运算律知识点总结

合集下载

苏教版四年级数学下册第六单元《运算律》单元复习知识点归纳总结

苏教版四年级数学下册第六单元《运算律》单元复习知识点归纳总结

用字母表示数,渗透了符号化思想。

符号化思想就是用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容。

举例:用简便算法计算29+16+24,3个数连加,运用加法结合律可以简便运算。

16+24正好是40,先算比较简便。

29+16+24
=29+(16+24)
=29+40
=69
在应用加法运算律进行简算时,有时会同时用到两种运算律。

易错点:加法交换律和乘法交换律改变的是加数和乘数的位置,结果不变。

在应用乘法运算律简算时,有时会同时用到两种或两种以上的运算律。

要点提示:加法结合律和乘法结合律改变的是运算顺。

整理运算律知识点

整理运算律知识点

整理运算律知识点运算律是数学中一些基本且广泛适用的规则,用于简化复杂的代数运算。

它们可以帮助我们在计算过程中更加高效地处理数字和符号。

本文将介绍一些常见的运算律知识点,并通过逐步思考的方式进行解释。

1.交换律交换律是指在某些运算中,可以改变操作数的位置而不改变最终结果。

对于加法和乘法来说,交换律成立。

例如,对于任意的实数a和b,a + b = b + a;a × b = b × a。

这意味着无论a和b的值如何,它们的和或积的结果是相同的。

2.结合律结合律是指在某些运算中,可以改变运算顺序而不改变最终结果。

对于加法和乘法来说,结合律成立。

例如,对于任意的实数a、b和c,(a + b) + c = a + (b + c);(a × b) × c = a × (b ×c)。

这意味着无论运算的顺序如何,最终结果是相同的。

3.分配律分配律是指在某些运算中,可以将运算符分配给操作数。

对于加法和乘法的组合来说,分配律成立。

例如,对于任意的实数a、b和c,a × (b + c) = a × b + a × c。

这意味着可以先将b和c相加,再将结果与a相乘,或者可以先将a与b相乘,再将a与c相乘,最后将两个结果相加,最终的结果是相同的。

4.逆元素逆元素是指对于某个运算,存在一个元素与另一个元素进行该运算后得到一个特定的元素,这个特定的元素与原始元素进行该运算后等于一个特定的元素(通常是单位元素)。

对于加法和乘法来说,逆元素成立。

例如,对于任意的实数a,存在一个实数-b,使得a + (-b) = 0。

这意味着对于任意实数a,都存在一个实数-b,使得它们的和等于0。

5.吸收律吸收律是指在某些运算中,某个元素通过与另一个元素进行该运算后得到自身。

对于加法和乘法的组合来说,吸收律成立。

例如,对于任意的实数a和b,如果a ≤ b,则有a + (b - a) = b。

运算律知识点归纳及练习

运算律知识点归纳及练习

运算律知识点归纳及练习 Revised final draft November 26, 2020第四单元《运算律》知识点归纳及练习乘法结合律1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

用字母表示是:(a×b)×c=a×(b×c).使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。

乘法结合律可以改变乘法运算中的顺序。

数字如;25和4、50和2、125和8、50和4、500和2等。

加法运算时也有结合律。

如果用a/b/c表示三个数,那么加法结合律表示为:(a+b)+c=a+(b+c)2、认识乘法交换律两个数相乘,交换他们的位置,积不变,这叫乘法交换律。

如用字母a、b表示两个数,那么乘法交换律用字母表示为:a×b=b×a。

1)上述规律可推广到更多个数相乘。

如:125×4×8×25=(125×8)×(25×4)=1000×100=1000002)加法运算时也有交换律,如用字母a、b表示两个数,那么加法交换律用字母表示为:a+b=b+a。

3)运用加法交换律和结合律可以使得一些运算简便。

50+7+40+9=(50+40)+(7+9)=90+16=106 练习题:73×25×4125×63×84×(25×93)12×125×5×832×125×2548×125×5乘法分配律1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。

用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c1、式子的特点:式子的运算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)是能凑成整十、整百、整千的数。

