几个ansys流固耦合的例子

合集下载

4-ANSYS流固耦合应用案例

4-ANSYS流固耦合应用案例
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置
3.
点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
设置求解器控制 1. 点击Solver Control 2. 应用以下设置
3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
设置输出控制 1. 点击Output Control 2. 点击 Trn Results 键 3. 创建一个瞬态结果,用默认的文件名 4. 对 Transient Results 1应用以下设置
通过 ANSYS CFX-Post 观察结果
创建动画 1. 去除 Contour 1复选框选择 2. 显示 Sym2 3. 对 Sym2应用以下设置
4. 5.
点击Apply 创建一个矢量图,设置Locations为Sym1,设置Variable 为 Velocity,设置Colour 为 Constant 并为黑色 ,点击 Apply
8.
点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
输出求解器文件(.def) 1. 点击Write Solver File 2. 如果 Physics Validation Summary 对话框出现,点击 Yes 以继续 3. 应用以下设置
4. 5. 6.

ANSYS流固耦合

ANSYS流固耦合
ANSYS流固耦合分析示例 流固耦合分析示例
教程大纲
在这个教程中您将学到:
– – – – 移动网格 流体-固体相互作用模拟 运用ANSYS-MultiField模拟 同时处理两个结果文件
问题概述
在这个教程中,运用一个简单的摆动板例题来解释 怎样建立以及模拟流体-结构相互作用的问题。其 中流体模拟在ANSYS CFX求解器中运行,而用 ANSYS软件包中的FEA来模拟固体问题。模拟流固 相互作用的整个过程中需要两个求解器的耦合运 行,ANSYS-MultiField求解器提供了耦合求解的平 台。
4. 点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建域:为了使ANSYS Solver能够把网格变形信息传递给 CFX Solver,在CFX中必须激活网格移动。 1. 重命名Default Domain为OscillatingPlate,并打开进行编 辑 2. 应用以下设置
8.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
输出求解器文件(.def) 1. 点击Write Solver File 2. 如果 Physics Validation Summary 对话框出现,点击 Yes 以继续 3. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建边界条件 • 流体外部边界
1. 2. 创建一个新边界条件,命名为Interface. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。

在设计热沉时,流体流动和热传导是两个重要的物理过程。

Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。

在这个案例中,我们考虑了一个由铝合金制成的热沉。

热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。

通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。

2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。

通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。

3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。

通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。

通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。

我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。

2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。

在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。

Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。

在这个案例中,我们考虑了一个三叶式风力发电机叶片。

叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。

通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。

2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例流固耦合是指流体和固体之间相互作用的一种现象,也是工程实际中经常遇到的一种情况。

在ANSYS软件中,可以通过流固耦合分析来模拟和研究这种相互作用。

下面列举了10个符合要求的ANSYS 流固耦合案例。

1. 水流对桥梁的冲击分析:通过ANSYS流固耦合分析,研究水流对桥梁结构的冲击力和应力分布情况,以评估桥梁的稳定性。

2. 水下管道的流固耦合分析:通过ANSYS软件中的流固耦合模块,模拟水下管道在水流作用下的应力和变形情况,以确定管道的安全性能。

3. 水泵的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟水泵在工作状态下的流体流动和叶轮的应力分布,以优化水泵的设计。

4. 风力发电机叶片的流固耦合分析:通过ANSYS流固耦合分析,研究风力发电机叶片在风力作用下的变形和应力分布情况,以提高叶片的性能和可靠性。

5. 汽车底盘的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟汽车底盘在行驶过程中的气动力和振动响应,以改善车辆的稳定性和乘坐舒适性。

6. 船舶结构的流固耦合分析:通过ANSYS流固耦合分析,研究船舶结构在船体运动和海洋波浪作用下的应力和变形情况,以提高船舶的稳定性和安全性。

7. 石油钻井过程中的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟石油钻井过程中的井筒流体流动和井壁的应力分布,以优化钻井工艺和提高钻井效率。

8. 液压缸的流固耦合分析:通过ANSYS流固耦合分析,研究液压缸在工作过程中的液体流动和缸体的应力分布情况,以提高液压缸的性能和可靠性。

9. 燃烧室的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟燃烧室内燃烧过程中的流体流动和壁面的热应力分布,以改善燃烧室的燃烧效率和寿命。

10. 水轮机的流固耦合分析:通过ANSYS流固耦合分析,研究水轮机叶片在水流作用下的变形和应力分布情况,以提高水轮机的转换效率和可靠性。

以上是符合要求的10个ANSYS流固耦合分析案例,这些案例涵盖了不同领域和不同类型的流固耦合问题,可以帮助工程师和设计师更好地理解和解决实际工程中的流固耦合问题。

