高中物理一轮复习:天体运动专题

合集下载

专题30 天体运动中追及相遇问题、能量问题和图像问题(解析版)

专题30 天体运动中追及相遇问题、能量问题和图像问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题30 天体运动中追及相遇问题、能量问题和图像问题特训目标特训内容目标1 天体运动中的追及相遇问题(1T—5T)目标2 天体运动中的能量问题(6T—10T)目标3 天体运动中的图像问题(11T—15T)一、天体运动中的追及相遇问题1.屈原在长诗《天问》中发出了“日月安属?列星安陈?”的旷世之问,这也是中国首次火星探测工程“天问一号”名字的来源。

“天问一号”探测器的发射时间要求很苛刻,必须在每次地球与火星会合之前的几个月、火星相对于太阳的位置领先于地球特定角度的时候出发。

火星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动。

如图所示,不考虑火星与地球的自转,且假设火星和地球的轨道平面在同一个平面上,相关数据见下表,则根据提供的数据可知()质量半径绕太阳做圆周运动的周期地球M R1年火星约0.1M约0.5R约1.9年B .地球与火星从第1次会合到第2次会合的时间约为2.1年C .火星到太阳的距离约为地球到太阳的距离的1.9倍D .火星表面的重力加速度与地球表面的重力加速度之比约为3:5 【答案】B【详解】A .设地球最小的发射速度为v 地,则22mv GMm R R=地解得=7.9km/s GMv R =地则火星的发射速度与地球的发射速度之比为0.150.5Mv R v M R=火地57.9km/s v =<火故A 错误; B .根据(222)t T T πππ-=地火代入数据解得地球和火星从第1次会合到第2次会合的时间约为2.1年,故B 正确;C .根据开普勒第三定律得3322r r T T =火地地火代入数据解得火星到太阳的距离约为地球到太阳的距离的1.5倍,故C 错误;D .不考虑自转时,物体的重力等于万有引力2GMmmg R=火星表面的重力加速度与地球表面的重力加速度之比为220.120.5=5Mg R M g R=火()故D 错误。

高考物理一轮复习方案 (高频考点+热点导练+历年高考题)第4章 第4节 万有引力 天体运动课件 新人

高考物理一轮复习方案 (高频考点+热点导练+历年高考题)第4章 第4节 万有引力 天体运动课件 新人
答案:D
第三十四页,共39页。
5.我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”
上绕地球运行(即绕地球一圈需要24小时);然后,经过
两次变轨依次到达“48小时轨道”和“72小时轨道”;最
后(zuìhòu)奔向月球.如果按圆形轨道计算,并忽略卫
星质量的变化,则在每次变轨完成后与变轨前相比(
)
D
切入点:万有引力(wàn yǒu yǐnlì)提供自转所需的向心力 .
第七页,共39页。
【解析】考虑中子星赤道处一小块物质,只有当它受
到的万有引力大于或等于它随星体一起旋转所需的
向心力时,中子星才不会瓦解.
GMm R2
m 2 R
2
T
M V 4 R3
3
由以上各式得
3
GT 2
代入数据得: 1.27 1014 kg / m3.
度为3×B 108 m/s)( )
A.0.1 s
B.0.25 s
C.0.5 s
D.
1s
第二十七页,共39页。
【解析】根据开普勒第三定律
r13 r23
T12 T22
,因此同步
卫星的轨道半径约为42000 km,同步卫星离地面
高度约为36000 km.仅T 2h 0.24 s. c
第二十八页,共39页。
万有引力,即:P
G
Mm R2
在赤道上,因某星球自转物体做匀速圆周运动,
某星球对物体的万有引力和弹簧秤对物体的拉力的
合力提供向心力,根据牛顿第二定律有:G Mm R2
4 2
0.9P mR T 2
第十五页,共39页。
由以上两式解得某星球的质量为:M
40 2R3