四年级下册数学第三单元运算律

四年级下册数学第三单元运算律

四年级下册数学第三单元《运算定律》一、知识点总结1. 加法运算定律-加法交换律:两个数相加,交换加数的位置,和不变。

用字母表示为a + b = b + a。

-加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

用字母表示为(a + b) + c = a + (b + c)。

2. 乘法运算定律-乘法交换律:两个数相乘,交换两个因数的位置,积不变。

用字母表示为a×b = b×a。

-乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。

用字母表示为(a×b)×c = a×(b×c)。

-乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

用字母表示为(a + b)×c = a×c + b×c。

二、典型例题解析1. 计算45 + 67 + 55。

-解法一:按照从左到右的顺序计算,45 + 67 = 112,112 + 55 = 167。

-解法二:运用加法交换律,先算45 + 55 = 100,再算100 + 67 = 167。

2. 计算25×13×4。

-解法一:先算25×13 = 325,再算325×4 = 1300。

-解法二:运用乘法交换律,先算25×4 = 100,再算100×13 = 1300。

3. 计算125×(8 + 4)。

-解法一:先算括号里的8 + 4 = 12,再算125×12 = 1500。

-解法二:运用乘法分配律,125×8 + 125×4 = 1000 + 500 = 1500。

三、易错点分析1. 在运用运算定律进行简便计算时,容易出现运算顺序错误。

例如:在计算25×(40 + 4)时,有的同学可能会先算25×40,再加上4,这是错误的。

运算律总结知识点

运算律总结知识点

运算律总结知识点一、加法运算律1. 加法结合律:a+(b+c)=(a+b)+c这个运算律就是加法的结果不受加数的次序的影响,即改变加数的次序,其和不变。

例如:2+(3+4)=(2+3)+4=9。

2. 加法交换律:a+b=b+a这个运算律就是加法的结果不受加数次序的影响,即相加的两数次序实质上不影响其和。

例如:2+3=3+2=5。

3. 零的作用:0+a=a+0=a这个运算律就是任何数与零相加都等于原来的数。

例如:0+5=5+0=5。

二、减法运算律1. 减法的性质:a-b≠b-a减法不满足交换律与结合律。

例如:3-2≠2-3。

2. 减法的相反性:a-b=a+(-b)这个运算律就是减法可以看作是加法的一个特例,减去一个数等于加上它的相反数。

例如:3-2=3+(-2)=1。

三、乘法运算律1. 乘法结合律:a*(b*c)=(a*b)*c这个运算律就是乘法的结果不受乘数的次序的影响,即改变乘数的次序,其积不变。

例如:2*(3*4)=(2*3)*4=24。

2. 乘法交换律:a*b=b*a这个运算律就是乘法的结果不受乘数次序的影响,即相乘的两数次序实质上不影响其积。

例如:2*3=3*2=6。

3. 乘法分配律:a*(b+c)=a*b+a*c这个运算律就是乘法对加法的分配律,即一个数乘以两个数的和等于这个数乘以这两个数的和。

例如:2*(3+4)=2*3+2*4=14。

四、除法运算律1. 除法的性质:a÷b≠b÷a除法不满足交换律与结合律。

例如:3÷2≠2÷3。

2. 除法的相反性:a÷b=a*1/b这个运算律就是除法可以看作是乘法的一个特例,除以一个数等于乘以它的倒数。

例如:3÷2=3*1/2=1.5。

五、指数运算律1. 乘幂运算律:a^m*a^n=a^(m+n)这个运算律就是相同底数的幂相乘,指数相加。

例如:3^2*3^3=3^(2+3)=3^5。

2. 乘幂数乘法运算律:(a^m)^n=a^(m*n)这个运算律就是幂的幂,指数相乘。

运算律知识点归纳及练习

运算律知识点归纳及练习

第四单元《运算律》知识点归纳及练习乘法结合律1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

用字母表示是:(a×b)×c=a×(b×c).使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。

乘法结合律可以改变乘法运算中的顺序。

数字如;25和4、50和2、125和8、50和4、500和2等。

加法运算时也有结合律。

如果用a/b/c表示三个数,那么加法结合律表示为:(a+b)+c=a+(b+c)2、认识乘法交换律两个数相乘,交换他们的位置,积不变,这叫乘法交换律。

如用字母a、b表示两个数,那么乘法交换律用字母表示为:a×b=b×a。

1)上述规律可推广到更多个数相乘。

如:125×4×8×25=(125×8)×(25×4)=1000×100=1000002)加法运算时也有交换律,如用字母a、b表示两个数,那么加法交换律用字母表示为:a+b=b+a。