ANSYS流固耦合分析实例

ANSYS流固耦合分析实例
(Time) 4. 在整个视窗的右底边Tabular Data面板,在表中相对应于时间
为0 [s]设置压力为100 [pa] 5. 表中需要继续输入两排参数,100 [pa]对应于0.499 [s], 0 [pa]
对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField 并不运行,因此用求解器按钮并不能得到结果 1. 然 而 , 在 目 录 树 中 的 高 亮 Solution 中 , 选 择 Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面板, 存储Project
固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑 条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
2. 用旋转键 旋转几何模型,以便可以看见模型底面(low-y), 然后选择 并点击底面(low-y)
3. 在Details窗口,选择Geometry,然后点击No Selection使Apply 按钮出现(如果需要)。点击Apply以设置固支。
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置

【达尔整理】ANSYS流固耦合分析实例命令流

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。

ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。

在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。

即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。

ANSYS CD中包含有MpCCI库和一个相关实例。

关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。

ANSYS12流固耦合的操作实例

ANSYS12流固耦合的操作实例

流固耦合FSI分析分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。

流体网格:流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。

网格导出:CFX可以很好的支持Fluent的.cas格式。

直接导出这个格式即可。

流体的其余设置都在CFX-PRE中设置。

固体网格即设置:HyperMesh9.0划分固体网格。

设置边界条件,载荷选项,求解控制,导出.cdb文件。

实例练习:以CFX12实例CFX tutorial 23作为练习。

为节省时间,将计算时间缩短为2s。

网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。

分别导出为fluent的.cas格式和ansys的cdb格式。

流体网格如下:网格文件见:fluid.cas固体网格为:特别注意:做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1的set,以方便在.cdb中手动添加命令SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。

另一个set:pressure用于施加压强。

这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件详细.cdb文件请参看plate.cdb将固体部分在ansys中计算一下,以确定没有问题。

通过ansys计算检查最大位移:最上面的点x向变形曲线至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。

以下在CFX-PRE中进行设置由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。

启动workbench,拖动fluid flow(CFX)到工作区直接双击setup进入CFX-PRE 导入流体网格然后设置分析选项:注意:mechanical input file即是固体部分网格。

基于Ansys12.0的Workbench血管流固耦合例子

基于Ansys12.0的Workbench血管流固耦合例子

承蒙“水若无痕”版主信任,我把我做过的血管流固耦合以小火车的形式发出来,与大家共同讨论学习。

首先概述一下:1:血管建的比较短,这样单元会少些,调试比较方便,但效果可能没官方视频的好看,但原理步骤没错就行2:原来流体为自己建的Blood,为可压缩流体,我自己试了下,用Water也可以,所以就简化了建新材料这一步3:我用的是Ansys12.0版本,我建的模型保存成多种格式,欢迎大家下载做着玩玩2009-12-14 13:07:11 上传下载附件(36.54 KB)geometry.rar(31.03 KB, 下载次数: 1275)A:首先打开Ansys Workbench 拖出各个模块,连接关系如下图:2009-12-14 14:16:45 上传B:可双击Engineering Data编辑材料,因为进入Ansys结构部分设置时候要用到血管材料,默认是结构钢,太硬了,所以要自己重新设材料,这点很重要!C:单击我画的第一个大圈(左列),右击我画的第二个大圈(左列)——Duplicate,复制一个同种材料。

在复制的材料后面框里有链接,这个链接是链接到材料库的,右键把链接打断,我是这么做的。

如果双击Engineering Data看不到我图中的界面的话,可以在主菜单中——View——Properties以及接下来的两个选项给选上就可以看见了。

改好材料后可以把对新材料重命名,用右键。

然后再主菜单上点击update project,材料就可以在材料设置里用了。

D:更改密度,杨氏模量,和泊松比。

重命名。

上一步给出了怎么保存修改结果E:这个是Ansys model部分,这里是不需要用到流体部分的,不需要删掉,只要右键对它Suppress就可以了。

单击Pipe,可以在下面设置材料:对血管加约束,可以把两端完全约束,对称面部分在垂直面内不可运动,也可以所有平面部分都完全约束,这个没关系,都可以计算。

G:右键插入流固耦合面,当然就是流体固体接触面了本帖最后由panxu09 于2009-12-14 14:02 编辑H:注意还要给出要Ansys求解什么量,我这里给出了要求Von mises和全部变形,然后要保存*.inp文件,这个就是进行流固耦合的Ansys部分求解文件,保存时如果Tools菜单下保存按钮不可用可以点一下下面的——solution,当然做这个之前保证各部分设好了:1)只有血管壁模型有效;2)划分网格,这个网格与流体部分是独立的,没有形状要求;3)施加约束;4)定义流固耦合面;5)设置Ansys求解项;最后保存就好了I:打开CFX,由于是在Workbench下运行的,所以模型都是直接自动导入的(不包括Ansys 结构文件),下图是我设置好的概图::Analysis Type的设置,看我在图中画的圈,仔细设置,一般不会有错。