高考一轮复习 专题4 天体运动的“两类热点”问题

高考一轮复习 专题4 天体运动的“两类热点”问题

专题四 天体运动的“两类热点”问题考点突破热点一 赤道上的物体、同步卫星和近地卫星师生共研1.同步卫星和近地卫星比较二者都是由万有引力提供向心力⎝ ⎛⎭⎪⎫GMm r 2=mv2r =m ω2r ,是轨道半径不同的两个地球卫星,应根据卫星运行参量的变化规律比较各物理量.2.同步卫星和赤道上的物体比较二者的角速度相同,即周期相等,半径不同,由此比较其他物理量.注意:赤道上的物体由万有引力和支持力的合力提供向心力,G Mm r 2=m v2r 不适用,不能按照卫星运行参量的变化规律判断.3.近地卫星和赤道上的物体比较先将近地卫星和赤道上物体分别与同步卫星比较,然后再对比二者的各物理量.例1 [2021·广州一模]如图所示,A 是地球的同步卫星,B 是地球的近地卫星,C 是地面上的物体,A 、B 、C 质量相等,均在赤道平面上绕地心做匀速圆周运动.设A 、B 、C 做圆周运动的向心加速度为a A 、a B 、a C ,周期分别为T A 、T B 、T C ,A 、B 、C 做圆周运动的动能分别为E kA 、E kB 、E kC .下列关系式正确的是( )A .aB =aC >a A B .a B >a A >a C C .T A =T B <T CD .E kA <E kB =E kC练1 国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3练2 (多选)如图所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是( )A.a1a2=rRB.a1a2=⎝⎛⎭⎪⎫Rr2 C.v1v2=rRD.v1v2=Rr题后反思赤道上的物体(A)、近地卫星(B)和地球同步卫星(C)之间常见的运动学物理量比较如下:半径r A<r B<r C周期T A=T C>T B角速度ωA=ωC<ωB线速度v A<v C<v B向心加速度a A<a C<a B热点二卫星(航天器)的变轨及对接问题多维探究题型1|卫星变轨问题1.卫星变轨的实质两类变轨离心运动近心运动变轨起因卫星速度突然增大卫星速度突然减小受力分析G<m G>m变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动2.人造卫星的发射过程,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.例2 近年来,我国的航天事业飞速发展,“嫦娥奔月”掀起高潮.“嫦娥四号”进行人类历史上的第一次月球背面登陆.若“嫦娥四号”在月球附近轨道上运行的示意图如图所示,“嫦娥四号”先在圆轨道上做圆周运动,运动到A点时变轨为椭圆轨道,B点是近月点,则下列有关“嫦娥四号”的说法正确的是( ) A.“嫦娥四号”的发射速度应大于地球的第二宇宙速度B.“嫦娥四号”要想从圆轨道进入椭圆轨道必须在A点加速C.“嫦娥四号”在椭圆轨道上运行的周期比圆轨道上运行的周期要长D.“嫦娥四号”运行至B点时的速率大于月球的第一宇宙速度题型2|卫星的对接问题在低轨道运行的卫星,加速后可以与高轨道的卫星对接.同一轨道的卫星,不论加速或减速都不能对接.例3 [2021·南宁一模]我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为( )A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接题型3|变轨前、后各物理量的变化规律4 2020年10月6日,诺贝尔物理学奖的一半颁给了给出黑洞形成理论证明的罗杰·彭罗斯,引起世界轰动.黑洞是近代引力理论所预言的宇宙中的一种特殊天体,在黑洞引力范围内,任何物体都不能脱离它的束缚,甚至连光也不能射出,欧洲航天局由卫星观察发现银河系中心存在一个超大型黑洞,假设银河系中心仅存一个黑洞,太阳系绕银河系中心做匀速圆周运动,则根据下列哪组数据可以估算出该黑洞的质量(引力常量为已知)( )A.太阳系的质量和太阳系绕该黑洞公转的周期B.太阳系的质量和太阳系到该黑洞的距离C.太阳系的运行速度和该黑洞的半径D.太阳系绕该黑洞公转的周期和轨道的半径题后反思航天器变轨的问题“四个判断”(1)判断速度①在两轨道切点处,外轨道的速度大于内轨道的速度.②在同一椭圆轨道上,越靠近椭圆焦点速度越大.③对于两个圆轨道,半径越大速度越小.(2)判断加速度①根据a =,判断航天器的加速度.②公式a =对椭圆不适用,不要盲目套用.(3)判断机械能①在同一轨道上,航天器的机械能守恒.②在不同轨道上,轨道半径越大,机械能一定越大.(4)判断周期:根据开普勒第三定律,行星轨道的半长轴(半径)越大周期越长.题型4|卫星的追及相遇问题行星A和B围绕恒星O做匀速圆周运动,周期分别为T A和T B.设t=0时刻,A、B和O三者共线,则三者再次共线所需要的最少时间t满足以下条件:情境图若A、B公转方向相同若A、B公转方向相反t0=0时,A、B在O同侧(A、B再次在O同侧)⎝⎛⎭⎪⎫2πT B-2πT At=2πtT B-tT A=1(A、B再次在O同侧)⎝⎛⎭⎪⎫2πT A+2πT Bt=2πtT A+tT B=1t0=0时,A、B在O异侧⎝⎛⎭⎪⎫2πT B-2πT At=πtT B-tT A=12⎝⎛⎭⎪⎫2πT A+2πT Bt=πtT A+tT B=12例5 火星冲日现象即火星、地球和太阳刚好在一条直线上,如图所示.已知火星轨道半径为地球轨道半径的1.5倍,地球和火星绕太阳运行的轨道都视为圆且两行星的公转方向相同,则( ) A.火星与地球绕太阳运行的线速度大小之比为2:3B.火星与地球绕太阳运行的加速度大小之比为4:9C.火星与地球的公转周期之比为:D.2021年10月13日前有可能再次发生火星冲日现象练3 [2021·湖南怀化一模]随着嫦娥奔月梦想的实现,我国不断刷新深空探测的“中国高度”.“嫦娥”卫星整个飞行过程可分为三个轨道段:绕地飞行调相轨道段、地月转移轨道段、绕月飞行轨道段.我们用如图所示的模型来简化描绘“嫦娥”卫星飞行过程,假设调相轨道和绕月轨道的半长轴分别为a、b,公转周期分别为T1、T2.关于“嫦娥”卫星的飞行过程,下列说法正确的是( )A.=B.“嫦娥”卫星在地月转移轨道上运行的速度应大于11.2 km/sC.从调相轨道切入到地月转移轨道时,卫星在P点必须减速D.从地月转移轨道切入到绕月轨道时,卫星在Q点必须减速练4 [2021·成都七中二诊](多选)2020年3月9日我国成功发射第54颗北斗导航卫星,意味着北斗全球组网仅差一步之遥.人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示,在发射地球同步卫星的过程中,卫星从近地圆轨道Ⅰ的A点先变轨到椭圆轨道Ⅱ,然后在B点变轨进入地球同步轨道Ⅲ,则( )A.卫星在同步轨道Ⅲ上的运行速度小于7.9 km/sB.