新人教版八年级数学上册第十一章三角形测试题
人教版八年级数学上册第十一章三角形单元测试卷-(含答案)
人教版八年级数学上册第十一章三角形单元测试卷一、单选题(共30分,每小题3分)1.能用三角形的稳定性解释的生活现象是()A.B.C.D.2.如图,BE、CF都是ABC的角平分线,且115BDC∠=︒,则A∠=()A.45°B.50°C.65°D.70°3.如果一个多边形的每一个外角都是90︒,那么这个多边形的内角和是()A.180︒B.360︒C.540︒D.720︒4.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.135.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为().A.12或13取14B.13或14C.12或13D.13或14或15 6.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60︒C.直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半7.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm8.在三角形的①三条中线;①三条角平分线;①三条高中,一定相交于一点的是( )A .①①①B .①C .①D .①① 9.如图,在①ABC 中,D 是BC 延长线上一点,①B =40°,①ACD =120°,则①A 等于A .60°B .70°C .80°D .90° 10.如图在△ABC 中,BO ,CO 分别平分①ABC ,①ACB ,交于O ,CE 为外角①ACD 的平分线,BO 的延长线交CE 于点E ,记①BAC =①1,①BEC =①2,则以下结论①①1=2①2,①①BOC =3①2,①①BOC =90°+①1,①①BOC =90°+①2正确的是( )A .①①①B .①①①C .①①D .①①①二、填空题(共24分,每小题3分) 11.若一个多边形的内角和是 1980°,则这个多边形的边数为________. 12.等腰三角形一边长为5,另一边长为7,则周长为__________.13.如图,①BCD =145°,则①A +①B +①D 的度数为_____.14.一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度. 15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.16.小华从点A 出发向前走10m ,向右转36︒然后继续向前走10m ,再向右转36︒,他以样的方法继续走下去,当他走回到点A 时共走_________米.17.如图,在①ABC 中,①CAD =①CDA ,①CAB −①ABC =30°,则①BAD =________︒.18.如图,在ABC 中,12∠=∠,34∠=∠,80A ∠=︒,则x =______.三、解答题(共66分) 19.如图,ABCD 是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE ,小明的做法正确吗?说说你的理由.(共6分)20.如图①A =20°,①B =45°,①C =40°,求①DFE 的度数.(共6分)21.已知,如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,若30ABC ∠=,60ACB ∠=(共8分)(1)求DAE ∠的度数;(2)写出DAE ∠与C B ∠-∠的数量关系 ,并证明你的结论22.若一个多边形的内角和比外角和多540°,求这个多边形的边数.(共8分)23.如图:(共8分)(1)画出△ABC 的BC 边上的高线AD ;(2)画出△ABC 的角平分线CE .24.已知在△ABC 中,∠A :∠B :∠C =2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.(共10分)25.如图,已知:点P 是ABC ∆内一点.(共10分)(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求①CAD的度数.(共10分)答案第1页,共1页 参考答案:1.C2.B3.B4.C5.A6.B7.C8.D9.C10.C 11.1312.17或1913.145°14.72015.616.10017.1518.13020.小明的做法正确,21.105°22.(1)15°;(2)()12DAE C B ∠=∠-∠, 23.724.略25.∠A =40°,∠CDB =80°.26.(1)略;(2)110°27.①CAD =36°.。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
人教版初中八年级数学上册第十一章《三角形》测试(含答案解析)
一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定 3.若过六边形的一个顶点可以画n 条对角线,则n 的值是( ) A .1B .2C .3D .4 4.下列长度的三条线段能构成三角形的是( ) A .1,2,3 B .5,12,13 C .4,5,10 D .3,3,6 5.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF6.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 7.下列长度的线段能组成三角形的是( ) A .2,3,5B .4,6,11C .5,8,10D .4,8,4 8.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2mB .3mC .5mD .7m 9.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40 10.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°11.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .012.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4013.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 14.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 15.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒二、填空题16.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.17.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.18.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 19.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.20.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.21.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.22.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.23.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.24.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.25.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.26.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .三、解答题27.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).28.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .29.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.30.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)。
完整版人教版八年级上册数学第十一章 三角形含答案
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、下列几种形状的瓷砖中,只用一种不能够铺满地面的是()A.正三角形;B.正四边形;C.正五边形;D.正六边形.2、如图,D,E分别是的边AB、BC上的点,,若,则的值为()A. B. C. D.3、如图,是的角平分线,,则与的面积比为().A. B. C. D.4、如图,AD∥BC,若△ABC面积是15,则△DBC的面积是()A.12B.13C.14D.155、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.180°B.360°C.540°D.720°6、三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的周长是()A.20B.20或24C.26D.287、如图,在△ABC中,∠C=80°,D为AC上可移动的点,则x可能是()A.5B.10C.20D.258、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cmB.15cm,8cm,6cmC.10cm,4cm,7cm D.3cm,3cm,7cm9、如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则=()A.3B.4C.5D.610、下列长度的三条线段可以组成三角形的是()A.1,2,4B.5,6,11C.3,3,3D.4,8,1211、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形的形状是()A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形.12、已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a 2﹣b 2=c 2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:2513、已知如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=()A.95°B.85°C.75°D.65°14、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°< <180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150°B.90°C.60°D.30°15、如果一个角的两边分别垂直于另一个角的两边,那么这两个角的数量关系为()A.相等B.互补C.相等或互补D.无法确定二、填空题(共10题,共计30分)16、设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值范围________.17、若一个n边形的边数增加一倍,则内角和将增加________18、一个三角形有两边长为3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于________.19、一副三角板如图所示叠放在一起,则图中∠ABC=________20、如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC :S△CMN=3:1,则S△AMN :S△ABC=________.21、一个凸多边形的内角和是其外角和的2倍,则这个多边形是________边形.22、一个多边形截去一个角后,形成的另一个多边形后的内角和为720°,那么原多边形的边数为________.23、若为三角形三边,化简________.24、已知如图ABC中,AD为BC边上的中线,AB=6,AC=8,则ABD与ACD的面积之差为________.25、如图,∠C=90°,∠A=30°,BD为角平分线,则SABD :S△CBD=________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
人教版数学八年级上第11章三角形全章测试含答案
第11章 三角形 全章测试一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2. 等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80 3.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为( )A .1260°B .1080°C .1620°D .360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形5.下列说法正确的是( )A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外. 6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A .5 B .6 C .7 D .8 7.在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EE(A ) (B ) (C ) (D ) 8.如图所示,∠A 、∠1、∠2的大小关系是( ) A. ∠A >∠1>∠2 B. ∠2>∠1>∠A C. ∠A >∠2>∠1 D. ∠2>∠A >∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形 ⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和 其中真命题的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个10.如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)E DA CB二、填空题(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 . 12.已知等腰三角形的两边长是5cm 和11cm ,则它的周长是 _______13.一个等腰三角形的周长为18,已知一边长为5,则其他两边长为 ____________. 14.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 . 16.如图,∠A +∠B +∠C +∠D +∠E +∠F= .17.在△ABC 中,在△ABC 中,∠A-∠B=∠B-∠C =15°则∠A 、∠B 、∠C 分别为 .18.如图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC=116°,那么∠A 的度数是_______。
八年级数学上册第十一章三角形测素质多边形及其内角和习题新版新人教版
有(9-3)×9÷2=27(条)对角线.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
12. 如图,在正五边形 ABCDE 中,对角线 AC 与 BE 相交于
点 F ,则∠ AFE =
72°
.
(第12题)
1
2
3
4
5
6
7
8
9
10
11
12
点,点 P 是一动点,设∠ DPE =∠α,∠ PDB =∠1,
∠ PEC =∠2.
(1)若点 P 在边 BC 上,如图①,∠α=40°,计算∠1+
∠2的度数;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
【解】∵在△ ABC 中,∠ B =40°,∠ C =36°,
∴∠ A =180°-∠ B -∠ C =104°.
∴∠1-∠α=∠2-∠ A . ∵∠ A =104°,∴∠2-
∠1=104°-∠α.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
∵∠ A =104°,∴∠1+∠2=∠α+104°.