3)运用加法交换律和结合律可以使得一些运算简便。

50+7+40+9=(50+40)+(7+9)=90+16=106练习题:73×25×4 125×63×8 4×(25×93)12×125×5×832×125×25 48×125×5乘法分配律1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。

用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c1、式子的特点:式子的运算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)是能凑成整十、整百、整千的数。

北师大版四年级数学上册第四单元《运算律》知识点汇总

北师大版四年级数学上册第四单元《运算律》知识点汇总

四 运 算 律一、买文具1. 不含括号的混合运算的运算顺序:在没有括号的算式里,有乘除法和加减法,要先算乘除法,再算加减法;如果加法或减法两边同时有乘除法,那么乘除法可同时计算。

2. 含有括号的四则混合运算的运算顺序:在有括号的算式里,如果有小括号,要先算小括号里面的,再算小括号外面的;如果有中括号,先算中括号里面的,再算中括号外面的。

有中括号时,一定要把中括号里面的算式全部算完才能去掉中括号。

3. 混合运算图示如下:二、加法交换律和乘法交换律1. 加法交换律:两个数相加,交换加数的位置,和不变。

用字母表示为a +b =b +a 。

2. 乘法交换律:两个数相乘,交换乘数的位置,积不变。

用字母表示为a ×b =b ×a 。

3. 加法交换律和乘法交换律的应用:运用加法交换律和乘法交换律可以验算加法和乘法的计算是否准确。

三、加法结合律1. 加法结合律:三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再与第一个数相加,和不变。