卫星在轨道Ⅱ稳定运行时,经过A点时的速率比过B点时小C.若卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行的周期分别为T1、T2、T3,则T1<T2<T3D.现欲将卫星由轨道Ⅱ变轨进入轨道Ⅲ,则需在B点通过点火减速来实现思维拓展卫星通信中的“阴影区”问题在卫星的通信、观测星体问题中,由于另一个星体的遮挡出现“阴影区”,解决此类问题的基本方法是:(1)建立几何模型:通过构建平面几何画图,找出被星体挡的“阴影区”.(2)建立几何关系:关键是找出两个星体转动角度之间的几何关系.例1 [2020·福州二模]有一颗绕地球做匀速圆周运动的卫星,其运行周期是地球近地卫星的2倍,卫星圆形轨道平面与地球赤道平面重合,卫星上有太阳能收集板可以把光能转化为电能,已知地球表面重力加速度为g,地球半径为R,忽略地球公转,此时太阳处于赤道平面上,近似认为太阳光是平行光,则卫星绕地球一周,太阳能收集板的工作时间为( )A. B. C. D.例2 侦察卫星对国家有极高的战略意义,尤其是极地侦察卫星.极地侦察卫星在通过地球两极的圆轨道上运行,由于与地球自转方向垂直,所以理论上可以观察到地球上任何一处.假如它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,在卫星通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?(设地球半径为R,地面处的重力加速度为g,地球自转的周期为T)专题四天体运动的“两类热点”问题考点突破例1 解析:C与A的角速度相同,根据a=ω2r,可知a C<a A;根据卫星的加速度a=,可知a A<a B;所以a C<a A<a B,故A项错误,B项正确;对卫星A、B,由开普勒第三定律=k,知T A>T B,卫星A是地球的同步卫星,则T A=T C,所以T A=T C>T B,故C项错误;对于卫得A、B,由v=分析知v A<v B.由于卫星A、C角速度相等,由v=ωr分析知v C<v A,所以v C<v A<v B,卫星的动能为:E k=mv2可得:E kC<E kA<E kB,故D项错误.答案:B练1 解析:由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a=ω2r,r2>r3,则a2>a3;由万有引力定律和牛顿第二定律得,G=ma,由题目中数据可以得出,r1<r2,则;综合以上分析有,a1>a2>a3,选项D正确.答案:D练2 解析:对于卫星,其共同特点是由万有引力提供向心力,有G=m,故=.对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,有a=ω2r,故=.答案:AD例2 解析:“嫦娥四号”的发射速度应大于地球的第一宇宙速度7.9 km/s,小于地球的第二宇宙速度11.2 km/s,故A错误;“嫦娥四号”要想从圆轨道变轨到椭圆轨道,必须在A点进行减速,故B错误;由开普勒第三定律知=,由题图可知,圆轨道的半径r大于椭圆轨道的半长轴a,故“嫦娥四号”在圆轨道上运行的周期T1大于在椭圆轨道上运行的周期T2,所以C错误;“嫦娥四号”要想实现软着陆,运行至B点时必须减速才能变为环月轨道,故在B点时的速率大于在环月轨道上运行的最大速率,即大于月球的第一宇宙速度,故D正确.答案:D例3 解析:飞船在轨道上高速运动,如果在同一轨道上沿相反方向运动,则最终会撞击而不是成功对接,故A项错误;两者在同一轨道上,飞船加速后做离心运动,则飞船的轨道抬升,故不能采取同一轨道加速对接,故B项错误;飞船在低轨道加速做离心运动,在合适的位置,飞船追上空间站实现对接,故C项正确;两者在同一轨道飞行时,飞船突然减速做近心运动,飞船的轨道高度要降低,故不可能与同一轨道的空间站实现对接,故D项错误.答案:C例4 解析:太阳系绕银河系中心的黑洞做匀速圆周运动,万有引力提供向心力,则有G=mr=m=mω2r=mωv,分析可知,要计算黑洞的质量M,需知道太阳系的公转周期T与轨道半径r,或者线速度v与轨道半径r,或者轨道半径r与角速度ω,或者角速度ω、线速度v与轨道半径r,选项A、B、C 错误,D正确.答案:D例5 解析:火星和地球绕太阳做圆周运动,万有引力提供向心力,有G=m=ma=m r,得v=,a=,T=2π.由v=可知v∝,则火星与地球的公转线速度大小之比为,选项A错误;由a=可知a∝,则火星与地球的向心加速度大小之比为4∶9,选项B正确;由T=2π可知T∝,则火星与地球公转周期之比为3∶2,选项C错误;再次相距最近时,地球比火星多转动一周,则据此有t=2π,其中T火∶T地=3∶2,解得t≈2.2年,故下一次发生火星冲日现象的时间为2022年10月13日前后,选项D错误.答案:B练3 解析:根据开普勒第三定律,调相轨道与绕月轨道的中心天体分别对应地球和月球,故它们轨道半长轴的三次方与周期的二次方比值不相等,故A错误;11.2 km/s是第二宇宙速度,是地球上发射脱离地球束缚的卫星的最小发射速度,由于嫦娥卫星没有脱离地球束缚,故其速度小于11.2 km/s,故B错误;从调相轨道切入到地月转移轨道时,卫星的轨道将持续增大,故卫星需要在P点做离心运动,故在P 点需要加速,故C错误;从地月转移轨道切入到绕月轨道时,卫星相对月球而言,轨道半径减小,需要在Q点开始做近心运动,故卫星需在Q点减速,故D正确.答案:D练4 解析:卫星绕地球做匀速圆周运动,万有引力提供向心力,有=,得v=.可知卫星运动半径r越大,运行速度v越小,所以卫星绕近地轨道运行时速度最大,即地球的最大的环绕速度(7.9 km/s),则卫星在同步轨道Ⅲ上的运行速度小于7.9 km/s,选项A正确.卫星在轨道Ⅱ上从A向B运动过程中,万有引力对卫星做负功,动能逐渐减小,速率也逐渐减小,所以卫星在轨道Ⅱ上过A点的速率比卫星在轨道Ⅱ上过B点的速率大,选项B错误.设卫星在轨道Ⅰ上运行的轨道半径为r1、轨道Ⅱ的半长轴为r2、在轨道Ⅲ上运行的轨道半径为r3.根据图中几何关系可知r1<r2<r3,又由开普勒第三定律有=k,可得T1<T2<T3,选项C正确.卫星在B点要进入Ⅲ必须加速做离心运动,所以卫星在B点通过点火加速可实现由轨道Ⅱ进入轨道Ⅲ,选项D错误.答案:AC思维拓展典例1 解析:地球近地卫星做匀速圆周运动,根据牛顿第二定律:mg=mR T=2π,此卫星运行周期是地球近地卫星的2倍,所以该卫星运行周期T′=4π,由=m′r,=m′g,得r=2R.如图,当卫星在阴影区时不能接受阳光,据几何关系:∠AOB=∠COD=,卫星绕地球一周,太阳能收集板工作时间为:t=T′=.答案:C典例2 解析:设卫星运行周期为T1,则有G=(h+R)物体处于地面上时有G=m0g解得T1=在一天内卫星绕地球转过的圈数为,即在一天中有次经过赤道上空,所以每次摄像机拍摄的赤道弧长为s==T1,将T1代入,可得s=.答案:。