1
2
3
4
5
6
7
8
9
人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)
⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB= .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。
8年级数学上册第11章三角形测试题及答案人教版
8年级数学上册第11章三角形测试题一、填空题1.在△ABC中,∠A=40°,∠B=∠C,则∠C=°.2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:,,(单位:cm).3.如果等腰三角形的一个底角是40°,它的顶角是.4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是.5.△ABC中,若∠A=35°,∠B=65°,则∠C=;若∠A=120°,∠B=2∠C,则∠C=.6.三角形三个内角中,最多有个直角,最多有个钝角,最多有个锐角,至少有个锐角.7.三角形按角的不同分类,可分为三角形,三角形和三角形.8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是三角形.9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=,∠B=,∠C=.10.若△ABC中,∠A+∠B=∠C,则此三角形是三角形.11.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为.12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为;②如果它的一边长为4cm,一边的长为6cm,则周长为.二、判断题.13.有一个角是钝角的三角形就是钝角三角形. (判断对错)14.一个等腰三角形的顶角是80°,它的两个底角都是60°.(判断对错)15.两个内角和是90°的三角形是直角三角形. (判断对错)16.一个三角形最多只能有一个钝角或一个直角. (判断对错)17.在锐角三角形中,任意的两个锐角之和一定要大于90°.(判断对错)18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形. (判断对错)三、选择题19.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形20.下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°22.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为( )A.10cm或6cmB.10cmC.6cmD.8cm或6cm24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A.4cmB.5cmC.9cmD.13cm25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个27.已知三角形的三边分别为2,a,4,那么a的取值范围是( )A.128.在△ABC中,∠A= ∠B= ∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形四、解答题29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;你选出的条件是.证明:30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.8年级数学上册第11章三角形测试题人教版参考答案一、填空题1.在△ABC中,∠A=40°,∠B=∠C,则∠C=70 °.【考点】三角形内角和定理.【分析】由三角形的内角和定理直接列式计算,即可解决问题.【解答】解:∵∠A+∠B+∠C=180°,且∠A=40°,∠B=∠C,∴∠C=(180°﹣40°)÷2=70°,故答案为70.【点评】该题主要考查了三角形的内角和定理及其应用问题;灵活运用是解题的关键.2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是: 6 ,11 ,16 (单位:cm).【考点】三角形三边关系.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有5,6,11;5,6,16;11,16,5;11,6,16四种情况.根据三角形的三边关系,得其中只有11,6,16能组成三角形.【点评】此题要特别注意看是否符合三角形的三边关系.3.如果等腰三角形的一个底角是40°,它的顶角是100°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,根据三角形的内角和即可解决问题.【解答】解:180°﹣40°×2=100°,答:顶角是100°.故答案为:100°【点评】此题考查了等腰三角形的性质和三角形内角和的应用,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是2cm【考点】三角形三边关系.【分析】设第三边长为xcm,再由三角形三边关系即可得出结论.【解答】解:设第三边长为xcm,∵三角形的一边为5cm,一边为7cm,∴7﹣5故答案为:2cm【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5.△ABC中,若∠A=35°,∠B=65°,则∠C=80°;若∠A=120°,∠B=2∠C,则∠C=20°.【考点】三角形内角和定理.【分析】根据三角形内角和定理,求得∠C的度数和∠B+∠C=60°,进而得出∠C的度数.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣35°﹣65°=80°;∵∠A=120°,∴∠B+∠C=60°,又∵∠B=2∠C,∴∠C=20°.故答案为:80°,20°.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.6.三角形三个内角中,最多有 1 个直角,最多有 1 个钝角,最多有3 个锐角,至少有 2 个锐角.【考点】三角形内角和定理.【分析】依据三角形的内角和是180度,假设一个三角形中可以有多于1个的钝角或直角,则会得出违背三角形内角和是180度的结论,假设不成立,从而可以得出一个三角形中最多有1个钝角或直角,如果一个三角形中只有1个锐角,也就是出现2个或3个直角,再加上第三个角,那么三角形的内角和就大于180°,也不符合三角形内角和是180°.【解答】解:因为三角形的内角和等于180°,所以在三角形内角中,最多有1个直角;最多有1个钝角,最多有3个锐角,至少有2个锐角.故答案为:1,1,3,2【点评】本题主要考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.7.三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.【考点】三角形.【分析】根据三角形的分类方法进行填空即可.【解答】解:三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.故答案为:锐角;直角;钝角.【点评】此题主要考查了三角形,关键是掌握三角形分类一种是按边分类,一种是按角分类.8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是锐角三角形.【考点】三角形内角和定理.【专题】计算题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,4k°.则2k°+3k°+4k°=180°,解得k°=20°,∴2k°=40°,3k°=60°,4k°=80°,所以这个三角形是锐角三角形.故答案是:锐角.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=72°,∠B= 36°,∠C=72°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理可得出∠A+∠B+∠C=180°,再与∠A﹣∠B=36°,∠C=2∠B,联立列出方程组,即可求得答案.【解答】解:由题意得,解得,故答案为72°,36°,72°.【点评】本题考查了三角形的内角和定理,解题的关键是利用三角形内角和定理和已知条件列方程组求解计算.10.若△ABC中,∠A+∠B=∠C,则此三角形是直角三角形.【考点】三角形内角和定理.【分析】由三角形内角和定理和直角三角形的判定可知.【解答】解:∠A+∠B+∠C=2∠C=180°,∴∠C=90°,∴此三角形是直角三角形.【点评】本题考查了三角形内角和定理.三角形的内角和是180°.11.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为36°或90°.【考点】等腰三角形的性质;三角形内角和定理.【分析】先可求出两角,然后分两种情况:顶角与底角的度数比是1:2或底角与顶角的度数比是1:2.根据三角形的内角和定理就可求解.【解答】解:当顶角与底角的度数比是1:2时,则等腰三角形的顶角是180°× =36°;当底角与顶角的度数比是1:2时,则等腰三角形的顶角是180°×=90°.即该等腰三角形的顶角为36°或90°.故填36°或90°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为19cm ;②如果它的一边长为4cm,一边的长为6cm,则周长为14cm 或16cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①当腰长为8cm时,三边是8cm,8cm,3cm,符合三角形的三边关系,此时周长是19cm;当腰长为3cm时,三角形的三边是8cm,3cm,3cm,因为3+3<8,应舍去.②当腰长为4cm时,三角形的三边是4cm,4cm,6cm,符合三角形的三边关系,此时周长是14cm;当腰长为6cm时,三角形的三边是6cm,6cm,4cm,符合三角形的三边关系,此时周长是16cm.故答案为:19cm,14cm或16cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.二、判断题.13.有一个角是钝角的三角形就是钝角三角形. √(判断对错)【考点】三角形.【分析】根据三角形的分类:有一个角是钝角的三角形,叫钝角三角形;进行解答即可.【解答】解:根据钝角三角形的定义可知:有一个角是钝角的三角形是钝角三角形;所以“有一个角是钝角的三角形是钝角三角形”的说法是正确的.故答案为:√.【点评】此题考查了根据角对三角形分类的方法:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.14.一个等腰三角形的顶角是80°,它的两个底角都是60°.×(判断对错)【考点】等腰三角形的性质.【分析】三角形的内角和是180°,等腰三角形的两个底角相等,先用“180°﹣80°”求出两个底角的度数和,然后除以2进行解答即可.【解答】解:(180°﹣80°)÷2,=100°÷2,=50°;它的一个底角度数是50°;故错,故答案为:×【点评】此题考查等腰三角形的性质,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.15.两个内角和是90°的三角形是直角三角形. 对(判断对错)【考点】三角形.【分析】根据三角形内角和为180°可得两个内角和是90°的三角形,第三个角是90°,是直角三角形.【解答】解:两个内角和是90°的三角形是直角三角形,说法正确;故答案为:对.【点评】此题主要考查了三角形,关键是掌握三角形内角和为180°.16.一个三角形最多只能有一个钝角或一个直角. 正确(判断对错)【考点】三角形.【分析】这个结论正确,可以利用反证法证明.【解答】解:一个三角形最多只能有一个钝角或一个直角.理由:假如一个三角形有两个钝角或两个直角,那么这个三角形的内角和大于180°,这与三角形内角和为180°矛盾,所以假设不成立,所以一个三角形最多只能有一个钝角或一个直角.故答案为正确.【点评】本题考查三角形,三角形的内角和、反证法等知识,解题的关键是灵活运用三角形内角和定理,属于中考常考题型.17.在锐角三角形中,任意的两个锐角之和一定要大于90°.正确(判断对错)【考点】三角形.【分析】这个结论是正确的,可以用反证法证明.【解答】解:这个结论是正确的.假如两个锐角之和小于等于90,那么第三个角是90°或钝角,这个三角形是钝角三角形,与已知条件矛盾,所以假设不成立,故在锐角三角形中,任意的两个锐角之和一定要大于90°.【点评】本题考查三角形内角和定理,反证法等知识,解题的关键是学会利用反证法证明,属于中考常考题型.18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形. 错(判断对错)【考点】三角形内角和定理.【分析】根据三角形内角和定理,求得第三个内角,进而判定三角形的形状.【解答】解:∵一个三角形的两个内角分别是85°和25°,∴第三个内角为70°,∴这个三角形一定是锐角三角形.故答案为:错【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.三、选择题19.