用字母表示为(a +b )+c =a +(b +c )。

2. 加法运算律的应用:在连加算式中,当某些加数可以凑成几百几十数或整百数时,可以运用加法交换律、加法结合律改变加数的位置或改变运算顺序,使计算简便。

易错提示:计算时,没有参加运算的数要连同前面的运算符号抄写下来。

知识巧记: 混合运算并不难,明确顺序是关键。

同级运算最好办,从左到右依次算。

两级运算都出现,先算乘除后加减。

遇到括号更简单,先算里面后外面。

要点提示:用字母表示运算律,更为直观方便。

易错提示:减法和除法中不存在交。

运算律知识点归纳六年级

运算律知识点归纳六年级

运算律知识点归纳六年级运算律知识点归纳六年级在数学学习中,我们经常会接触到各种各样的运算律。

运算律是数学中的重要概念,它们是帮助我们简化计算、解决问题的重要工具。

在这篇文章中,我将为大家归纳总结六年级学生需要掌握的运算律知识点。

一、加法的运算律在六年级的数学学习中,我们已经掌握了加法的基本概念和计算方法。

下面是一些与加法相关的运算律。

1. 加法的交换律交换律是指两个数相加的结果与它们的顺序无关,即 a + b = b + a。

例如,3 + 5 = 5 + 3。

2. 加法的结合律结合律是指三个数相加的结果与它们的加法顺序无关,即 (a + b) + c = a + (b + c)。

例如,(2 + 3) + 4 = 2 + (3 + 4)。

3. 加法的零元素律零元素律是指任何数加上0的结果等于它本身,即 a + 0 = a。

例如,7 + 0 = 7。

二、减法的运算律减法是加法的逆运算,它也有一些特殊的运算律。

1. 减法的减去零律减去零律是指任何数减去0的结果等于它本身,即 a - 0 = a。

例如,9 - 0 = 9。

2. 减法的加上相反数律减法的加上相反数律是指用一个数减去另一个数,等于将减数加上另一个数的相反数,即 a - b = a + (-b)。

例如,8 - 3 = 8 + (-3)。

三、乘法的运算律乘法是六年级数学学习中的一个重点,下面是一些与乘法相关的运算律。

1. 乘法的交换律交换律是指两个数相乘的结果与它们的顺序无关,即 a * b = b * a。

例如,4 * 6 = 6 * 4。

2. 乘法的结合律结合律是指三个数相乘的结果与它们的乘法顺序无关,即 (a * b) * c = a * (b * c)。

例如,(2 * 3) * 4 = 2 * (3 * 4)。

3. 乘法的分配律分配律是指一个数乘上两个数的和等于它分别乘上这两个数再相加的结果,即 a * (b + c) = (a * b) + (a * c)。

《运算律》知识点

《运算律》知识点

《运算律》知识点运算律知识点1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

用字母表示是:×c=a×.使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。

乘法结合律可以改变乘法运算中的顺序。

数字如;25和4、50和2、125和8、50和4、500和2等。

加法运算时也有结合律。

如果用a/b/c表示三个数,那么加法结合律表示为:+c=a+2、认识乘法交换律两个数相乘,交换他们的位置,积不变,这叫乘法交换律。

如用字母a、b表示两个数,那么乘法交换律用字母表示为:a ×b=b×a。

1)上述规律可推广到更多个数相乘。

如:125×4×8×25=×=1000×100=1000002)加法运算时也有交换律,如用字母a、b表示两个数,那么加法交换律用字母表示为:a+b=b+a。

3)运用加法交换律和结合律可以使得一些运算简便。

50+7+40+9=+=90+16=106练习题1.用简便方法计算。

584+289+416=()7×8×4×125=()4×17×2536×15=()2.选一选。

250×320的简便算法是。

A.250×300×20B.250×4×80c.25×8×4037×25×40=37×,这个算式是运用了。

A.乘法结合律B.乘法交换律c.乘法交换律和结合律3.水果市场运来23车苹果,平均每车有50箱,平均每箱有20千克,水果市场一共运来多少千克苹果?__________________________________________________________。

运算律知识点总结

运算律知识点总结

第六单元运算律1、加法运算定律:(1)加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a如:1+2=2+1 1+2+3=2+3+1(2)加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b) +c=a+(b+c)(3)加法的这两个定律往往结合起来一起使用。

(加法交换律与结合律)如:165+93+35=93+(165+35)(4)简便计算几个加数是否能简便计算,关键是看加数的个位相加是否能凑整方法规律连加计算仔细看,考虑加数是关键。

整十、整百与整千,结合起来会简便。

交换定律记心间,交换位置和不变,结合定律应用广,加数凑整更简单。

2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

(结合连除) a-b-c=a-(b+c)3、乘法运算定律:(1)乘法交换律:两个数相乘,交换因数的位置,积不变。

a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(a×b) ×c=a×(b×c)乘法的这两个定律往往结合起来一起使用。

如:125×78×8 简算。

(3)乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b)×c = a×c + b×c(合起来乘等于分别乘)(a-b)×c = a×c - b×c 4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。

(结合连减) a÷b÷c=a÷(b×c)5、相遇问题路程和=速度和×相遇时间。

《运算律》知识点

《运算律》知识点

《运算律》知识点运算律知识点1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

用字母表示是:×=a×使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。

乘法结合律可以改变乘法运算中的顺序。

数字如;2和4、0和2、12和8、0和4、00和2等。

加法运算时也有结合律。

如果用a/b/表示三个数,那么加法结合律表示为:+=a+2、认识乘法交换律两个数相乘,交换他们的位置,积不变,这叫乘法交换律。

如用字母a、b表示两个数,那么乘法交换律用字母表示为:a ×b=b×a。

1)上述规律可推广到更多个数相乘。

如:12×4×8×2=×=1000×100=1000002)加法运算时也有交换律,如用字母a、b表示两个数,那么加法交换律用字母表示为:a+b=b+a。

3)运用加法交换律和结合律可以使得一些运算简便。

0+7+40+9=+=90+16=106练习题1用简便方法计算。

84+289+416=()7×8×4×12=()4×17×236×1=()2选一选。

20×320的简便算法是。

A20×300×20B20×4×802×8×4037×2×40=37×,这个算式是运用了。

A乘法结合律B乘法交换律乘法交换律和结合律3水果市场运来23车苹果,平均每车有0箱,平均每箱有20千克,水果市场一共运来多少千克苹果?__________________________________________________________。