(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档

(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档

天体运动知识点归类解析【问题一】行星运动简史 1、两种学说(1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。

支持者托勒密。

(2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。

(3).两种学说的局限性都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。

2、开普勒三大定律开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。

1600年,到布拉格成为第谷的助手。

次年第谷去世,开普勒成为第谷事业的继承人。

第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。

他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。

并将老师第谷的数据结果归纳出三条著名定律。

第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等。

如图某行星沿椭圆轨道运行,远日点离太阳的距离为a ,近日点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ∆,则有:t bv t av b a ∆=∆2121①所以bav v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。

②式也当之无愧的作为第二定律的数学表达式。

第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。

用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23,k 与中心天体的质量有关即k 是中心天体质量的函数)(23M k T a =①。

2024高考物理一轮复习--天体运动专题--卫星运行参量的分析、近地、同步卫星与赤道上物体的比较

2024高考物理一轮复习--天体运动专题--卫星运行参量的分析、近地、同步卫星与赤道上物体的比较

卫星运行参量的分析、近地、同步卫星与赤道上物体的比较一、卫星运行参量与轨道半径的关系1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供. 2.物理量随轨道半径变化的规律G Mmr 2= ⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3即r 越大,v 、ω、a 越小,T 越大.(越高越慢)3.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .4.同一中心天体,各行星v 、ω、a 、T 等物理量只与r 有关;不同中心天体,各行星v 、ω、a 、T 等物理量与中心天体质量M 和r 有关.5.所有轨道平面一定通过地球的球心。

如右上图6.同步卫星的六个“一定”二、宇宙速度1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R,得v 1=GMR = 6.67×10-11×5.98×10246.4×106m/s≈7.9×103 m/s.方法二:由mg =m v 12R得v 1=gR =9.8×6.4×106 m/s≈7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=2π 6.4×1069.8s≈5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动. (2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.三、近地卫星、同步卫星及赤道上物体的运行问题1.如图所示,a 为近地卫星,半径为r 1;b 为地球同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3。

2024届高考物理一轮复习:天体运动热点问题

2024届高考物理一轮复习:天体运动热点问题

第四章曲线运动天体运动热点问题【考点预测】1.卫星的变轨问题2. 星球稳定自转的临界问题3. 双星、多星模型4. 天体的“追及”问题5.万有引力定律与几何知识的结合【方法技巧与总结】卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道Ⅰ到轨道Ⅱ,从轨道Ⅱ到轨道Ⅲ,都需要点火加速,则E1<E2<E3. 【题型归纳目录】题型一:卫星的变轨问题题型二:星球稳定自转的临界问题题型三:双星模型题型四:天体的“追及”问题【题型一】卫星的变轨问题【典型例题】例1.(2023·安徽·校联考模拟预测)《天问》是中国战国时期诗人屈原创作的一首长诗,全诗问天问地问自然,表现了作者对传统的质疑和对真理的探索精神,我国探测飞船天问一号发射成功飞向火星,屈原的“天问”梦想成为现实,也标志着我国深空探测迈向一个新台阶,如图所示,轨道1是圆轨道,轨道2是椭圆轨道,轨道3是近火圆轨道,天问一号经过变轨成功进入近火圆轨道3,已知引力常量G,以下选项中正确的是()A.天问一号在B点需要点火加速才能从轨道2进入轨道3B.天问一号在轨道2上经过B点时的加速度大于在轨道3上经过B点时的加速度C.天问一号进入近火轨道3后,测出其近火环绕周期T,可计算出火星的平均密度D.天问一号进入近火轨道3后,测出其近火环绕周期T,可计算出火星的质量【方法技巧与总结】卫星的变轨问题卫星变轨的实质卫星速度突然增大卫星速度突然减小练1.(2023·广东·广州市第二中学校联考三模)天问一号火星探测器搭乘长征五号遥四运载火箭成功发射意味着中国航天开启了走向深空的新旅程。

高考物理一轮复习 天体运动题型归纳

高考物理一轮复习 天体运动题型归纳

天体运动题型归纳李仕才题型一:天体的自转【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。

已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .124π3G ρ⎛⎫ ⎪⎝⎭B .1234πG ρ⎛⎫ ⎪⎝⎭C .12πG ρ⎛⎫ ⎪⎝⎭D .123πG ρ⎛⎫ ⎪⎝⎭解析:在赤道上22R m mg RMm Gω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为22R m RMmGω=②又 T πω2= ③ 334R M ρπ= ④②③④得:23GTπρ= ④即21)3(ρπG T =选D练习1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN,假设地球是质量分布均匀的球体,半径为R 。

则地球的自转周期为( )A. 2T =2T =R N m T ∆=π2 D.N m RT ∆=π22、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A.0203g g g GT π- B. 0203g g gGT π- C. 23GT π D.23g g GTπρ=题型二:近地问题+绕行问题【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。

已知月球半径为R ,引力常量为G 。

则下列说法正确的是A .月球表面的重力加速度g 月=hv 2L2B .月球的质量m 月=hR 2v 20GL2C .月球的第一宇宙速度v =v 0L2h D .月球的平均密度ρ=3hv 22πGL 2R解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2,联立解得g 月=2hv 20L 2;由mg 月=G mm 月R 2,解得m 月=2hR 2v 20GT 2;由mg 月=m v 2R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 22πGL 2R。

高中物理天体运动专题复习试题

高中物理天体运动专题复习试题

天体运动(完整版·共7页)一、开普勒运动定律1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二、万有引力定律1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2、公式:F =G221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。

3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 4、万有引力与重力的关系:合力与分力的关系。

三、卫星的受力和绕行参数(角速度、周期与高度) 1、由()()22mMv G m r h r h =++,得()GMv r h =+,∴当h↑,v↓2、由G()2h r mM+=mω2(r+h ),得ω=()3h r GM+,∴当h↑,ω↓3、由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h↑,T↑ 注:(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正常运转时,卫星上物体完全失重. 4、三种宇宙速度(1)第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。

也是人造卫星绕地球做匀速圆周运动的最大速度。

计算:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.()21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s第一宇宙速度是在地面附近(h <<r ),卫星绕地球做匀速圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度. 四、两种常见的卫星 1、近地卫星近地卫星的轨道半径r 可以近似地认为等于地球半径R ,其线速度大小为v 1=7.9×103m/s ;其周期为T =5.06×103s=84min 。

2023届高考物理一轮复习学案 4.5 天体运动的三类热点问题

2023届高考物理一轮复习学案 4.5 天体运动的三类热点问题

第5节 天体运动的三类热点问题 学案突破一 卫星的发射与变轨问题1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。