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【考点】三角形内角和定理.【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.20.下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°【考点】三角形内角和定理.【专题】探究型.【分析】根据三角形内角和定理对各选项进行逐一分析即可.【解答】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°【考点】三角形内角和定理.【分析】根据三角形的内角和定理和已知条件即可得到∠A的方程,从而求解.【解答】解:∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°,∴∠A+ ∠A=180°,∠A=120°.故选B.【点评】此题考查了三角形的内角和定理.22.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【考点】三角形内角和定理.【分析】设三角形三个内角分别为∠A、∠B、∠C,且∠A﹣∠B=∠C,则∠B+∠C=∠A,根据三角形内角和定理得到∠A+∠B+∠C=180°,于是可计算出∠A=90°,由此可判断三角形为直角三角形.【解答】解:设三角形三个内角分别为∠A、∠B、∠C,且∠A﹣∠B=∠C,则∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴∠A+∠A=180°,∴∠A=90°,∴这个三角形为直角三角形.故选C.【点评】本题考查了三角形内角和定理:三角形内角和是180°.利用三角形内角和可直接根据两已知角求第三个角或依据三角形中角的关系,用代数方法求三个角,也可在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为( )A.10cm或6cmB.10cmC.6cmD.8cm或6cm【考点】等腰三角形的性质;三角形三边关系.【分析】根据绝对值的性质求出AC的长即可.【解答】解:∵|AC﹣BC|=2cm,∴AC﹣BC=2cm或﹣AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8﹣2)cm,即10cm或6cm.故选A【点评】本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A.4cmB.5cmC.9cmD.13cm【考点】三角形三边关系.【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形【考点】三角形内角和定理.【分析】由三角形内角和定理知.【解答】解:∵∠B+∠C+∠A=180°,∠B+∠C=3∠A,∴∠B+∠C+∠A=4∠A=180°,∴∠A=45°.故选A.【点评】本题利用了三角形内角和为180°求解.26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【考点】三角形内角和定理.【分析】根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C= ×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B= ∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选D.【点评】本题考查了三角形内角和定理的应用,能求出每种情况的∠C的度数是解此题的关键,题目比较好,难度适中.27.已知三角形的三边分别为2,a,4,那么a的取值范围是( )A.1【考点】三角形三边关系.【专题】应用题.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:由于在三角形中任意两边之和大于第三边,∴a<2+4=6,任意两边之差小于第三边,∴a>4﹣2=2,∴2故选B.【点评】本题考查了构成三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,难度适中.28.在△ABC中,∠A= ∠B= ∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A= ∠B= ∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,所以,∠B=2×30°=60°,∠C=3×30°=90°,所以,此三角形是直角三角形.故选B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.四、解答题29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;你选出的条件是②.证明:【考点】全等三角形的判定.【分析】要证明△ADB≌△CEB,两三角形中已知的条件有BD=BE,有一个公共角,那么根据三角形的判定公理和推论,我们可看出①不符合条件,没有SSA 的判定条件,因此不正确.②AE=CD,可得出AB=BC,这样就构成了SAS,因此可得出全等的结论.③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.【解答】解:选择②,证明:∵AE=CD,BE=BD,∴AB=CB,又∵∠ABD=∠CBE,BE=BD∴△ADB≌△CEB(SAS).故答案为:②【点评】本题考查了全等三角形的判定公理及推论.注意SSA和AAA是不能得出三角形全等的结论的.30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.【考点】直角三角形全等的判定.【专题】证明题;开放型.【分析】本题考查三角形的全等知识.第(1)小题是根据对图形的直观判断和一定的推理可得结果,要求考虑问题要全面.第(2)个问题具有一定的开放性,选择证明不同的结论,判定方法会有不同,这里根据HL(斜边直角边定理)来判断两个直角三角形全等.【解答】解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△C DF(HL).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.做题时要结合已知条件与全等的判定方法逐一验证.31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.【考点】全等三角形的判定与性质.【分析】已知∠1=∠2,∠DAC是公共角,从而可推出∠DAE=∠BAC,已知AB=AD,AC=AE,从而可以利用SAS来判定△ABC≌△ADE.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).【点评】此题主要考查全等三角形的判定方法,常用的判定方法有:SSS,SAS,AAS,HL等,做题时注意灵活运用.32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先由条件可以得出△BED≌△CFD就有DE=DF,就可以得出结论.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.∵DF⊥AC,DE⊥AB,∴AD平分∠BAC.【点评】本题考查了全等三角形的判定及性质的运用,角平分线的判定及性质的运用,解答时证明三角形全等是关键.33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线的性质可以得到∠A=∠CEB,则∠CEB=∠B,根据等角对等边即可证得.【解答】证明:∵CE∥DA,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB.【点评】本题考查了平行线的性质以及等腰三角形的判定定理,理解定理是关键.34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由已知条件加上公共角相等,利用ASA得到三角形ABD与三角形ACE全等,利用全等三角形对应边相等即可得证.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴AB=AC.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.。
人教版八年级上册数学第十一章(三角形)单元测试卷及答案
人教版八年级上册数学单元测试卷第十一章三角形姓名班级学号成绩一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.33.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE第3题图第6题图第7题图4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.80.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°第10题图第13题图第14题图二.填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C 的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.第11章:三角形单元测试卷(参考答案)一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性解答.【解答】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.3【分析】根据多边形的外角和与正多边形的性质即可求得答案.∵【解答】解:正n边形的一个外角为60°∴n=360°÷60°=6故选:A.【点评】本题考查多边形的外角和及正多边形的性质,此为基础且重要知识点,必须熟练掌握.3.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE【分析】根据三角形的高的定义进行分析即可得出结果.【解答】解:由图可得:△ABC的边BC上的高是AF.故选:A.【点评】本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C∴∠B=2∠A,∠C=3∠A∵∠A+∠B+∠C=180°∴∠A+2∠A+3∠A=180°解得∠A=30°所以,∠B=2×30°=60°∠C=3×30°=90°所以,此三角形是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°【分析】由折叠的性质可得∠B=∠D=30°,再根据外角的性质即可求出结果.【解答】解:将△ABC沿直线m翻折,交BC于点E、F,如图所示:由折叠的性质可知:∠B=∠D=30°根据外角的性质可知:∠1=∠B+∠3,∠3=∠2+∠D∴∠1=∠B+∠2+∠D=∠2+2∠B∴∠1﹣∠2=2∠B=60°故选:C.【点评】本题考查三角形内角和定理、翻折变换的性质,熟练掌握三角形外角的性质和翻折的性质是解题的关键.7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与其不相邻的两个内角之和.8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°【分析】根据∠BFC的度数以及BD⊥AC,可求出∠ACE度数,进而得出∠ACB度数,再结合∠AEC度数,求出∠A度数,最后利用三角形的内角和定理即可解题.【解答】解:因为BD是AC边上的高所以∠BDC=90°.又∠BFC=128°所以∠ACE=128°﹣90°=38°又∠AEC=80°则∠A=62°.又CE是∠ACB的平分线所以∠ACB=2∠ACE=76°.故∠ABC=180°﹣62°﹣76°=42°.故选:C.【点评】本题考查角平分线的定义及三角形的内角和定理,利用外角求出∠ACE的度数是解题的关键.9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.8【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n∴(n﹣2)•180°=540°∴n=5.故选:B.【点评】本题考查了多边形的内角和定理,掌握n边形的内角和为(n﹣2)•180°是解决此题关键.10.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°【分析】利用三角形ABC和三角形OBC的内角和都是180°,求解即可.【解答】解:由三角形内角和定理在三角形ABC中:∠A+∠ABC+∠ACB=180°∴∠OBC+∠OCB+∠1+∠2+∠A=180°∴∠OBC+∠OCB=180°﹣80°﹣15°﹣40°=45°在三角形OBC中∠OBC+∠OCB+∠BOC=180°∴∠BOC=180°﹣45°=135°故选:D.【点评】此题主要考查三角形的内角和定理:三角形的内角和是180°;掌握定理是解题关键.二.填空题(共5小题,每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x∵一个三角形的两边长分别为4和5∴5﹣4<x<5+4,即1<x<9∵第三边的长为整数∴x的值可以为2,3,4,5,6,7,8∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边;三角形的两边之差小于第三边是解题的关键.