7)断开故障模拟断路器3KM,按微机保护的“信号复位”按钮,可重新合上模拟断路器2KM,负荷灯全亮,即恢复模拟系统无故障运行状态。

(8)以1Ω为步长,移动短路电阻滑动头,重复步骤(6)和(7),直到I段保护不动作,记下此时的短路电阻值。

滑动变阻器从1Ω开始往上调节,这样,如果1Ω时短路时不跳闸,说明I段整定阻抗大了,请将I段整定阻抗调小,并记录下I段整定阻抗值。

(9)按表3中给定的值将移相器调整到另一个角度,以1Ω为步长,移动短路电阻滑动头,重复实验步骤(6)至(8),将实验结果记录在表3中。

(10)实验结束后,将调压器输出调回零,断开各种短路模拟开关,断开模拟断路器,最后断开所有实验电源开关。

四、微机保护装置使用注意事项
(1)调整整定值参数时,应先确定是否运行在正确的程序中(可通过正常运行时的显示画面情况进行判定)。

(2)改变连接片状态(接通或断开)时,要先使微机的三段保护指示灯处在熄灭状态(通过按压触摸键“信号复位”键来完成)。

(3)做短路实验时,短路故障电流的持续时间不要过长。

(4)微机保护一旦动作后,必须先按微机保护装置上的“信号复位”按钮,才能重新合上模拟断路器。

(5)当使用微机保护装置上的合闸选控键进行合闸操作时,操作完毕后必须按“信号复位”按钮,否则回路被闭锁,保护分闸不能成功。

(6)在正常运行状态下,若面板左上角的“正常运行”指示灯闪烁规律不正确(每2秒钟变化一次),则需要按“复位”键对主机进行复位。

五、实验分析及结论
表3 多边形阻抗保护特性实验数据记录表(1表示动作,0表示不动作,对任一移相角ϕ,调节滑动变阻器的电阻从1开始往上调,动作时,记录下动作阻抗模值,即微机保护屏上
根据实验数据确定I段阻抗保护的动作区域,绘出动作区域简图。

绘出动作区域简图实例:假设从实验结果得出,对每一移相角ϕ,I段的保护范I。

相关文档
最新文档