(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。

2.各物理量的比较(1)两个不同轨道的“切点”处线速度不相等。

图中v ⅢB >v ⅡB ,v ⅡA >v ⅠA 。

(2)同一个椭圆轨道上近地点和远地点的线速度大小不相等。

从远地点到近地点万有引力对卫星做正功,卫星的动能增大(引力势能减小)。

图中v ⅡA >v ⅡB ,E k ⅡA >E k ⅡB ,E p ⅡA <E p ⅡB 。

(3)两个不同圆轨道上线速度大小不相等。

轨道半径越大,线速度越小,图中v Ⅰ>v Ⅲ。

(4)卫星在不同轨道上的机械能E 不相等,“高轨高能,低轨低能”。

卫星变轨过程中机械能不守恒。

图中E Ⅰ<E Ⅱ<E Ⅲ。

(5)卫星运行的加速度与卫星和中心天体间的距离有关,与轨道形状无关,图中a ⅢB =a ⅡB ,a ⅡA =a ⅠA 。

[典例1] (2021·四川省遂宁市高三下学期5月三诊)2021年1月,“天通一号”03星发射成功。

发射过程简化为如图所示:火箭先把卫星送上轨道1(椭圆轨道,P 、Q 是远地点和近地点)后火箭脱离;卫星再变轨,到轨道2(圆轨道);卫星最后变轨到轨道3(同步圆轨道)。

轨道1、2相切于P 点,轨道2、3相交于M 、N 两点。

忽略卫星质量变化( )A .卫星在三个轨道上的周期T 3>T 2>T 1B .由轨道1变至轨道2,卫星在P 点向前喷气C .卫星在三个轨道上机械能E 3=E 2>E 1D .轨道1在Q 点的线速度小于轨道3的线速度[典例2] (多选)若“嫦娥五号”从距月面高度为100 km 的环月圆形轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,由近月点Q 落月,如图所示。

2021版高考物理一轮复习高频考点强化练(四)天体运动问题(含解析)

2021版高考物理一轮复习高频考点强化练(四)天体运动问题(含解析)

高频考点强化练(四)天体运动问题(45分钟100分)选择题(本题共15小题,共100分。

1~10题为单选题,11~15题为多选题,其中1~10题每题6分,11~15题每题8分)1.“静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料。

设地球同步卫星的轨道半径是地球半径的n倍,下列说法中正确的是( )A.同步卫星的运行速度是第一宇宙速度的B.同步卫星的运行速度是地球赤道上物体随地球自转获得速度的C.同步卫星的运行速度是第一宇宙速度的D.同步卫星的向心加速度是地球表面重力加速度的【解析】选C。

同步卫星绕地球做圆周运动,由万有引力提供向心力,则G=ma=m=mω2r=m r,得同步卫星的运行速度v=,又第一宇宙速度v1=,所以==,故选项A错误,C正确;a=,g=,所以==,故选项D错误;同步卫星与地球自转的角速度相同,v=ωr,v自=ωR,所以==n,故选项B错误。

2.地球赤道上的物体随地球自转的向心加速度为a1,地球的同步卫星绕地球做匀速圆周运动的轨道半径为r,向心加速度为a2。

已知万有引力常量为G,地球半径为R,地球赤道表面的重力加速度为g。

下列说法正确的是( )A.地球质量M=B.地球质量M=C.a1、a2、g的关系是g>a2>a1D.加速度之比=【解析】选C。

根据G=ma2得,地球的质量M=,故A、B错误;地球赤道上的物体与同步卫星的角速度相等,根据a=rω2知,=,可得a1<a2,对于地球同步卫星G=ma2,即a2=G,得a2<g,综合得g>a2>a1,故C正确,D错误。

3.我国正在进行的探月工程是高新技术领域的一项重大科技活动,在探月工程中飞行器成功变轨至关重要。

如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ运动,到达轨道的A点处点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则( )A.飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2πB.飞行器在B点处点火后,动能增加C.飞行器在轨道Ⅰ上的运行速度为D.只在万有引力作用下,飞行器在轨道Ⅱ上通过B点的加速度大于在轨道Ⅲ上通过B点的加速度【解析】选A。

专题10 天体运动-2023届高考物理一轮复习热点题型专练(解析版)

专题10  天体运动-2023届高考物理一轮复习热点题型专练(解析版)

专题10天体运动目录题型一开普勒定律的应用 (1)题型二万有引力定律的理解 (3)类型1万有引力定律的理解和简单计算 (3)类型2不同天体表面引力的比较与计算 (4)类型3重力和万有引力的关系 (5)类型4地球表面与地表下某处重力加速度的比较与计算 (7)题型三天体质量和密度的计算 (8)类型1利用“重力加速度法”计算天体质量和密度 (8)类型2利用“环绕法”计算天体质量和密度 (9)类型3利用椭圆轨道求质量与密度 (11)题型四卫星运行参量的分析 (13)类型1卫星运行参量与轨道半径的关系 (13)类型2同步卫星、近地卫星及赤道上物体的比较 (15)类型3宇宙速度 (17)题型五卫星的变轨和对接问题 (19)类型1卫星变轨问题中各物理量的比较 (19)类型2卫星的对接问题 (22)题型六天体的“追及”问题 (23)题型七星球稳定自转的临界问题 (25)题型八双星或多星模型 (26)类型1双星问题 (27)类型2三星问题 (29)类型4四星问题 (31)题型一开普勒定律的应用【解题指导】1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl1r1=12Δl2r2,12v1·Δt·r1=12v2·Δt·r2,解得v1v2=r2r1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a3T2=k中,k值只与中心天体的质量有关,不同的中心天体k值不同,且该定律只能用在同一中心天体的两星体之间.【例1】(2022·山东潍坊市模拟)中国首个火星探测器“天问一号”,已于2021年2月10日成功环绕火星运动。

若火星和地球可认为在同一平面内绕太阳同方向做圆周运动,运行过程中火星与地球最近时相距R0、最远时相距5R0,则两者从相距最近到相距最远需经过的最短时间约为()A.365天B.400天C.670天D.800天【答案】B【解析】设火星轨道半径为R1,公转周期为T1,地球轨道半径为R2,公转周期为T2,依题意有R1-R2=R0,R1+R2=5R0,解得R1=3R0,R2=2R0,根据开普勒第三定律有R31T21=R32T22,解得T1=278年,设从相距最近到相距最远需经过的最短时间为t,有ω2t-ω1t=π,ω=2πT,代入数据可得t=405天,故选项B正确。