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为20°或60°.【分析】分两种情况进行讨论:当∠BFD=90°时,当∠BDF=90°时,分别依据三角形内角和定理以及角平分线的定义,即可得到∠ADF的度数为20°或60°.【解答】解:如图所示,当∠BFD=90°时∵AD是△ABC的角平分线,∠BAC=60°∴∠BAD=30°∴Rt△ADF中,∠ADF=60°;如图,当∠BDF=90°时同理可得∠BAD=30°∵CE是△ABC的高,∠BCE=50°∴∠BFD=∠BCE=50°∴∠ADF=∠BFD﹣∠BAD=20°综上所述,∠ADF的度数为20°或60°.故答案为:20°或60°.【点评】此题主要考查了三角形的内角和定理,解答此题的关键是要明确:三角形的内角和是180°.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=2.【分析】由题意,△ABC中,AD为中线,可知△ABD和△ADC的面积相等;利用面积相等,问题可求.【解答】解:∵△ABC中,AD为中线∴BD=DC∴S△ABD=S△ADC∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5∴•AB•ED=•AC•DF∴×3×ED=×4×1.5∴ED=2故答案为:2.【点评】此题考查三角形的中线,三角形的中线把三角形的面积分成相等的两部分.本题的解答充分利用了面积相等这个知识点.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.【分析】根据三角形的外角定理得出∠AEB=∠CAE+∠C,再根据∠AFB=∠CBD+∠AEB即可求解.【解答】解:∵∠CAE=25°,∠C=40°∴∠AEB=∠CAE+∠C=25°+40°=65°∵∠CBD=30°∴∠AFB=∠CBD+∠AEB=30°+65°=95°.【点评】本题主要考查了三角形的外角定理,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.【分析】(1)利用多边形的内角和与外角和列得方程,解方程即可;(2)利用多边形的内角和与正多边形的性质列得方程,解方程即可.【解答】解:(1)由题意可得(n﹣2)•180°=360°×4解得:n=10;(2)由题意可得(n﹣2)•180°=135°n解得:n=8.【点评】本题考查多边形的内角和与外角和,正多边形的性质,结合已知条件列得对应的方程是解题的关键.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C∵∠B=40°,∠C=70°∴∠BAF=110°;(2)∵∠BAF=110°∴∠BAC=70°∵AD是△ABC的角平分线∴∠DAC=BAC=35°∵EF∥AD∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线∴∠OAB+∠OBA=(∠BAC+∠ABC)在△ABC中,∠C=70°∴∠BAC+∠ABC=180°﹣∠C=110°∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线∴∠CAE=∠CAB=25°∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=2a.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.【分析】(1)先根据三角形的三边关系定理可得a+b>c,a+c>b,从而可得a+b﹣c>0,b﹣a﹣c<0,再化简绝对值,然后计算整式的加减法即可得;(2)先根据三角形中线的定义可得,再分①和②两种情况,分别求出a,c的值,从而可得三角形的三边长,然后看是否符合三角形的三边关系定理即可得出答案.【解答】解:(1)由题意得:a+b>c,a+c>b∴a+b﹣c>0,b﹣a﹣c<0∴|a+b﹣c|+|b﹣a﹣c|=a+b﹣c+(﹣b+a+c)=a+b﹣c﹣b+a+c=2a.故答案为:2a;(2)设AB=AC=2x,BC=y,则AD=CD=x∵AC上的中线BD将这个三角形的周长分成15和6两部分①当3x=15,且x+y=6解得,x=5,y=1∴三边长分别为10,10,1;②当x+y=15且3x=6时解得,x=2,y=13,此时腰为4根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴△ABC的腰长AB为10.【点评】本题考查了三角形的三边关系定理、整式加减的应用、二元一次方程组的应用、三角形的中线等知识点,掌握相应的定义和分类讨论思想是解题关键.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.【分析】(1)根据角平分线的定义、三角形的外角性质计算,证明结论;(2)根据角平分线的定义及已知条件可求解∠ACB,∠ECD的度数,利用直角三角形的性质可求解∠B 的度数,再由三角形外角的性质可求解.【解答】(1)证明:∵CE平分∠ACD∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE∴∠BAC=∠E+∠ECD∵∠ECD=∠B+∠E,′∴∠BAC=∠E+∠B+∠E∴∠BAC=2∠E+∠B.(2)解:∵CE平分∠ACD∴∠ACE=∠DCE∵∠ECD﹣∠ACB=30°,2∠ECD+∠ACB=180°∴∠ACB=40°,∠ECD=70°∵CA⊥BE∴∠B+∠ACB=90°∴∠B=50°∵∠ECD=∠B+∠E∴∠E=70°﹣50°=20°.【点评】本题考查的是三角形的外角性质、三角形内角和定理,直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=29°,可以发现∠ADC'与∠C的数量关系是∠ADC'=2∠C;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【分析】(1)根据平角定义求出∠CDC′=122°,然后利用折叠的性质可得∠CDE=∠CDC′=61°,∠DEC=×180°=90°,最后利用三角形内角和定理,进行计算即可解答;(2)根据平角定义求出∠CDC′=160°,∠CEC′=138°,然后利用折叠的性质可得∠CDE=∠CDC′=80°,∠DEC=∠CEC′=69°,最后利用三角形内角和定理,进行计算即可解答;(3)根据平角定义求出∠CDC′=180°﹣x,∠CEC′=180°+y,然后利用折叠的性质可得∠CDE=∠CDC′=90°+y,∠DEC=∠CEC′=90°﹣x,最后利用三角形内角和定理,进行计算即可解答.【解答】解:(1)∵∠ADC′=58°∴∠CDC′=180°﹣∠ADC′=122°由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°∴∠C=180°﹣∠EDC﹣∠DEC=29°∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°∴∠C=180°﹣∠EDC﹣∠DEC=31°∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y∴∠C与x,y之间的数量关系:∠C=x﹣y.【点评】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,以及折叠的性质是解题的关键.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【分析】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答】(1)解:∵∠AOB=90°∴∠BAO+∠ABO=90°∵AC、BC分别是∠BAO和∠ABO的角平分线∴∠CAB=∠BAO,∠CBA=∠ABO∴∠CAB+∠CBA=(∠BAO+∠ABO)=45°∴∠ACB=180°﹣45°=135°故答案为:135°;(2)解:∠ADB的大小不发生变化∵∠OBE是△AOB的外角∴∠OBE=∠OAB+∠AOB∵∠AOB=90°∴∠OBE﹣∠OAB=90°∵BD平分∠OBE∴∠EBD=∠OBE∵∠EBD是△ADB的外角∴∠EBD=∠BAG+∠ADB∴∠ADB=∠EBD﹣∠BAG=∠OBE﹣∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°∴∠BCG=180°﹣∠ACB=180°﹣135°=45°∵∠AGO是△BCG的外角∴∠AGO=∠BCG+∠CBG=45°+∠CBG∵∠AGO﹣∠BCF=45°∴45°+∠CBG﹣∠BCF=45°∴∠CBG=∠BCF∴CF∥OB.【点评】本题考查的是三角形的外角性质、平行线的判定、角平分线的定义、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.。
【精品】人教版数学八年级上册第十一章《三角形》单元检测试题【3套】试题
人教版数学八年级上册第十一章《三角形》单元检测试题一、选择题(每题3分,共30分) 1.三角形的角平分线是( )A.直线B.射线C.线段D.射线或线段 2.如图1能说明∠1>∠2的是( )3.若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.84.一个多边形每个顶点取一个外角,这些外角中钝角最多有( )A.1个B.2个C.3个D.4个5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是( )A .B .C .D .6.一根长为l 的绳子围成一个三边不相等的三角形,则三角形的最长边x 的取值范围为( ) A .31<x <21 B .31<x ≤21C .31≤x <21D .31≤x ≤217. 用一条长20cm 的细绳围成一个三角形,已知第一条边长为xcm ,第二条边长比第一条边长的2倍少4cm .若第一条边最短,则x 的取值范围是( ) A .2<x <8B .6314<<x C .0<x <10 D .7<x <88.如图2,在六边形ABCDEF 中,若∠A +∠B +∠C +∠D =500°,∠DEF 与∠AFE 的平分线交于点G ,则∠G 等于( ) A .55° B .65° C .70° D .80°9. 如图3所示,图中x 的值是( ) A .80° B .70° C .60° D .50°10.如图4,在四边形ABCD 中,∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上,则∠BEC =( )121221 D C B A 图1 图2 图3 图4A .∠A +∠D ﹣45°B .21(∠A +∠D )+45° C .180°﹣(∠A +∠D )D .21∠A +21∠D二、填空题(每题3分,共24分)11.如图5,在△ABC 中,BD =CD ,∠ABE =∠CBE ,则线段_______是△ABC 的中线,ED 是△_______的中线;△ABC 的角平分线是_______,BF 是△_______的角平分线.12.在Rt △ABC 中,若∠C 是直角,∠A =30°,那么∠B =_______.13.图6①、②、③中,具有稳定性的是图 14.如图7,∠A +∠B +∠C +∠D +∠E = 180° .15.△ABC 的三个内角满足5∠A >7∠B ,5∠C <2∠B ,则△ABC 是 三角形(填“锐角”、“直角”或“钝角”)16定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么这个“特征角”α的度数为 .17.如图8,已知AO =10,P 是射线ON 上一动点(即P 点可在射线ON 上运动),∠AON =60°.(1)OP = 时,△AOP 为直角三角形.(2)设OP =x ,则x 满足 时,△AOP 为钝角三角形.18.如图(1)),在△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,则∠BOC =90°+21∠A =21×180°+21∠A .如图9(2),在△ABC 中,∠ABC ,∠ACB 的两条三等分角线分别对应交于O 1,O 2,则∠BO 1C =32×180°+31∠A ,∠BO 2C =31×180°+32∠A .根据以上阅读理解,你能猜想∠BO 2018C = .D C B AEF 图5 图6图7 图8三、解答题19. 如图10,在五边形ABCDE 中满足AB ∥CD ,求图形中的x 的值.20. (1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数. (2)一个正多边形的内角和为1800°,求这个多边形的边数.21. 如图11,四边形ABCD 中,BE 、CF 分别是∠B 、∠D 的平分线.且∠A =∠C =90°,试猜想BE 与DF 有何位置关系?请说明理由.22. 已知:如图12,在△ABC 中,AB =3,AC =5. (1)直接写出BC 的取值范围是 .(2)若点D 是BC 边上的一点,∠BAC =85°,∠ADC =140°,∠BAD =∠B ,求∠C .23.如图13,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,若∠A =42°. (1)求∠BOC 的度数;(2)把(1)中∠A =42°这个条件去掉,试探索∠BOC 和∠A 之间有怎样的数量关系.