参考答案1用简便方法计算。

84+289+416=(1289)7×8×4×12=(28000)4×17×2=(1700)36×1=(40)2选一选。

运算律知识点归纳及练习

运算律知识点归纳及练习

第四单元《运算律》知识点归纳及练习乘法结合律1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

用字母表示是:(a×b)×c=a×(b×c).使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。

乘法结合律可以改变乘法运算中的顺序。

数字如;25和4、50和2、125和8、50和4、500和2等。

加法运算时也有结合律。

如果用a/b/c表示三个数,那么加法结合律表示为:(a+b)+c=a+(b+c)2、认识乘法交换律两个数相乘,交换他们的位置,积不变,这叫乘法交换律。

如用字母a、b表示两个数,那么乘法交换律用字母表示为:a×b=b×a。

1)上述规律可推广到更多个数相乘。

如:125×4×8×25=(125×8)×(25×4)=1000×100=1000002)加法运算时也有交换律,如用字母a、b表示两个数,那么加法交换律用字母表示为:a+b=b+a。

3)运用加法交换律和结合律可以使得一些运算简便。

50+7+40+9=(50+40)+(7+9)=90+16=106练习题:73×25×4 125×63×8 4×(25×93) 12×125×5×8 32×125×25 48×125×5乘法分配律1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。

用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c1、式子的特点:式子的运算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)是能凑成整十、整百、整千的数。

北师大版四年级数学上册第四单元知识点总结

北师大版四年级数学上册第四单元知识点总结

北师大版四年级数学上册第四单元知识点总结北师大版四年级数学上册第四单元《运算律》知识点总结一、买文具1、只有加减或只有乘除运算时,从左到右依次计算。

如果既有加减又有乘除运算时,先算乘除,再算加减。

如果有括号,要先算括号里的,再算中括号里的,最后算括号外面的。

2、用“小括号”“中括号”改变原式的运算顺序。

二、加法交换律和乘法交换律1、加法交换律:两个数相加,交换加数的位置,和不变。

用字母表示为:a+b=b+a。

2、乘法交换律:两个数相乘,交换乘数的位置,积不变。

用字母表示为:a×b=b×a。

三、加法结合律1、加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。

用字母表示为:(a+b)+c=a+(b+c)。

2、应用加法运算律进行简便计算。

在连加计算中,当某些加数相加可以凑成整十、整百、整千的数时,运用加法运算律可使计算简便。

3、口诀:连加计算仔细看,考虑加数是关键。

整十、整百与整千,结合起来更简单。

运算定律记心间,交换位置和不变。

结合定律应用广,加数凑整更简便。

4、减法的运算性质:1)一个数连续减去两个数等于这个数减去这两个减数的和。

用字母表示为:a-b-c=a-(b+c)。

2)一个数减去两个数的和等于这个数连续减去和里每个加数。

四、乘法结合律和乘法分配律1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘;或者先把后两个数相乘,再和第一个数相乘,积不变。