2023届高三物理一轮复习最新试题汇编:天体运动

2023届高三物理一轮复习最新试题汇编:天体运动

2023届高三物理一轮复习最新试题汇编:天体运动物理考试注意事项:1、填写答题卡的内容用2B 铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释(共9题;共18分)1.(2分)如图所示,2021年2月我国“天问一号”火星探测器先由地火转移轨道1进入火星停泊轨道2,进行相关探测后进入较低的轨道3开展科学探测,则探测器( )A .在轨道2与轨道3同一近火点的加速度相等B .在轨道2上近火点的机械能比远火点的机械能小C .在轨道1上的运行速度不超过地球的第一宇宙速度D .在轨道2上近火点加速可进入轨道32.(2分)中国目前在轨运行的人造地球卫星数量已超400颗,居世界第二位。

假设这些卫星均可视为绕地球做匀速圆周运动,仅知道它们的轨道半径。

关于这些卫星,下列哪个物理量的大小关系不能进行比较( ) A .加速度B .线速度C .周期D .动能3.(2分)神舟十四号载人飞船于2022年6月5日成功发射升空,航天员陈冬、刘洋、蔡旭哲进驻中国空间站天和核心舱。

若认为天和核心舱绕地球近似做匀速圆周运动,周期约90分钟,下列说法正确的是( ) A .航天员在核心舱内不受地球引力作用B .天和核心舱距离地面的高度小于地球同步卫星距离地面的高度C .天和核心舱在圆周轨道上匀速飞行时的速度大于第一宇宙速度D .神舟十四号载人飞船与天和核心舱对接时,若以地面为参考系,则神舟十四号是静止不动4.(2分)2021年5月15日,我国首次火星探测任务“天问一号”探测器在火星乌托邦平原南部预选着陆区着陆。

“天问一号”到达火星时,经过多次变轨进入环火圆轨道Ⅰ,图为变轨示意图,P 为椭圆轨道Ⅰ近火点,Q 为椭圆轨道Ⅰ的远火点,设“天问一号”的质量保持不变,则下列说法正确的是( )A .“天问一号”在轨道Ⅰ上的线速度一定比在轨道Ⅰ上线速度小B .“天问一号”在轨道Ⅰ上的加速度一定比在轨道Ⅰ上加速度小C .“天问一号”在轨道Ⅰ上的机械能一定比在轨道Ⅰ上机械能小D .“天问一号”在轨道Ⅰ上的运行周期一定比在轨道Ⅰ上运行周期大5.(2分)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体。

高考物理一轮总复习课后习题 第5章 万有引力与航天 第3讲 专题提升 天体运动的四大问题 (3)

高考物理一轮总复习课后习题 第5章 万有引力与航天 第3讲 专题提升 天体运动的四大问题 (3)

第3讲专题提升:天体运动的四大问题基础对点练题组一卫星的变轨和对接问题1.(七省适应性测试贵州物理)天宫空间站运行过程中因稀薄气体阻力的影响,每经过一段时间要进行轨道修正,使其回到原轨道。

修正前、后天宫空间站的运动均可视为匀速圆周运动,则与修正前相比,修正后天宫空间站运行的( )A.轨道半径减小B.速率减小C.向心加速度增大D.周期减小2.我国在海南文昌航天发射场,用长征五号遥五运载火箭成功将嫦娥五号探测器送入预定轨道。

嫦娥五号在进入环月圆轨道前要进行两次“刹车”,如图所示,第一次“刹车”是在P点让其进入大椭圆轨道,第二次是在P点让其进入环月轨道。

下列说法正确的是( )A.探测器在不同轨道上经过P点时所受万有引力相同B.探测器完成第二次“刹车”后,运行过程线速度保持不变C.探测器在环月轨道上运行周期比在大椭圆轨道上运行周期大D.探测器在环月轨道上运动的机械能比在大椭圆轨道上运动的机械能大3.“天舟五号”货运飞船仅用2小时就与“天宫”空间站快速交会对接,创造了世界纪录。

飞船从预定轨道Ⅰ的A点第一次变轨进入椭圆轨道Ⅱ,到达椭圆轨道的远地点B时,再次变轨进入空间站的运行轨道Ⅲ,与空间站实现对接,假设轨道Ⅰ和Ⅲ都近似为圆轨道,不计飞船质量的变化,则飞船( )A.在轨道Ⅰ的线速度大于第一宇宙速度B.在轨道Ⅰ上的运行周期小于空间站的运行周期C.第一次变轨需加速,第二次变轨需减速D.在圆轨道Ⅰ上A点与椭圆轨道Ⅱ上A点的加速度不同题组二双星和多星问题4.天文学家发现了一对被称为“灾变变星”的罕见双星系统,约每51 min 彼此绕行一圈,通过天文观测的数据,模拟该双星系统的运动,推测在接下来的7 000万年里,这对双星彼此绕行的周期逐渐减小至18 min。

如果将该双星系统简化为理想的圆周运动模型,如图所示,两星球在万有引力作用下,绕O点做匀速圆周运动。

不考虑其他天体的影响,两颗星球的质量不变,在彼此绕行的周期逐渐减小的过程中,下列说法正确的是( )A.每颗星球的角速度都在逐渐变小B.两颗星球的距离在逐渐变大C.两颗星球的轨道半径之比保持不变D.每颗星球的加速度都在变小题组三卫星的追及和相遇问题5.如图所示,卫星甲、乙均绕地球做匀速圆周运动,轨道平面相互垂直,乙3倍。

高中物理基础知识复习——天体运动

高中物理基础知识复习——天体运动

(1)由 可得
GM 黑 m L2
m
v2 L
M黑 3.6 1035 kg
(2)
v逃 c
2GM黑 R
Rmax
2GM 黑 C2
2 6.67 1011 3.6 1035 9 1016
5.3 108 m
估算空间太阳能电站一昼夜间由于被地球遮挡而不能 发电的最长时间.取地球本影长为地球半径的216倍, 同步轨道高度为地球半径的5.5倍.
之四:

GMm L2
m
2
T
2
M M m
L
T 2
L3
GM m
之五:双星系统动量守恒
am M aM m
GM m R2
m
2
T
2
R
G 4
3
R3
4 2
R
R2
T2
3
GT 2
如图所示为地球绕太阳运行示意图,图中椭圆表示地球公转轨道,Ch、Q、 X、D分别表示中国农历节气中的春分、秋分、夏至、冬至时地球所在的位 置.试说明,一年之内秋冬两季比春夏两季要少几天的原因.
物质的影响,试根据这一模型和上述观察结果确定该星系间这种暗物质的密度.
F星
M
M
F暗
L
(1)
由GM 2 L2
M
2
T
2
L 2
T 2 L3
2GM
G
M2 L2
G
M
4 3
L 2
3
L 2
M
2
T
2
N
2
L 2
N
1
3M
2 L3
天文学家根据观察宣布了下列研究成果,银河系中可能存在一个大“黑洞”, 距黑洞60亿千米的星体以2000km/s的速度绕其旋转,接近“黑洞”的所有物质 即使速度等于光速也被“黑洞”吸入,试计算“黑洞”的质量和最大半径.

一轮 天体运动中的变轨、对接、追及相遇问题

一轮  天体运动中的变轨、对接、追及相遇问题

考点3.天体中的“追及相遇”问题
Mm 2π 2 1.由 G 2 mr ω ,或 ω 判 断 谁 的 角 速 度 大 并出 求ω . r T 2.两 星 追 上 或 相 距 最 近满足:ω A t ωBt n 2 π , (n 1、 2、 3...) 3.两 星 相 距 最 远 满 足 : ωA t ωBt ( 2n 1) π , (n 0、 1、 2、 3... )
3 4 π2 r乙 D.已知乙运动的周期T乙及轨道半径r乙,可计算出地球质量 M GT2 乙
GT甲
r3 M GM 分 析 : 1.由 K 2 得r 丙和乙比较:a G 2 a 丙 a乙 ,v v 丙 v乙 . 乙, 丙 r T r r 丙 和 甲 比 较 :丙 r r甲, ω丙 ω甲, a r ω2 a 丙 a甲;v r ω v 丙 v甲 . a乙 a 丙 a甲, v乙 v 丙 v甲 .故 A对 B错 . Mm 4 π2 4 3π 3 2.对 甲 : G 2 mR 2 ,M ρ π R ρ 2 .故 C错 . R T 3 GT甲
万有引力的一个分力
Mm GM 2 mr ω ω r2 r3
故ω 1 >ω 2 ω 1 >ω 2 =ω 3
同步卫星的角速度与地球自 转角速度相同,故ω 2=ω 3 由v=rω 得v m v r r
向心加速度
GM ,故v1 >v2 r v1 >v2 >v3 Mm GM G 2 ma a 2 ,故a1>a2 r r
1.宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了 追上轨道空间站,可采取最好的方法是( B ) A.飞船加速直到追上空间站,完成对接 B.飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接 C.飞船加速至一个较高轨道再减速追上空间站完成对接 D.无论飞船采取何种措施,均不能与空间站对接
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地球
火星
木星
土星
天王星 海王星
轨道半径 (AU) 1.0
1.5
5.2
9.5
19
30
A. 各地外行星每年都会出现冲日现象
B. 在 2019 年内一定会出现木星冲日
C. 天王星相邻两次冲日的时间间隔为土星的一半
D. 地外行星中 , 海王星相邻两次冲日的时间间隔最短
七 . 其他
24. 甲是在地球表面附近运行的近地卫星,乙是地球的同步卫星,已知地球表面重力加速度为
g,地
球半径为 R,地球自转周期为 T,乙运行高度为 h,甲、乙的轨道均可视为圆轨道.以下判断正确的
是( )
A.甲、乙的向心加速度均为零
B.甲、乙均处于完全失重状态
C.甲、乙的运动周期均为 T
D.甲的线速度为 gR,乙的线速度为 g h+ R
25. 已知地球质量为 M,半径为 R, 自转周期为 T, 地球同步卫星质量为 m,引力常量为 G,有关同步卫星 , 下列表述正确的是 ( )
( “神舟十号”
D.飞船对接后,如果宇航员从飞船组合体舱内慢慢“走”到舱外,飞船组合体会因所受万有引力减
第3 页
学习必备
欢迎下载
小而使飞行速度减小
16. 关于航天飞机与空间站对接问题,下列说法正确的是(

A. 先让航天飞机与空间站在同一轨道上,然后让航天飞机加速,即可实现对接
B. 先让航天飞机与空间站在同一轨道上,然后让航天飞机减速,即可实现对接
学习必备
欢迎下载
一 . 天体运动中的基本参量
1.. 我国发射的“天宫一号”和“神州八号”在对接前, “天宫一号”的运行轨道高度为 350km,“神 州八号”的运行轨道高度为 343km.它们的运行轨道均视为圆周,则 ( )
A.“天宫一号”比“神州八号”速度大
B .“天宫一号”比“神州八号”周期长
C.“天宫一号”比“神州八号”角速度大 D .“天宫一号”比“神州八号”加速度大
T1(地球自转周期),一年的时间 T2(地球公转的周期),地球中心到月球中心的距离 L1,地球中
心到太阳中心的距离为 L2。你能估算出(