图9(1)(2)(3)图10图11 图12 图1324. 如图14,AC 平分∠DCE ,且与BE 的延长线交于点A . (1)如果∠A =35°,∠B =30°,则∠BEC = .(直接在横线上填写度数)(2)小明经过改变∠A ,∠B 的度数进行多次探究,得出∠A 、∠B 、∠BEC 三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明. 解:(2)关系式为: 证明:25. 【探究发现】 如图15(1),在△ABC 中,点P 是内角∠ABC 和外角∠ACD 的角平分线的交点,试猜想∠P 与∠A 之间的数量关系,并证明你的猜想.【迁移拓展】 如图15(2),在△ABC 中,点P 是内角∠ABC 和外角∠ACD 的n 等分线的交点,即∠PBC =n 1∠ABC ,∠PCD =n1∠ACD , 试猜想∠P 与∠A 之间的数量关系,并证明你的猜想. 【应用创新】已知,如图15(3),AD 、BE 相交于点C ,∠ABC 、∠CDE 、∠ACE 的角平分线交于点P ,∠A =35°,∠E =25°,则∠BPD = .参考答案:一、1.C ;2.C ;3.B ;4.C ; 5. A 提示:B ,C ,D 都不是△ABC 的边BC 上的高,故选:A . 6. A 提示:设三角形的其他两边为:y ,z ,∵x +y +z =l ,y +z >x ∴可得x <21, 又因为x 为最长边大于31,∴31<x <21;故选:A . 7. B 提示:根据题意可得:第二条边长为(2x ﹣4)米,图14 图15 (1)) (2) (3)∴第三条边长为20﹣x ﹣(2x ﹣4)=(24﹣3x )米;由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧->-+->-+>->->4232432442324420x x x x x x x x x x x ,解得6314<<x .故选:B . 8. C 提示:六边形ABCDEF 的内角和是:(6﹣2)×180°=4×180°=720° ∵∠A +∠B +∠C +∠D =500°,∴∠DEF +∠AFE =720°﹣500°=220°, ∵GE 平分∠DEF ,GF 平分∠AFE , ∴∠GEF +∠GFE =21(∠DEF +∠AFE )=21×220°=110°, ∴∠G =180°﹣110°=70°.故选:C .9. C 提示:∵图形是五边形,∴120°+150°+2x °+x °+90°=(5﹣2)×180°, 解得:x =60°,故选:C .10. D 提示:∵四边形的内角和=360°,∴∠ABC +∠BCD =360°﹣(∠A +∠D ), ∵∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上, ∴2∠EBC =∠ABC ,2∠ECB =∠BCD ,∴∠EBC +∠ECB =)(21BCD ABC ∠+∠=[])(36021D A ∠+∠-︒⨯, ∴∠BEC =180°﹣(∠EBC +∠ECB )=180°﹣[])(36021D A ∠+∠-︒⨯=)(21D A ∠+∠,故选:D .二、11.AD 、BEC 、BE 、ABD ;12.60°;13. ①②提示:∵三角形具有稳定性,∴①②具有稳定性.14. 180°提示:利用三角形的外角的性质得:∠1=∠D +∠E ,∠2=∠A +∠B , 所以∠A +∠B +∠C +∠D +∠E =∠2+∠C +∠1=180°,15. 钝角提示:∵5∠A >7∠B ,2∠B >5∠C ,∴5∠A +2∠B >7∠B +5∠C , 即5∠A +>5∠B +5∠C ,∴∠A >∠B +∠C ,不等式两边加∠A ,可得2∠A >∠A +∠B +∠C ,而∠A +∠B +∠C =180°,∴2∠A >180°,即∠A >90°, ∴这个三角形是钝角三角形.16. 48°或96°或88°提示:当“特征角”为48°时,即α=48°;当β=48°,则“特征角”α=2×48°=96°; 当第三个角为48°时,α+21α+48°=180°,即得α=88°, 综上所述,这个“特征角”α的度数为48°或96°或88°. 17. (1)5或20(2)0<x <5或x >20 提示:(1)当∠APO =90°时,∠OAP =90°﹣∠AOP =30°, ∴OP =OA =5,当∠OAP =90°时,∠OPA =90°﹣∠AOP =30°, ∴OP =2OA =20,(2)当0<x <5或x >20时,△AOP 为钝角三角形,18. +∠A 提示:如图3,根据题中所给的信息,总结可得: ∠BO 1C =×180°+∠A ,∠BO n ﹣1C =×180°+∠A .∴当n ﹣1=2018时,n =2019,即∠BO 2018C =+∠A .三、解答题19. 解:∵AB ∥CD ,∠C =60°,∴∠B =180°﹣60°=120°, ∴(5﹣2)×180°=x +150°+125°+60°+120°,∴x =85°. 20. 解:(1)设此三角形三个内角的比为x ,2x ,3x , 则x +2x +3x =180,6x =180,x =30, 则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°. (2)设这个多边形的边数是n ,则(n ﹣2)•180°=1800°,解得n =12.故这个多边形的边数为12. 21. 解:BE ∥DF ,理由是:∵四边形内角和等于360°,∠A =∠C =90°,∴∠ABC +∠ADC =180°, ∵BE 、CF 分别是∠B 、∠D 的平分线,∴∠1=21∠ABC ,∠2=21∠ADC , ∴∠1+∠2=90°,∵在Rt △DCF 中,∠3+∠2=90°,∴∠1=∠3,∴BE ∥DF . 22. 解:(1)2<BC <8,故答案为:2<BC <8(2)∵∠ADC 是△ABD 的外角∴∠ADC =∠B +∠BAD =140° ∵∠B =∠BAD ∴∠B =︒=︒⨯7014021∵∠B +∠BAC +∠C =180° ∴∠C =180°﹣∠B ﹣∠BAC 即∠C =180°﹣70°﹣85°=25° 23. 解:(1)∵∠A =42°,∴∠ABC +∠ACB =180°﹣∠A =138°,∵BO 、CO 分别是△ABC 的角∠ABC 、∠ACB 的平分线,∴∠1=21∠ABC ,∠2=21∠ACB , ∴∠1+∠2=21(∠ABC +∠ACB )==69°,∴∠BOC =180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC =90°+21∠A , ∵BO 、CO 分别是△ABC 的角∠ABC 、∠ACB 的平分线,∴∠1=21∠ABC ,∠2=∠ACB , ∴∠1+∠2=21(∠ABC +∠ACB )=21(180°﹣∠A ),∴∠BOC =180°﹣(∠1+∠2)=180-)180(21A ∠-︒=A ∠-︒2190.24. 解:(1)∵∠A =35°,∠B =30°,∴∠ACD =∠A +∠B =65°, 又∵AC 平分∠DCE ,∴∠ACE =∠ACD =65°,∴∠BEC =∠A +∠ACE =35°+65°=100°, (2)关系式为∠BEC =2∠A +∠B . 理由:∵AC 平分∠DCE , ∴∠ACD =∠ACE ,∵∠BEC =∠A +∠ACE =∠A +∠ACD , ∵∠ACD =∠A +∠B ,∴∠BEC =∠A +∠A +∠B =2∠A +∠B . 25. 解:(1)∠A =2∠P ,理由如下:∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线, ∴∠PBC =21∠ABC ,∠PCD =21∠ACD , ∵∠ACD 是△ABC 的外角,∠PCD 是△BPC 的外角,∴∠ACD =∠ABC +∠A ,∠PCD =∠PBC +∠P ,∴21∠ACD =21∠ABC +21∠A , ∴21∠ABC +21∠A =∠PBC +∠P , ∴∠A =2∠P ;(2)∠A =n ∠P ,理由如下:∵点P 是内角∠ABC 和外角∠ACD 的n 等分线的交点, ∴∠PBC =∠ABC ,∠PCD =∠ACE .∵∠ACD 是△ABC 的外角,∠PCD 是△BPC 的外角, ∴∠ACD =∠ABC +∠A ,∠PCD =∠PBC +∠P , ∴n 1∠ACD =n 1∠ABC +n1∠A ,∴n 1∠ABC +n1∠A =∠PBC +∠P , ∴∠A =n ∠P ;(3)∵∠ABC 、∠CDE 、∠ACE 的角平分线交于点P , ∴由(1)的结论知,∠BPC =21∠A =,∠CPD =21∠E =,∴∠BPD =∠BPC +∠DPC =30°,故答案为:30°.人教版八年级上册第十一章三角形单元测试(3)一、选择题(每题3分,共30分)1.如图,∠1的大小等于()A.40°B.50°C.60°D.70°(第1题)(第4题)2.下列长度的三条线段,能组成三角形的是()A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A:∠B :∠C=1 :2 :2 B.∠A :∠B :∠C=3 :4 :5 C.∠A :∠B :∠C=1 :2 :3 D.∠A :∠B :∠C=2 :3 :4 4.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°(第6题) (第7题)(第9题) (第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A.8 B.7 C.6 D.59.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E五个角的和等于()A.90°B.180°C.360°D.540°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___________________________________________________.12.正十边形每个外角的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.将一副三角尺按如图所示放置,则∠1=________.(第14题)(第16题)(第18题)15.一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.16.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为________. 18.已知△ABC ,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.(第19题)20.如图,BD ,CE 是△ABC 的两条高,它们交于O 点. (1)∠1和∠2的大小关系如何?并说明理由. (2)若∠A =50°,∠ABC =70°,求∠3和∠4的度数.(第20题)21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD,CE相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC和∠APC的度数.(第21题)22.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证AF∥CD.(第22题)23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.(第23题)24.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C均不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第24题)答案一、1.D 2.A 3.C 4.B 5.B 6.B7.C8.B9.C10.B二、11.三角形具有稳定性12.36°13.514.105°15.1 800°16.617.120°18.2三、19.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.20.解:(1)∠1=∠2.理由如下:∵BD,CE是△ABC的两条高,∴∠AEC=∠ADB=90°.∵∠A+∠1+∠ADB=180°,∠2+∠A+∠AEC=180°,∴∠1=∠2.(2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,∴∠ACB=60°.∵在△AEC中,∠A+∠AEC+∠2=180°,∴∠2=40°.∴∠3=∠ACB-∠2=20°.∵在四边形AE O D中,∠A+∠AE O+∠4+∠AD O=360°,∠A=50°,∠AE O=∠AD O=90°,∴∠4=130°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠A P C=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.23.解:(1)150°;90°;60°(2)∠ABX+∠ACX的大小不变.理由:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=30°,∴∠ABC+∠ACB=180°-30°=150°.∵∠YXZ=90°,∴∠X BC+∠X CB=90°.∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.