用字母表示为:(a×b)×c=a×(b×c)。

2、应用乘法运算律进行简便计算。

在连乘计算中,当某两个乘数的积正好是整十、整百、整千的数时,运用乘法运算律可使计算简便。

3、运用分解的方法,将某个乘数拆分成几个数相乘的形式,使其中的乘数与其他乘数的乘积“凑整”。

例如,25×32=25×(8×4)=25×4×8=100×8=800.4、除法的运算性质:1)一个数连续除以两个数(每次都能除尽)等于这个数除以这两个除数的积。

《运算律总复习课件》

《运算律总复习课件》

02
加法运算律
加法交换律
01
总结词
02
详细描述
加法交换律是指加法满足交换性质,即加法运算中,交换两个加数的 位置,和不变。
加法交换律是基本的数学运算律之一,它表明在加法运算中,加数的 顺序并不影响最终的和。例如,5 + 3 = 3 + 5,即交换两个加数的 位置,和保持不变。
加法结合律
总结词
加法结合律是指加法满足结合性质,即加法运算中,改变加数的组合方式,和 不变。
详细描述
设计一些涉及多个数学领域的综合题目,如代数、几何等,要求学生综合运用各种运算律进行解答。 通过解决这些题目,学生能够全面检验自己的学习成果,提高综合运用知识和解决问题的能力。
THANKS
详细描述
加法结合律也是基本的数学运算律之一,它表明在加法运算中,加数的组合方 式并不影响最终的和。例如,(5 + 3) + 2 = 5 + (3 + 2),即改变加数的组合方 式,和保持不变。
加法的其他性质
总结词
除了交换律和结合律外,加法还具有一些其他性质,如0加任何数仍等于该数、正数与负数相加等于它们的绝对 值相减等。
化学
在化学中,运算律可以用于计算化学 反应中的物质和能量变化,例如加法 交换律可以用于比较不同化学反应的 能量变化。
06
运算律的练习与巩固
基础练习题
总结词
针对运算律的基本概念和规则进行练习,帮助巩固基础知识 。
详细描述
设计一系列简单的数学题目,涉及加法、减法、乘法和除法 的基本运算律,如交换律、结合律、分配律等。通过反复练 习,使学生熟练掌握运算律的基本规则和运用。
相同的值。
运算律的重要性

运算律

运算律

四年级上运算律知识点一:加法交换律和结合律1.加法交换律:两个数相加,交换加数的位置,和不变。

用字母表示为:a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。

用字母表示为:(a+b)+c=a+(b+c)例1.1:填上适当的数。

81 + = 62 + 81 184 + 168 + 32 = 184 +( + 32 )a+b+c=a+ +b练习1.1:选出正确答案,将序号填在相应的横线上。

①41+37+13=41+(37+13)②x+y=y+x ③35+(b+65)=(35+65)+b④a+b+c=a+c+b ⑤32+45+55=32+(45+55) ⑥m+n+t=n+(m+t)只应用加法交换律的是()。

只应用加法结合律的是()。

既应用加法交换律,又应用加法结合律的是()。

例1.2:计算并用加法交换律进行验算。

357+218= 195+367=知识点二:应用加法运算律进行简便计算在连加计算中,当某些加数相加可以凑成整十、整百、整千的数时,运用加法运算律可使计算简便。

口诀:连加计算仔细看,考虑加数是关键。

整十、整百与整千,结合起来更简单。

交换定律记心间,交换位置和不变。

结合定律应用广,加数凑整更简便。

例2.1: 69+75+25 78+(47+22) 387+98(多加要减) 387+102(少加要加)387﹣98(多减要加) 387﹣102(少减要减)练习2.1:484+97 963+201 368+348+347+364+332+352+353+336 99+124+201 380+345+120 9321+4523+972+679+5477+28例2.2:255+248+251+246练习2.2:577+578+579+580+581+582+583例2.3:1+2+3+4+5+……+99练习2.3:1+3+5+……+17+19例2.4:6999999+599999+49999+3999+299+19+6练习2.4:19999+1999+199+19+9 899998+89998+8998+898+88例2.5:324-58-42 670-25-75减法的规律:一个数连续减去两个数等于这个数减去这两个减数的和。

四年级数学上册第四单元 《运算律》知识点归纳及练习

四年级数学上册第四单元 《运算律》知识点归纳及练习

第四单元《运算律》知识点归纳及练习乘法结合律1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

用字母表示是:(a×b)×c=a×(b×c).使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。

乘法结合律可以改变乘法运算中的顺序。

数字如;25和4、50和2、125和8、50和4、500和2等。

加法运算时也有结合律。

如果用a/b/c表示三个数,那么加法结合律表示为:(a+b)+c=a+(b+c)2、认识乘法交换律两个数相乘,交换他们的位置,积不变,这叫乘法交换律。

如用字母a、b表示两个数,那么乘法交换律用字母表示为:a×b=b×a。

1)上述规律可推广到更多个数相乘。

如:125×4×8×25=(125×8)×(25×4)=1000×100=1000002)加法运算时也有交换律,如用字母a、b表示两个数,那么加法交换律用字母表示为:a+b=b+a。

3)运用加法交换律和结合律可以使得一些运算简便。

50+7+40+9=(50+40)+(7+9)=90+16=106练习题:73×25×4 125×63×8 4×(25×93)12×125×5×8 32×125×25 48×125×5乘法分配律1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。

用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c1、式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)是能凑成整十、整百、整千的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算定律练习题
练习1.2:选出正确答案,将序号填在相应的括号里。