第1 页
gR 2
m地
A.地球的质量
G
学习必备
欢迎下载
B
m太
.太阳的质量
4
L2 3 2
GT22
C.月球的质量
D
.可求月球、地球及太阳的密度
三 . 宇宙速度
7. 我国发射过一颗绕月运行的探月卫星“嫦娥 1 号”。设该卫星的轨道是圆形的, 且贴近月球表面。 已知月球的质量为地球质量的 1/80 ,月球的半径约为地球半径的 1/4 ,地球上的第一宇宙速度约为 7.9 km/s ,则该探月卫星绕月运行的速率约为 ( )
1 绕太阳运动半径的 20 。该中心恒星与太阳的质量比约为 ( )
1
A. 10
B.1
C.5
D.10
5. 最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的
时间为 1200 年,它与该恒星的距离为地球到太阳距离的 100 倍.假定该行星绕恒星运行的轨道和地
球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有
13. 目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨道可近似为圆,且轨道半径 逐渐变小。若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列 判断正确的是( )
A. 卫星的动能逐渐减小
B. 由于地球引力做正功,引力势能一定减小
C. 由于气体阻力做负功,地球引力做正功,机械能保持不变
A.如果测得“天宫一号”的轨道半径和它的周期,再利用引力常量,就可算出地球质量
B.如果对接前“神舟十号”与“天宫一号”在同一轨道上一前一后运行,则它们的绕行速率和绕行 周期就一定是相等的
C.如果对接前“神舟十号”与“天宫一号”在同一轨道上一前一后沿着同一方向绕行 在后 ) ,若要对接,只需将“神舟十号”速率增大一些即可
D. 卫星克服气体阻力做的功小于引力势能的减小
14. 将卫星发射至近地圆轨道 1(如图所示),然后再次点火,将卫星送入同步轨道 3。轨道 1、2 相 切于 Q点,2、3 相切于 P 点,则当卫星分别在 1、2、3 轨道上正常运行时, 以下说法正确的是: ( )
A.卫星在轨道 3 上的速率大于轨道 1 上的速率。
的距离分别为 R1和 R2,那么 , 这双星系统中两颗恒星的质量关系是 ( )
A. 这两颗恒星的质量必定相等
B.
这两颗恒星的质量之和为
C. 这两颗恒星的质量之比为 m1∶m2=R∶2 R1
D.
必有一颗恒星的质量为
五、能量问题及变轨道问题.
12. 近期我国发射了一颗“北斗”二代卫星,假设发射过程要经过两次变轨,从如图
若某双星系统中两星做圆周运动的周期为 T, 经过一段时间演化后,两星总质量变为原来的 k 倍,两
星之间的距离变为原来的 n 倍,则此时圆周运动的周期为(

11. 宇宙中两颗相距很近的恒星常常组成一个双星系统。它们以相互间的万有引力彼此提供向心力
,
从而使它们绕着某一共同的圆心做匀速圆周运动 , 若已知它们的运转周期为 T, 两星到某一共同圆心
()
A.恒星质量与太阳质量之比
B
.恒星密度与太阳密度之比
C.行星质量与地球质量之比
D
.行星运行速度与地球公转速度之比
6. 1798 年英国物理学家卡文迪许测出万有引力常量 G,因此卡文迪许被人们称为能称出地球质量的
人,若已知万有引力常量 G,地球表面处的重力加速度 g,地球半径为 R,地球上一个昼夜的时间为
Mm A.由 Gr2 =ma可知在切点 P 处,卫星在 1、 2 轨道上的加速度 a 相同
v2 B.由 a= r 且在 P 点 r2 > r1 及 v2<v1,可知加速度 a1>a2
v2
C.由 a= r 推出 v= ar ,且在 Q点 a3=a2 及 r3 =r2 ,可知 v3=
v2
Mm v2 D.由 Gr2 =mr 且在 Q点有 r3 > r2 ,可知 v3<v2
2. 两颗人造卫星 A、B 绕地球做圆周运动,周期之比为 TA :TB 1: 8 ,则轨道半径之比和运动速率之比 分别为( )
A. RA : RB 4 :1,vA : vB 1: 2
B.
RA : RB 4 : 1, v A : vB 2 : 1
C. RA : RB 1 : 4, vA : vB 2 : 1
7: 1,同时绕它们连线上某点 O做匀速
A. 轨道半径约为卡戎的 1/7
B.
角速度大小约为卡戎的 1/7
C. 线速度大小约为卡戎的 7 倍
D.
向心力大小约为卡戎的 7 倍
10. 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同
的匀速圆周运动。研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
21. 如图中的圆 a、b、c,其圆心均在地球的自转轴线上, b、c 的圆心与地心重合,对卫星环绕地球
做匀速圆周运动而言(

A. 卫星的轨道可能为 a
B.
卫星的轨道可能为 b
C. 卫星的轨道可能为 c
D.
同步卫星的轨道只可能为 b
22. 假如一做圆周运动的人造地球卫星的轨道半径增大到原来的 2 倍,仍做圆周运动,则 ( )
C. 先让航天飞机进入较低的轨道,然后再对其进行加速,即可实现对接
D. 先让航天飞机进入较高的轨道,然后再对其进行加速,即可实现对接
六同步卫星 近地卫星 赤道上物体
17. 同步卫星离地心距离为 r ,运行速率为 v1,加速度为 a1,地球赤道上的物体随地球自转的向心 加速度为 a2,近地卫星运行速率为 v2,地球的半径为 R,如图 2-2-5 所示,则下列比值正确的是 ()
a1 r A. a2= R
a1 R2 B. a2=r2 C.
v1 r v2=R
v1
R
D
. v2= r
18. 地球赤道上有一物体随地球的自转, 所受的向心力为 F1,向心加速度为 a1,
线速度为 v1,角速度为 ω1;绕地球表面附近做圆周运动的人造卫星(高度忽
略),所受的向心力为 F2,向心加速度为 a2,线速度为 v2,角速度为 ω2;
g0; 在赤道的大
3 g0 - g A. GT 2 g 0
3
g0
B . GT 2 g0 g
C.
3 GT 2
3 g0 D . GT 2 g
20. 由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的(

A. 质量可以不同 B .轨道半径可以不同 C.轨道平面可以不同
D .速率可以不同
A.根据公式 v=ωr ,可知卫星运动的线速度增大到原来的 2 倍
第4 页
学习必备
欢迎下载
v2 B.根据公式 F=mr ,可知卫星所需的向心力将减小到原来的 1/2
Mm C.根据公式 F=Gr2 ,可知地球提供的向心力将减小到原来的 1/4
D.根据上述选项 B 和 C 给出的公式,可知卫星运动的线速度将减小到原来的 2/2
D.
RA : RB 1 : 4, vA : vB 1: 2
3. 一颗小行星绕太阳做匀速圆周运动的半径是地球绕太阳做匀速圆周运动的半径的 星公转的周期是 ( )
4 倍 , 则这颗小行
A.4 年
B.6 年
C.8 年
D.9 年
二 . 求中心天体质量和密度
4. 过去几千年来 , 人类对行星的认识与研究仅限于太阳系内 , 行星“ 51 peg b”的发现拉开了研究太 阳系外行星的序幕。“ 51 peg b”绕其中心恒星做匀速圆周运动 , 周期约为 4 天, 轨道半径约为地球
相关文档
最新文档