高中物理天体运动知识
天体运动知识点高三

天体运动知识点高三地球是我们生活的家园,而天体运动是地球上许多自然现象的基础。
了解天体运动的知识对于高三学生来说尤为重要,不仅可以帮助我们更好地理解地球和宇宙的奥秘,还可以为我们的科学知识打下坚实的基础。
接下来,本文将为你介绍一些高三学生需要了解的天体运动知识点。
1. 天体运动的基本规律天体运动的基本规律包括日月运行、星体的视运动和星体的真运动。
首先是日月运行,地球围绕太阳公转,同时自转形成了白天和黑夜的现象。
而月球则围绕地球运行,形成了月相变化的规律。
其次是星体的视运动,指的是星体在观测者的视线中的位置变化。
最后是星体的真运动,指的是星体在宇宙中的真实运动轨迹。
2. 星体的分类星体主要分为恒星、行星和卫星。
恒星是太阳系外的独立光源,包括太阳、其他恒星和星团等。
行星则是绕着太阳运行的天体,包括地球、水金火木土等行星。
卫星是绕行星运行的天体,比如地球的卫星——月球。
3. 星座与星区的观测在观测星体时,我们常常会听说星座和星区。
星座是指天球被划分成的多个区域,用于天文观测的定位。
人们根据天文学家所记录的星象划定了88个星座。
星区则是指天空中划分的更小的区域,用于更精确地观察和记录星体的位置和运动。
4. 天体现象的观测与解释天体现象包括日食、月食、流星雨等。
日食是指月球掩盖太阳,导致地球某一地区出现日暗的现象;月食则是指地球阻挡住太阳光照射到月球上的现象。
而流星雨则是指大量流星在同一时间和同一区域出现的现象。
这些天体现象的观测与解释有助于我们对宇宙的理解和探索。
5. 星空导航和星空观测星空导航是利用星体的位置和运动来确定自己所处位置的方法。
古代航海者常常利用星座和星体的位置来确定航向和航海位置。
而在现代,星空观测成为了一种流行的科普活动,也为我们提供了观测星体和了解宇宙的机会。
总结起来,天体运动是高三学生应该关注和了解的重要知识点。
通过学习天体运动,我们不仅能够更好地理解地球和宇宙的运行规律,还能够培养我们的科学素养和观察力。
高三天体运动知识点

高三天体运动知识点天体运动是宇宙中各类物体的运动规律,涵盖了天文学的基础知识。
作为高中生,了解天体运动的基本概念、规律和相关知识点是我们必不可少的一部分。
下面,我将为大家介绍几个高三天体运动的重要知识点。
知识点一:地球的自转和公转地球的自转是指地球以自己的轴为中心,在24小时内完成一次旋转。
这一自转运动使得地球表面上的天空看起来像是星星和太阳在我们头顶上运动。
地球自转的方向是由地球的北极指向南极,自西向东。
地球的公转是指地球绕太阳运动,公转周期为365.25天(即一年)。
这一运动决定了四季的变化,使地球上各个地区不同时间经历着不同的气候和天气变化。
知识点二:日地距离和地球的椭圆轨道地球与太阳之间的距离并非固定不变,而是处于一定的变化之中。
地球与太阳的距离最近时约为1.47亿公里,最远时约为1.52亿公里。
这种距离的变化称为地球的近地点和远地点。
地球绕太阳的轨道并非完全是一个圆形,而是近似于一个椭圆。
离心率是衡量椭圆轨道离圆的程度,地球的离心率约为0.017。
这一椭圆轨道使得地球在公转过程中距离太阳有所变化。
知识点三:地球的倾斜轴和地球两极地球的自转轴与公转平面倾斜约23.5度,这一倾斜角度被称为倾斜轴。
地球的倾斜轴是导致地球上季节变化的重要原因之一。
地球上的两个极点分别是北极和南极。
北极位于地球的北端,南极位于地球的南端。
由于地球自转轴倾斜,使得地球上不同区域的太阳照射角度和时间发生改变,从而形成了不同地区的气候特点和季节变化。
知识点四:日食和月食当月球处于地球和太阳之间,太阳的光线被月球遮挡,地球的观测者就会看到太阳被阴影遮蔽的现象,这就是日食。
日食分为全食、偏食和环食。
当月球进入地球和太阳之间,地球的阴影遮住了月球,使得月球暗淡或者完全消失,这就是月食。
月食分为全食、半影食和偏食。
知识点五:星座和星系星座是指人们观测到的天空上一组遥远星星的集合。
我们通常将天空划分成12个星座,其中每个星座都有其特定的名称和象征。
高中物理天体运动公式总结

高中物理天体运动公式总结1. 天体运动基础知识在我们仰望星空的时候,天体的运动其实并不神秘,只要掌握了几个基本的公式,大家就能明白宇宙中那些美丽的运动规律啦。
1.1 行星运动首先,行星绕太阳运动的轨道是椭圆的,太阳在一个焦点上。
这个基本事实是由开普勒提出的哦。
开普勒定律中有个非常重要的公式:( T^2 / R^3 = text{常数} ),其中( T ) 是行星的公转周期,( R ) 是行星与太阳的平均距离。