①41+37+13=41+(37+13)②x+y=y+x ③35+(b+65)=(35+65)+b ④a+b+c=a+c+b ⑤32+45+55=32+(45+55) ⑥m+n+t=n+(m+t) 只应用加法交换律的是()。

只应用加法结合律的是()。

既应用加法交换律,又应用加法结合律的是()。

知识点1:
减法的运算性质1:一个数连续减去两个数等于这个数减去这两个减数的和。

用字母表示:a-b-c=a-(b+c)
减法的运算性质2:一个数减去两个数的和等于这个数连续减去和里每个加数。

例3.1: 324-58-42 670-25-75 159﹣(59+37) 268﹣(35+68)
加减的规律:(1)先加后减等于先减后加。

(2)先减后加等于先加后减。

练习325+41﹣25 268+45﹣68 268﹣45+32 325﹣41+75
知识点2:乘法的交换律和结合律
1.乘法交换律:两个数相乘,交换乘数的位置,积不变。

用字母表示为:a×b=b×a 2.乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘;或者先把后两个数相乘,再和第一个数相乘,积不变。

用字母表示为:(a×b) ×c=a×(b×c)
练习4.2:下面的计算分别应用了什么运算律?在括号里填一填。

76 × 40 × 25 = 76 ×(40 × 25)() 125 × 67 × 8 = 67 ×(125 × 8)()
知识点3:应用乘法运算律进行简便计算
在连乘计算中,当某两个乘数的积正好是整十、整百、整千的数时,运用乘法运算律可使计算简便。

例5.1: 24×15×2 25×78×4 35×7×2 5×49×2
运用分解的方法,将某个乘数拆分成几个数相乘的形式,使其中的乘数与其他乘数的乘积“凑整”。

练习5.2:简算 56×125 125×32 125×5×32×5
乘除的规律:先乘后除等于先除后乘。

练习5.3:124×63÷62 62×59÷31 45×12 ÷9
除法的运算性质:(1)一个数连续除以两个数(每次都能除尽)等于这个数除以这两个除数的积。

例5.4:280÷5÷2 2800÷25÷4
除法的运算性质:(2)一个数除以两个数的积等于这个数连续除以积里每个乘数。

练习5.5:540 ÷ 45 1800÷(3×8) 160÷(4×8)
知识点4:乘法分配律
乘法分配律特别要注意“两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加”中的分别两个字。

类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加。

乘法对于减法的分配律是括号外的数分别乘括号里的两个数,再把积相减。


(40+8)×25 125×(8+80) 86×(1000-2) 15×(40-8)
类型二:(注意:两个积中相同的因数只能写一次)
36×34+36×66 63×43+57×63 325×113-325×13 28×18-8×28
类型三:(提示:把102看作100+2;81看作80+1,再用乘法分配律)
78×102 56×101 125×81 25×41
类型四:(提示:把99看作100-1;39看作40-1,再用乘法分配律) 31×99 42×98 125×79 25×39
类型五:(提示:把83看作83×1,再用乘法分配律)
83+83×99 99×99+99 125×81-125 91×31-91
知识点5:解决简单的实际问题
1、修路队修一条公路,第一天修了854米,第二天修了242米,还剩下146米。

这条公路全长多少米?
2、超市有款彩电先降价355元,节日时又降299元,现价是1645元,这台彩电原价多少元?
3、天使小学有6个年级,每年级有四个班,平均每个班给灾区小朋友捐图书25本,一共捐赠图书多少本?
4、一个食品厂去年生产夹心糕点600吨,今年更新了设备,计划每月比去年每月多10吨,今年的计划产量是多少?
5、某工厂有煤54吨,已经烧了18天,平均每天烧1.4吨,剩下的煤如果每天节约0.2吨,还可以烧多少天?
6、一个工厂原来每月用水468吨,开展节水活动后,原来一年的用水量现在可以多用一个月,平均每月节水多少吨?
7、有一批货重 157.5吨,计划每小时运22.5吨,可以在原计划内完成任务。

实际提前了1.5小时运完,实际每小时运了多少吨?(得数保留两位小数)
8、东兴村修一条3660米的水渠,计划每天挖152.5米,可以在计划时间内完成,
实际提前6天就完成了任务,实际平均每天挖多少米?(得数保留两位小数)。

相关文档
最新文档