∴∠AB X+∠AC X的大小不变.24.解:(1)①20°②120;60(2)存在.①当点D在线段O B上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,易知∠ABE=110°,又三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.人教版八年级上册第十一章三角形单元测试(2)一、选择题(每题3分,共30分)1.三角形的三条高所在的直线相交于一点,这个交点的位置在()(A)三角形内(B)三角形外(C)三角形边上(D)要根据三角形的形状才能定2.下列长度的各组线段中,能组成三角形的是()(A)1、2、3(B)1、4、2(C)2、3、4(D)6、2、33.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.一个多边形只有27条对角线,则这个多边形的边数为()(A)8(B)9(C)10(D)115.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°6.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B.四边形 C.五边形 D.六边形7.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°8.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()(A) ①5或7 (B) 7 (C) 9 (D) 7或99.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1310.如图,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是( )(A) 31° (B) 35° (C) 41° (D) 76°二、填空题(每题3分,共30分)11.如果三条线段a、b、c,可组成三角形,且a=3,b=5,c是偶数,则c的值为.第10题12.△ABC中,已知∠A=800,∠B=700,则∠C= .13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成个三角形.14.如果一个三角形的三个内角的度数比为1∶2∶3,则这个三角形是三角形.15.一个直角三角形两锐角的平分线所夹的钝角为.16.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.17.一个多边形的每一个外角都等于360,则该多边形的内角和等于18.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.19.如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ,则 ∠AOB+∠DOC= .20.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10则在第nn 的代数式表示).三、解答题(共60分) 21.(本题6分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?22.(本题6分)正在修建的中山路有一形状如图13所示的三角形空地需要绿化,拟从点A出发,将ABC △分成面积相等的四个三角形,以便种上不同的花草,请你帮助规划出图案.23.(本题7分)一个多边形的内角和比外角和多360度,这是几边形? 24.(本题7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O BAC =50°,∠C =70°.求∠DAC 和∠BOA 的度数.DABCPIO图1 第20题图 图3 第21题图 DE AB C图1325.(本题8分)如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(本题8分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么?(2)你有何猜想? (3)通过什么途径说明你的猜想?27.(本题9分)如图,△ABC 中,∠C=90°,∠A=30°. (1)作图:作AB 边上的高CD ,垂足为D ; (2)求∠ACD ,∠BCD ,∠B 的度数;(3)用刻度尺测量BC 和AB ,CD 和AC ,DB 和BC ,将三组线段分别相除(即将BC •的长度除以AB 的长度,CD 的长度除以AC 的长度,DB 的长度除以BC 的长度),你发现了什么规律?28.(本题9分)一块三角形优良品种试验田,现引进四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明。
2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)
2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。
(全优)人教版八年级上册数学第十一章 三角形含答案
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形 B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点 C.三角形的中线将三角形分成面积相等的两部分 D.一组对边平行另一组对边相等的四边形是平行四边形2、多边形的外角和等于()A.180°B.360°C.720°D.(n﹣2)•180°3、以下列各组线段为边,能组成三角形的是()A.2,3,5B.2,3,6C.8,6,4D.6,7,144、如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以为公共边的“共边三角形”有()A.2对B.3对C.4对D.6对5、如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1BlC1的面积是()A.4B.5C.6D.76、已知三角形三边长分别为2,x,7,若x为正整数,则这样的三角形个数有()A.2个B.3个C.5个D.7个7、如图所示,将一副三角板如图叠放,问∠1的度数为()A.60°B.30°C.75°D.55°8、如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()A.1B.2C.3D.49、如图,在△ABC中,∠A=50°,∠B=∠C,点D,E,F分别在边BC,CA,AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为()A.75°B.80°C.65°D.95°10、如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于()A.30°B.35°C.40°D.50°11、如图,在△ABC中,∠A=45°,∠C=75°,BD是△ABC的角平分线,则∠BDC的度数为()A.60°B.70°C.75°D.105°12、已知平行四边形ABCD,对角线AC=6、BD=8,则该平行四边形四条边中最长边a的取值范围是( )A. ≤a<7B.5≤a<7C.1<a<7D. ≤a<713、过五边形的一个顶点的对角线共有()条A.1B.2C.3D.414、已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长为()A.17B.22C.17或22D.无法确定15、如图所示,小明从点出发,沿直线前进8米后左转,再沿直线前进8米,又左转,照这样走下去,他第一次回到出发点时,一共走了( )米.A.70B.72C.74D.76二、填空题(共10题,共计30分)16、直角三角形的两边长为3和4,则斜边上的高是________.17、如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=________°.18、如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.19、如图,E是的边上一点,将沿折叠,得到交于点F.若,,则的度数为________.20、平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=________.21、如图,中,,将沿翻折后,点落在边上的点处.如果,那么的度数为________.22、如图,在△ABC中,∠ABC=90°,∠C=50°,以A为圆心、AB为半径的弧与AC相交于点D,那么∠CBD=________°.23、如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=________.24、为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五边形的五个顶点),则图中∠A的度数是________度25、如果一个正多边形的一个外角是36°,那么该正多边形的边数为________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
人教版八年级数学上册第十一章《三角形》单元测试题及答案
人教版八年级数学上册第十一章《三角形》单元测试题及答案一、选择题(每题4分,共40分)1. 在三角形ABC中,a = 3cm,b = 4cm,c = 5cm,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定2. 如果一个三角形的两边长分别是5和10,那么第三边的长度可能是()A. 3B. 6C. 11D. 153. 三角形的一个外角等于与它不相邻的两个内角的和,那么这个外角的度数是()A. 90°B. 120°C. 180°D. 无法确定4. 在三角形ABC中,∠A = 50°,∠B = 60°,那么∠C 的度数是()A. 70°B. 80°C. 90°D. 100°5. 如果一个三角形的两边长分别是8和15,那么第三边的长度可能是()A. 7B. 10C. 17D. 206. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是()A. 36cmB. 40cmC. 44cmD. 48cm7. 在三角形ABC中,∠A = 30°,∠B = 45°,那么∠C 的度数是()A. 75°B. 85°C. 90°D. 95°8. 如果一个三角形的两边长分别是6和9,那么第三边的长度可能是()A. 3B. 6C. 12D. 159. 一个等边三角形的周长是15cm,那么这个三角形的边长是()A. 3cmB. 4cmC. 5cmD. 6cm10. 在三角形ABC中,∠A = 40°,∠B = 70°,那么∠C的度数是()A. 20°B. 30°C. 50°D. 60°二、填空题(每题4分,共40分)11. 在三角形ABC中,a = 5cm,b = 7cm,c = 9cm,那么这个三角形的面积是_________。
人教版八年级数学上册第11章《三角形》达标检测卷(含答案)
人教版八年级数学上册第十一章《三角形》达标检测卷(含答案)(总分120分,时间:90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有()A.1个B.2个C.3个D.4个3.图中能表示△ABC的BC边上的高的是()A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为()A.40°B.60°C.80°D.100°(第4题)(第7题) (第9题) (第10题) 5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为()A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,则∠AFB的度数是()A.126°B.120°C.116°D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为________度.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________性.(第12题)13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.(第14题) (第15题)15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______度.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题)17.如图是一副三角尺拼成的图案,则∠CEB=________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.(第18题)19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD 交于点G,AG∶GE=2∶1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.(第20题)三、解答题(21、22题每题6分,23、24题每题8分,25、26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题)22.