简单来说,这就是“公转周期的平方与轨道半径的立方成正比”。
1.2 引力定律再说说牛顿的引力定律,这可是基础中的基础!牛顿告诉我们,两个天体之间的引力可以用公式表示:( F = G frac{m_1 cdot m_2}{r^2} )。
其中,( G ) 是引力常数,( m_1 ) 和( m_2 ) 是两个天体的质量,( r ) 是它们之间的距离。
这个公式告诉我们,距离越远,引力越小;质量越大,引力越大。
2. 运动公式的实际应用了解了这些基本公式后,我们就可以运用这些理论来解决实际问题啦。
2.1 计算天体轨道如果我们知道了一个行星的公转周期 ( T ) 和距离 ( R ),我们可以利用开普勒定律来计算其他行星的运动情况。
例如,如果你想知道火星的轨道特性,只需要知道火星的周期和它离太阳的平均距离就行了,计算出来的结果非常可靠。
2.2 星体的速度天体的速度也是一个很有意思的话题!使用公式 ( v = sqrt{G frac{M}{r}} ),你可以计算天体在其轨道上的线速度。
其中 ( M ) 是天体的质量,( r ) 是天体到天体的距离。
这个公式说明了,天体离中心越近,速度越快。
3. 天体运动中的特殊现象在天体运动中,还有一些特别的现象值得一提,它们有时让我们感到惊奇和震撼。
3.1 行星逆行比如说行星逆行现象,这可真是天文界的奇妙现象。
在某些时候,一些行星看起来好像在自己的轨道上倒退了。
这其实是因为地球和这些行星之间的相对运动造成的,虽然有点拗口,但你可以把它想象成交通堵塞的时候你看别人车子倒退的感觉。
高一物理天体运动知识点总结

高一物理天体运动知识点总结一、天体运动的基本概念天体运动是指天体在空间中的运动过程,包括行星、卫星、恒星等天体的运动。
天体运动是宇宙中的基本现象之一,研究天体运动可以揭示宇宙的本质和规律。
二、天体运动的基本规律1. 开普勒定律开普勒定律是描述行星运动的基本规律,包括开普勒第一定律(行星绕太阳运动的轨道是一个椭圆)、开普勒第二定律(行星在轨道上的面积速率是恒定的)和开普勒第三定律(行星公转周期的平方与轨道长轴的立方成正比)。
2. 轨道运动天体在宇宙中的运动基本上都是绕着某个中心进行的,这个中心可以是恒星、行星或其他天体。
天体绕中心运动的轨道有椭圆、圆、抛物线和双曲线四种类型。
3. 万有引力定律万有引力定律是描述天体之间相互作用的基本规律,它表明任何两个物体之间都存在引力,且引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。
万有引力定律是描述天体运动的重要依据。
三、天体运动的影响因素1. 天体的质量天体的质量决定了其对其他天体的引力大小,质量越大,引力越大。
2. 天体之间的距离天体之间的距离越近,它们之间的引力就越大,反之亦然。
3. 初始速度天体在开始运动时的初始速度也会影响其轨道形状,初始速度越大,轨道越开放,初始速度越小,轨道越封闭。
四、天体运动的应用1. 行星轨道计算利用开普勒定律和万有引力定律,可以计算行星的轨道形状、周期等参数,从而更好地了解行星的运动规律。
2. 卫星发射与轨道设计在卫星发射过程中,需要根据地球的引力和速度等因素,确定卫星的发射角度和速度,以使卫星进入预期的轨道。
3. 天文观测与导航系统天体运动的知识可以帮助天文学家进行天文观测,研究宇宙的演化和变化。
此外,天体运动的规律也是导航系统中的重要基础,如全球定位系统(GPS)就是基于卫星运动的原理来实现位置定位的。
五、天体运动的未解之谜尽管我们对天体运动有了深入的研究,但仍有一些未解之谜。
例如,黑洞的运动规律、宇宙的扩张速度等问题,仍需要进一步的研究和探索。
物理高一必修二天体知识点

物理高一必修二天体知识点物理高一必修二天体知识点主要包括有关天体的基本概念、行星运动和引力定律等内容。
以下将对这些知识点进行详细介绍。
一、基本概念1. 天体:指存在于宇宙中的各种天体,如恒星、行星、卫星等。
2. 星系:由大量星体组成的天体系统,如银河系、仙女座星系等。
3. 宇宙:包括了所有存在的空间、时间和能量。
宇宙是无限的。
二、行星运动1. 行星运动:行星绕太阳运动的轨迹被称为椭圆轨道。
这种运动被称为行星公转。
2. 椭圆轨道:椭圆轨道由近日点和远日点组成。
近日点是离太阳最近的点,远日点是离太阳最远的点。
3. 开普勒三定律:开普勒通过实验和观察总结出了行星运动的三个定律:- 第一定律:行星运动轨道为椭圆,太阳位于椭圆的一个焦点上。
- 第二定律:相同时间内,行星在椭圆轨道上扫过的面积相等。
- 第三定律:行星公转周期的平方与平均距离的立方成正比。
三、引力定律1. 引力:物体之间的吸引力称为引力。
引力是一种万有力,适用于所有物体之间的相互作用。
2. 引力定律:牛顿通过实验得出了引力定律,即任何两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比。
3. 地球上的重力:地球对物体的吸引力即为重力,重力的大小取决于物体的质量和离地球的距离。
四、天体的性质1. 恒星:恒星是由巨大的氢气球体中心核聚变产生的能量而发光的天体。
恒星通过核融合反应将氢转变为氦,并释放大量能量。
2. 卫星:绕行行星或恒星的天体称为卫星。
例如,地球的卫星是月球。
3. 小行星:太阳系中绕太阳运行,没有清理出来的一些天体,它们的体积较小,不具备行星特征。
它们主要存在于小行星带中。
总结:物理高一必修二天体知识点主要包括天体的基本概念、行星运动和引力定律等内容。
掌握这些知识对于理解宇宙的奥秘和天体运动有着重要的意义。
通过学习天体知识,我们可以更好地理解地球的运动、星体的特性以及宇宙的起源和演化。
《高一物理天体运动》课件

天体运动的角动量变化
天体运动过程中,由于受到其他天体的引力 扰动和其他因素的影响,其角动量可能会发 生变化。例如,行星在形成过程中,由于受 到其他天体的引力作用,其角动量可能会发
生变化。
PART 05
天体运动的观测与实验验 证
天体观测的历史与发展
古代天文学的起源
早在公元前,人类就开始观察天空,记录天体的运动和位置。
等信息。
摄影技术
利用照相技术拍摄天体照片, 可以更精确地记录天体的位置
和运动轨迹。
射电望远镜观测
利用射电望远镜观测天体的射 电辐射,可以揭示天体的射电 性质和宇宙射电背景辐射。
空间探测器
通过发射空间探测器近距离探 测行星、卫星、彗星等天体, 可以获取更详细的天体数据。
天体运动的实验验证与发现
开普勒行星运动定律的验证
总结词
描述物体加速度与作用力之间的关系的定律,即物体加速度 的大小与作用力成正比,与物体的质量成反比。
详细描述
牛顿第二定律是物理学中的基本定律之一,它指出物体加速 度的大小与作用力成正比,与物体的质量成反比。这个定律 是牛顿在万有引力定律基础上进一步推导出来的。
圆周运动与向心力
总结词
描述做圆周运动的物体受到指向圆心 的力,这个力称为向心力。
详细描述
圆周运动是常见的运动形式之一,当 物体做圆周运动时,它会受到一个指 向圆心的力,这个力称为向心力。向 心力的大小与物体运动速度的平方和 圆周半径成正比。
天体运动的向心力来源
总结词
天体运动的向心力主要来源于万有引力 。
VS
详细描述
天体运动是一种特殊的圆周运动,在天体 运动中,天体受到的向心力主要来源于万 有引力。万有引力使得天体能够保持稳定 的轨道运动,例如地球围绕太阳转动的向 心力就来源于太阳对地球的万有引力。
高中物理天体运动知识点总结

高中物理天体运动知识点总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中物理天体运动知识点

高中物理天体运动知识点在高中物理的学习中,天体运动是一个重要且有趣的部分。
它不仅帮助我们理解宇宙中天体的运行规律,还为我们打开了探索未知世界的大门。
接下来,让我们一起深入了解天体运动的相关知识点。
一、开普勒定律开普勒定律是描述天体运动的基本规律,包括三条重要内容:1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
这意味着行星的轨道不是完美的圆形,而是椭圆形,且太阳并非位于中心,而是在焦点之一的位置。
2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
简单来说,就是行星在靠近太阳时运动速度较快,远离太阳时运动速度较慢,但单位时间内扫过的面积相同。
3、开普勒第三定律(周期定律):所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等。
用公式表示为:$\frac{a^3}{T^2} = k$,其中$a$是轨道半长轴,$T$是公转周期,$k$是一个对所有行星都相同的常量,但对于不同的恒星系统,$k$值不同。
二、万有引力定律万有引力定律是由牛顿发现的,它指出:任何两个物体之间都存在相互吸引的力,其大小与这两个物体的质量乘积成正比,与它们之间距离的平方成反比。