如图.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.(第22题)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD 的度数.(第23题)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.(第25题)26.已知等腰三角形的三边长分别为a ,2a -1,5a -3,求这个等腰三角形的周长. 27.已知∠MON =40°,OE 平分∠MON ,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC =x°.(1)如图(1),若AB ∥ON ,则①∠ABO 的度数是________;②当∠BAD =∠ABD 时,x =________;当∠BAD =∠BDA 时,x =________. (2)如图(2),若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.(第27题)答案一、1.B 2.C 3.D4.C 点拨:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A.又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°.5.B6.C 点拨:八边形的内角和为(8-2)×180°=1 080°. 7.C8.A 点拨:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 点拨:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B .二、11.80 12.稳定 13.3,4,5,6,714.6013 点拨:由等面积法可知AB·BC =BD·AC ,所以BD =AB·BC AC =12×513=6013(cm ). 15.60 点拨:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°.16.7 17.10518.360° 点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.120°20.2 点拨:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵A G ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =12S △BGA =1.同理得S △CGF =1.∴S 1+S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.22.解:(1)AB ;(2)C D ;(3)∵AE =3 cm ,CD =2 cm ,∴S △AEC =12AE·CD =12×3×2=3(cm 2).∵S △AEC =12CE·AB =3 cm 2,AB =2 cm ,∴CE =3 cm .23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°.24.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎨⎧32a =18,12a +b =15,或⎩⎨⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13.又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13.25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=12∠3,∴∠2=10°,∴∠B AC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a-3时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x =35.若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125,综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.。
人教版八年级数学上册第十一章《三角形》考试卷(含答案)
人教版八年级数学上册第十一章《三角形》考试卷(含答案)一、选择题(共10小题)1. 如图,窗户打开后,用窗钩AB可将其固定,所运用的几何原理是( )A. 两点之间线段最短B. 三角形两边之和大于第三边C. 三角形的稳定性D. 两点确定一条直线2. 下列各组数中,能作为一个三角形三边长的是( )A. 1,1,2B. 1,2,4C. 2,3,5D. 2,3,43. 如图,AB∥CD,AC,BD相交于点E,若∠DEC=100∘,∠C=40∘,则∠B的度数是( )A. 30∘B. 40∘C. 50∘D. 60∘4. 一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A. 3B. 4C. 6D. 125. 把一把直尺与一块三角板如图放置,若∠1=45∘,则∠2的度数为( )A. 115∘B. 120∘C. 145∘D. 135∘6. 如图,∠C,∠1,∠2之间的大小关系是( )A. ∠1<∠2<∠CB. ∠2>∠1>∠CC. ∠C>∠1>∠2D. ∠1>∠2>∠C7. 已知一个多边形的内角和是1080∘,则这个多边形是( )A. 六边形B. 七边形C. 八边形D. 九边形8. 如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于( )A. 2cm2B. 1cm2C. 12cm2 D. 14cm29. 在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是( )A. 直角三角形B. 锐角三角形C. 等腰三角形D. 等腰直角三角形10. 如图,在△ABC中,点D是∠ABC和∠ACB的平分线的交点,∠A=80∘,∠ABD=30∘,则∠DCB的度数为( )A. 25∘B. 20∘C. 15∘D. 10∘二、填空题(共8小题)11. 三角形中,其中两条边长分别为4cm和7cm,则第三边c的长度的取值范围是.12. 一副三角板按如图所示摆放,则α的度数为.13. 如图,在△ABC中,∠C=90∘,∠A=20∘,BD为∠ABC的平分线,则∠BDC=.14. 如图,在△ABC中,∠ABC=∠C,∠A=40∘,BD⊥AC于点D,则∠DBC=度.15. 一个多边形截去一个角(截线不过顶点)后,形成的多边形的内角和是2520∘,则原多边形的边数是.16. 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为.17. 如图,在△ABC中,∠ACB=90∘,∠A=50∘.如果将△ABC沿着CD所在直线翻折,使点A溶在边CB上Aʹ处,那么∠AʹDB=.18. 已知,如图1,在△ABC,∠ABC、∠ACB的角平分线交于点O,则∠BOC=90∘+12∠A=1 2×180∘+12∠A.如图2,在△ABC中,∠ABC、∠ACB的两条三等分角线分别对应交于O1、O2,则∠BO1C=23×180∘+13∠A,∠BO2C=13×180∘+23∠A.根据以上阅读理解,你能猜想(n等分时,内部有n−1个点)(用n的代数式表示)∠BO1C=.三、解答题(共6小题)19. 如图所示,已知AD,AE分别是△ABC高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90∘.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE与△ABE的周长的差.20. 请回答下列问题.(1)如图(1),BD,CD分别是△ABC的内角∠ABC,∠ACB的平分线,请说明∠BDC与∠A∠A.之间的等量关系是∠BDC=90∘+12(2)如图(2),BD,CD是△ABC的两个外角的平分线,请你探究∠BDC与∠A之间有怎样的等量关系.(3)如图(3),BD,CD分别是△ABC的一个内角的平分线与一个外角的平分线,试探究∠BDC与∠A之间的等量关系.21. 在△ABC中,CD是AB边上的中线,如果△BCD的周长比△ACD的周长多3cm,且AC=4cm,求边BC的长.22. 如图,在△ABC中,∠BAC=45∘,AD是∠BAC的角平分线,BE是边AC上的高,AD,BE相交于点O,求∠AOB的度数.23. 如图,在△ABC中,AD是∠BAC的角平分线,BE是边AC上的高,AD,BE相交于点O,如果∠AOE=67.5∘,求∠ABE的度数.24. 如图,在△ABC中,已知∠BAC=86∘,BD平分∠ABC,CD∥AB,∠ACB=34∘,求∠D的度数.参考答案1. C2. D【解析】A选项:1+1=2,故不能作为三角形三边长;B选项:1+2=3<4,故不能作为三角形三边长;C选项:2+3=5,故不能作为三角形三边长;D选项:2+3=5>4,故能作为三角形三边长.3. B4. B【解析】正多边形的每个内角的度数都等于相邻外角的度数,则外角的度数为90∘,360÷90∘=4,则正多边形的边数是4.5. D【解析】易知∠2=∠1+90∘,∵∠1=45∘,∴∠2=45∘+90∘=135∘.6. D7. C【解析】设这个多边形是n边形,由题意知,(n−2)×180∘=1080∘,所以n=8,所以该多边形的边数是八边形.8. B【解析】S阴影=12S△BCE=14S△ABC=1cm2.9. A10. B【解析】∵BD平分∠ABC,∴∠ABC=2∠ABD=2×30∘=60∘,∴∠ACB=180∘−∠A−∠ABC=180∘−80∘−60∘=40∘,∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40∘=20∘.11. 3cm<c<11cm【解析】三角形两边的和大于第三边,两边的差小于第三边,由题意得7−4<c<7+4,即3<c<11.12. 105∘13. 55∘14. 2015. 15【解析】设截去一个角后的多边形的边数为n,于是(n−2)⋅180∘=2520∘,解得n=16.一个多边形截去一个角(截线不过顶点)后边数增加1,所以原多边形有15条边.16. 105∘17. 10∘18. n−1n ×180∘+1n∠A【解析】根据题中所给的信息,总结可得:∠BO1C=n−1n ×180∘+1n∠A,故答案为:∠BO1C=n−1n ×180∘+1n∠A.19. (1)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810=4.8(cm),即AD的长为4.8cm.(2)∵△ABC是直角三角形,∠BAC=90∘,AB=6cm,AC=8cm,∴S△ABC=12AB⋅AC=12×6×8=24(cm2),又∵AE是△ABC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=12(cm2),∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE与△ABE的周长的差是2cm.20. (1)略.∠A.(2)∠BDC=90∘−12∠A(3)∠BDC=1221. 因为CD是△ABC的中线,所以AD=BD.因为C△ACD=AC+AD+CD,C△BCD=BC+BD+CD,所以(BC+BD+CD)−(AC+AD+CD)=3.所以BC−AC=4.因为AC=3cm,所以BC=7cm.22. ∠AOB=112.5∘.23. ∵AD是∠BAC的角平分线(已知),∠BAC(角平分线的意义),∴∠BAD=∠CAD=12∵BE是边AC上的高(己知),∴∠BEA=90∘(垂直的意义),∵∠AOE+∠CAD+∠BEA=180∘(三角形的内角和180∘),且∠AOE=67.5∘(已知),∴∠CAD=22.5∘(等式性质),∴∠BAD=22.5∘(等量代换),∵∠AOE=∠ABE+∠BAD(三角形的一个外角等于与它不相邻的两个内角之和),∴∠ABE=45∘(等式性质).24. 因为∠BAC=86∘,∠ACB=34∘,所以∠ABC=180∘−86∘−34∘=60∘,因为BD平分∠ABC,∠ABC=30∘,所以∠ABD=12因为CD∥AB,所以∠D=∠ABD=30∘.。
八年级数学上册第十一章《三角形》测试题-人教版(含答案)
八年级数学上册第十一章《三角形》测试题-人教版(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。
【新人教版】八年级数学上册:第十一章《三角形》检测题(含答案)