公式为:$F = G\frac{m_1m_2}{r^2}$,其中$F$是两个物体之间的引力,$G$是引力常量,约为$667×10^{-11} N·m^2/kg^2$,$m_1$和$m_2$分别是两个物体的质量,$r$是两个物体质心之间的距离。
万有引力定律是天体运动的核心定律,它解释了天体之间的相互作用和运动规律。
例如,地球围绕太阳公转就是因为受到太阳对地球的万有引力作用。
三、天体质量和密度的计算1、利用万有引力定律计算天体质量对于绕中心天体做匀速圆周运动的天体,可根据万有引力提供向心力来计算中心天体的质量。
假设一个天体$m$绕中心天体$M$做匀速圆周运动,轨道半径为$r$,周期为$T$,则有:$G\frac{Mm}{r^2} =m\frac{4\pi^2}{T^2}r$,解得中心天体质量$M =\frac{4\pi^2r^3}{GT^2}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“万有引力定律”习题归类例析万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。
所以正确答案为C项.三、地球同步卫星问题卫星在轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同,这种卫星轨道叫地球同步轨道,其卫星轨道严格处于地球赤道平面内,运行方向自西向东,运动周期为23小时56分(一般近似认为周期为24小时),由得人造地球同步卫星的轨道半径,所以人造同步卫星离地面的高度为,利用可得它运行的线速度为3.07 km/s.总之,不同的人造地球同步卫星的轨道、线速度、角速度、周期和加速度等均是相同的.不一定相同的是卫星的质量和卫星所受的万有引力.人造地球同步卫星相对地面来说是静止的,总是位于赤道的正上空,其轨道叫地球静止轨道.通信卫星、广播卫星、气象卫星、预警卫星等采用这样的轨道极为有利一颗静止卫星可以覆盖地球大约40%的面积,若在此轨道上均匀分布3颗卫星,即可实现全球通信或预警.为了卫星之间不互相千扰,大约30左右才能放置1棵,这样地球的同步卫星只能有120颗.可见,空间位置也是一种资源。
[例4]关于“亚洲一号”地球同步通讯卫星,下述说法正确的是()A.已知它的质量是1.24 t,若将它的质量增为2.84 t,其同步轨道半径变为原来的2倍B.它的运行速度为7.9 km/sC.它可以绕过北京的正上方,所以我国能利用其进行电视转播D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的[解析]同步卫星的轨道半径是一定的,与其质量的大小无关.所以A项错误.因为在地面附近绕地球做匀速圆周运动的卫星的速度近似等于7.9 km/ s,而卫星的线速度随轨道半径的增大而减小,所以同步卫星的线速度一定小于7.9 km/s,实际计算表明它的线速度只有3.07 km/s。
所以B项错误.因同步卫星的轨道在赤道的正上方,北京在赤道以北,所以同步轨道不可能过北京的正上方.所以C 项错误.同步卫星的向心加速度,物体在地面上的重力加速度,依题意,所以。
D选项正确。
四、求天体的第一宇宙速度问题人造地球卫星的线速度可用求得可得线速度与轨道的平方根成反比,当r=R 时,线速度为最大值,最大值为7.9 km/s. (实际上人造卫星的轨道半径总是大于地球的半径,所以线速度总是小于7.9 km/s)这个线速度是地球人造卫星的最大线速度,也叫第一宇宙速度.发射人造卫星时,卫星发射的越高,克服地球的引力做功越大,发射越困难,所以人造地球卫星发射时,一般都发射到离地很近的轨道上,发射人造卫星的最小发射速度为7. 9 km/ s.在其他的星体上发射人造卫星时,第一宇宙速度也可以用类似的方法计算,即,式中的M、R、g 分别表示某星体的质量、半径、星球表面的重力加速度.[例5]若取地球的第一宇宙速度为8 km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,这顺行星的第一宇宙速度约为()A. 2 km/sB. 4 km/sC. 16 km/sD. 32 km/s[解析]由得8 m/s,某行星的第一宇宙速度为16 m/s五、人造卫星的变轨问题发射人造卫星要克服地球的引力做功,发射的越高,克服地球的引力做功越多,发射越困难.所以在发射同步卫星时先让它进入一个较低的近地轨道(停泊轨道)A,然后通过点火加速,使之做离心运动,进入一个椭圆轨道(转移轨道)B,当卫星到达椭圆轨道的远地点时,再次通过点火加速使其做离心运动,进人同步轨道C。