第十一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.三角形的内角和是( B)A.90° B.180° C.300° D.360°2.下列长度的三条线段能组成三角形的是( D)A.1,2,3 B.1,2,3 C.3,4,8 D.4,5,63.如图,图中∠1的大小等于( D)A.40° B.50° C.60° D.70°(第5题图) (第6题图) 4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A)A.40° B.60° C.80° D.90°5.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( C) A.60° B.75° C.90° D.105°6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是( B) A.52° B.62° C.64° D.72°7.如图,在△ABC中,∠A=80°,高BE与CH的交点为O,则∠BOC等于( C)A.80° B.120° C.100° D.150°(第7题图)(第8题图)(第9题图) 8.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( C)A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高9.如图,把纸片△ABC沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( B) A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)10.如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是( A)A.720° B.540° C.360° D.180°(第10题图)(第13题图)(第14题图)二、填空题(每小题3分,共18分)11.(2016·镇江)正五边形每个外角的度数是__72°__.12.人站在晃动的公共汽车上,若你分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了__三角形的稳定性__.13.如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是__6__.14.如图,∠1+∠2+∠3+∠4+∠5+∠6=__360°__.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__120°__.16.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21°,则∠BAC 的度数是__51°或93°__.三、解答题(共72分)17.(8分)如图:(1)在△ABC 中,BC 边上的高是__AB __;(2)在△AEC 中,AE 边上的高是__CD __;(3)若AB =CD =2 cm,AE =3 cm,求△AEC 的面积及CE 的长.解:S △AEC =12AE·CD =12CE·AB =3 cm 2,CE =3 cm18.(8分)等腰△ABC 的两边长x,y 满足|x -4|+(y -8)2=0,求这个等腰三角形的周长. 解:∵x ,y 满足|x -4|+(y -8)2=0,∴x =4,y =8,当4为腰时,4+4=8不成立,当4为底时,8为腰,4+8>8,满足三边关系,∴△ABC 的周长为8+8+4=2019.(8分)如图,AD 平分∠CAE ,∠B =35°,∠DAE =60°,试求∠D 与∠ACD 的度数.解:∠D =25°,∠ACD =95°20.(7分)若一个多边形的各边长均相等,周长为70 cm ,且内角和为900°,求它的边长. 解:边长是10 cm21.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P 和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q 的点O,测得∠A =28°,∠AOC =100°,那么∠QBO 应等于多少度才能确保BQ 与AP 在同一条直线上?解:在△AOB 中,∠QBO =180°-∠A -∠O =180°-28°-100°=52°.即∠QBO 应等于52°才能确保BQ 与AP 在同一条直线上22.(8分)如图,AB ∥CD,直线EF 与AB,CD 分别相交于点E,F,EP 平分∠AEF ,FP 平分∠EFC.(1)求证:△EPF 是直角三角形;(2)若∠PEF=30°,求∠PFC 的度数.解:(1)∵AB∥CD ,∴∠AEF +∠CFE =180°,∵EP 平分∠AEF ,FP 平分∠EFC ,∴∠AEP =∠FEP ,∠CFP =∠EFP ,∴∠PEF +∠PFE =12×180°=90°.∴∠EPF =180°-90°=90°,即△EPF 是直角三角形 (2)60°23.(8分)如图,在△ABC 中,∠B =26°,∠C =70°,AD 平分∠BAC ,AE ⊥BC 于点E,EF ⊥AD 于点F.(1)求∠DAC 的度数;(2)求∠DEF 的度数.解:(1)∵在△ABC 中,∠B =26°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-26°-70°=84°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =12×84°=42° (2)在△ACE 中,∠CAE =90°-∠C =90°-70°=20°,∴∠DAE =∠DAC -∠CAE =42°-20°=22°.∵∠DEF +∠AEF =∠AEF +∠DAE =90°,∴∠DEF =∠DAE =22°24.(8分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D.(1)求证:∠ACD=∠B;(2)若AF 平分∠CAB 且分别交CD,BC 于点E,F,求证:∠CEF=∠CFE.解:(1)∵∠ACB =90°,∴∠ACD +∠DCB =90°,又∵CD⊥AB 于点D ,∴∠DCB +∠B =90°,∴∠ACD =∠B (2)在△ACE 中,∠CEF =∠CAF +∠ACD ,在△AFB 中,∠CFE =∠B +∠FAB ,∵AF 平分∠CAB ,∴∠CAE =∠FAB ,∴∠CEF =∠CFE25.(10分)取一副三角板按图①拼接,固定三角板ADC,将三角板ABC 绕点A 按顺时针方向旋转得到△ABC′,如图②所示.设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC ′+∠CAC′+∠BDC 的度数是否变化,若变化 ,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°,又∴∠C =30°,∴∠BAC=∠C,∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.如图,连接CC′,∵∠DBC′+∠BDC=∠DCC′+∠BC′C,又∠CAC′+∠ACC′+∠AC′C=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°,∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=180°-45°-30°=105°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D D D D D C B
A C
C
C C B B B
B A A A
A A
第8题图
C A 新人教版八年级数学上册第十一章三角形测试题
(时限:100分钟 总分:100分)
一、选择题:将下列各题正确答案的代号的选项填在下表中。
(每小题2分,共24分。
)
1.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A. 360° B. 180° C. 255° D. 145°
2.若三条线段中a =3,b =5,c 为奇数,
那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定
3.有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm , 从中选三条构成三角形,其中正确的选法有( A. 1种 B. 2种 C. 3种 D. 4种
4.能把一个三角形分成两个面积相等的三角形是三角形的( )
A. 中线
B. 高线
C. 角平分线
D. 以上都不对
5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定
6.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )
7.下列图形中具有稳定性的是( )
A. 直角三角形
B. 正方形
C. 长方形
D. 平行四边形 8.如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点,且DE ∥
BC ,则∠AED 的度数是( )
A.40°
B.60°
C.80° 9.已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( A. 130° B. 60° C. 130°或50°
D. 60°或120 10.若从一多边形的一个顶点出发,最多可引10条对角线,
则它是( )
A.十三边形
B.十二边形
C.十一边形
D.十边形
(1)第11题图
A/
第16题图
D
C
B
A
11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板
的一条直角边重合,则∠1的度数为()
A.45°
B.60°
C.75°
12.用三个不同的正多边形能够铺满地面的是()
A. 正三角形、正方形、正五边形
B. 正三角形、正方形、正六边形
C. 正三角形、正方形、正七边形
D. 正三角形、正方形、正八边形
二、填空题:(本大题共8小题,每小题3分,共24分。
)
13.三角形的内角和是,n边形的外角和是.
14.已知三角形三边分别为1,x,5,则整数x=.
15.一个三角形的周长为81cm,三边长的比为2︰3︰4,则最长边比最短边长 .
16.如图,Rt ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上
的A/处,折痕为CD,则∠A/DB=
17.在△ABC中,若∠A︰∠B︰∠C=1︰2︰3,
则∠A=,∠B=,∠C= .
18.从n(n>3)边形的一个顶点出发可引条对角线,
它们将n边形分为个三角形.
19.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数
是,这个外角的度数是 .
20.用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案:
⑴第四个图案中有白色地板砖块;
⑵第n个图案中有白色地板砖块.
(3)
(2)
C F
E
D
B A
D
21题图C B
A 22题1()O
D C B
A O 22题2()E
D C B A
22题3()
C E
D B A 22题4()65432122题5()765432
1三、解答题:(本大题共52分)
21.(本小题5分)若a ,b ,c 分别为三角形的三边,化简 : 错误!未找到引用源。
.
22.(本小题5分)如图所示,图中共有多少个三角形?请写出这些三角形并指出所有以
E 为顶点的角.
23.(本小题5分)证明:三角形三个内角的和等于180°.
已知:△ABC (如图).
求证:∠A +∠B +∠C =180°.
24.(本小题8分)如图22(1)所示,称“对顶三角形”,其中,∠A +∠B =∠C +∠D , 利用这个结论,完成下列填空.
① 如图22题(2),∠A +∠B +∠C +∠D +∠E = .
② 如图22题(3),∠A +∠B +∠C +∠D +∠E = .
③ 如图22题(4),∠1+∠2+∠3+∠4+∠5+∠6= . ④ 如图22题(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7= .
25.(本小题5分)如图所示,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,
23题图
E D C B
A
25题图
E D C B A
A 第26题图
E D C B A 已知AB =6,AD =5,BC =4,求CE 的长.
26.(本小题6分)如图,四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC. ⑴.如果∠B +∠C =120°,则∠AED 的度数= .(直接写出结果) ⑵.根据⑴的结论,猜想∠B +∠C 与∠AED 之间的关系,并说明理由.
27.(本小题6分)如图所示,∠ACD 是△ABC 的外角,∠A =40°,BE 平分∠ABC ,
CE 平分∠ACD ,且BE 、CE 交于点E.求∠E 的度数.
28.(本小题6分)BD 、CD 分别是△ABC 的两个外角∠CBE 、∠BCF
的平分线,
求证:∠BDC=90°-错误!未找到引用源。
∠A.
29.(本小题6分)如图,在直角坐标系中,点A、B分别在射线OX、OY上移动,BE是
∠ABY的角平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB 的大小是否发生变化?如果保持不变,请给出证明.
参考答案:
一、1.C;2.B;3.A;4.A;5.C;6.B;7.A;8.B;9.C;10.A;11. ;12.B;
二、13.180°、360°;14. 5;15. 18cm;16. 10°;17. 30°、60°、90°;
18.(n-3)、(n-2);19. 15、60°;20. ①18、②4n+2;
三、21.-a+b+3c;22.略;23.略;24.略;25.CE=错误!未找到引用源。
;
26. 略, 27. 20°;28.略; 29.略。