[例6]如图所示,轨道A与轨道B相切于P点,轨道B与轨道C相切于Q点,以下说法正确的是()A.卫星在轨道B上由P向Q运动的过程中速率越来越小B.卫星在轨道C上经过Q点的速率大于在轨道A上经过P点的速率C.卫星在轨道B上经过P时的向心加速度与在轨道A上经过P点的向心加速度是相等的D.卫星在轨道B上经过Q点时受到地球的引力小于经过P点的时受到地球的引力[解析]卫星在轨道B上由P到Q的过程中,远离地心,克服地球的引力做功,所以要做减速运动,所以速率是逐渐减小的,A项正确.卫星在A、C轨道上运行时,轨道半径不同,根据可知轨道半径越大,线速度小,所以有,所以B项错误.卫星在A、B两轨道上经过P点时,离地心的距离相等,受地球的引力相等,所以加速度是相等的,C项正确、卫星在轨道B上经过Q点比经过P点时离地心的距离要远些,受地球的引力要小些,所以D项正确.六、人造天体的交会对接问题交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体.[例7]关于航天飞机与空间站对接问题,下列说法正确的是()A.先让航天飞机与空间站在同一轨道上,然后让航天飞机加速,即可实现对接B.先让航天飞机与空间站在同一轨道上,然后让航天飞机减速,即可实现对接C.先让航天飞机进入较低的轨道,然后再对其进行加速,即可实现对接D.先让航天飞机进入较高的轨道,然后再对其进行加速,即可实现对接[解析]航天飞机在轨道运行时,若突然对其加速时,地球对飞机的万有引力不足以提供航天飞机绕地球做圆周运动的向心力,航天飞机就会做离心运动,所以选项A、B、D不可能实现对接。
正确答案为C项。
七、双星问题两棵质量可以相比的恒星相互绕着旋转的现象,叫做双星.双星中两棵子星相互绕着旋转看作匀速圆周运动的向心力由两恒星间的万有引力提供.由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.[例8]两棵靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是()A.它们做圆周运动的角速度之比与其质量成反比B.它们做圆周运动的线速度之比与其质量成反比C.它们做圆周运动的半径与其质量成正比D.它们做圆周运动的半径与其质量成反比[解析]两子星绕连线上的某点做圆周运动的周期相等,角速度也相等.由得线速度与两子星圆周运动的半径是成正比的.因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由可知,所以它们的轨道半径与它们的质量是成反比的.而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的.正确答案为B、D选项.八、地面上物体随地球自转做圆周运动问题因地球自转,地球赤道上的物体也会随着一起绕地轴做圆周运动,这时物体受地球对物体的万有引力和地面的支持力作用,物体做圆周运动的向心力是由这两个力的合力提供,受力分析如图所示.实际上,物体受到的万有引力产生了两个效果,一个效果是维持物体做圆周运动,另一个效果是对地面产生了压力的作用,所以可以将万有引力分解为两个分力:一个分力就是物体做圆周运动的向心力,另一个分力就是重力,如图所示.这个重力与地面对物体的支持力是一对平衡力.在赤道上时这些力在一条直线上.在赤道上的物体随地球自转做圆周运动时,由万有引力定律和牛顿第二定律可得其动力学关系为,式中R、M、、T分别为地球的半径、质量、自转角速度以及自转周期。
当赤道上的物体“飘”起来时,必须有地面对物体的支持力等于零,即N=0,这时物体做圆周运动的向心力完全由地球对物体的万有引力提供.由此可得赤道上的物体“飘”起来的条件是:由地球对物体的万有引力提供向心力。
以上的分析对其它的自转的天体也是适用的。
[例9]地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球转动的角速度应为原来的( )A. B. C. D.[解析]设地球原来自转的角速度为,用F表示地球对赤道上的物体的万有引力, N表示地面对物体的支持力,由牛顿第二定律得①而物体受到的支持力与物体的重力是一对平衡力,所以有②当当赤道上的物体“飘”起来时,只有万有引力提供向心力,设此时地球转动的角速度为,有③联立①、②、③三式可得,所以正确答案为B项。