ansys14workbench血管流固耦合分析实例

ansys14workbench血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。

谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。

图1 模型图2、新建工程。

在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。

先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。

图4 模型导入图5、进入FLUENT网格划分。

在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。

我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分图6 禁用血管模型6、设置网格方法。

默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。

另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。

这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例
ANSYS流固耦合是一种模拟分析技术,用于研究流体和固体之间的相互作用。

它可以在一个模拟中同时考虑流体和固体的运动和变形,从而更准确地预测系统的行为。

以下是一些ANSYS流固耦合的应用案例:
1. 水下爆炸冲击分析:在这种情况下,流固耦合分析可以用于研究水中的爆炸冲击对周围结构的影响。

通过考虑水的流动和固体结构的变形,可以更准确地预测爆炸冲击的传播路径和结构的破坏程度。

2. 风力发电机叶片设计:在风力发电机中,叶片的设计对其性能至关重要。

流固耦合分析可以用于优化叶片的形状和材料,以最大限度地提高能量转换效率。

通过考虑风的流动和叶片的变形,可以预测叶片的受力情况和振动特性。

3. 水力润滑轴承分析:在水力润滑轴承中,流体的流动对轴承的性能和寿命有重要影响。

流固耦合分析可以用于优化轴承的设计,以减少摩擦和磨损,并提高轴承的承载能力。

通过考虑流体的流动和轴承的变形,可以预测轴承的润滑性能和寿命。

4. 波浪对海洋结构物的影响分析:在海洋工程中,波浪对海洋结构物的影响是一个重要的研究领域。

流固耦合分析可以用于研究波浪对海洋平台、堤岸和海底管道等结构物的冲击和振动情况。

通过考虑波浪的流动和结构物的变形,可以预测结构物的破坏程度和安全
性能。

这些案例只是流固耦合分析的一小部分应用领域,实际上在工程和科学研究中有很多其他的应用。

ANSYS作为一种强大的模拟软件,可以帮助工程师和科学家更好地理解和优化流体和固体系统的相互作用。

基于ANSYSWorkbench的流固耦合计算研究及工程应用

基于ANSYSWorkbench的流固耦合计算研究及工程应用

基于ANSYSWorkbench的流固耦合计算研究及工程应用基于ANSYS Workbench的流固耦合计算研究及工程应用引言:随着工程技术的不断发展,流固耦合计算在众多领域得到了广泛的应用。

流固耦合计算是指流体力学和固体力学的耦合分析,用于研究流体与固体之间的相互作用和影响。

ANSYS Workbench是一款广泛使用的工程仿真软件,它提供了强大的流固耦合计算功能,被广泛应用于多个领域,如汽车工程、航空航天工程、能源领域等。

流固耦合计算的基本原理:流固耦合计算是根据连续介质力学原理进行的,可以将流体和固体看作连续介质,通过数值模拟方法求解它们之间的相互作用。

在ANSYS Workbench中,流固耦合计算通常包括以下三个步骤:网格划分、物理模型设定和求解。

第一步是网格划分,即将流体和固体分别划分成离散的网格,其中流体部分的网格通常采用流体网格生成软件生成,固体部分则使用固体网格生成软件生成。

网格划分的质量对计算结果的准确性和稳定性起着至关重要的作用。

第二步是物理模型设定,根据具体的工程问题,设定相应的流体和固体模型。

在ANSYS Workbench中,流体模型通常包括流体的黏性、密度、速度分布等参数,固体模型则包括材料的弹性模量、泊松比等参数。

在设定模型时,还需要考虑流体和固体之间的边界条件,如流体入口和出口的速度、固体边界的约束条件等。

第三步是求解,通过建立数学模型和设置计算参数,利用数值方法求解流体和固体的相互作用。

用户可以根据需要选择求解器和求解方法,ANSYS Workbench提供了多个求解器选项,例如基于有限元的求解器和基于有限体积的求解器。

求解过程中,可以监控计算结果的收敛情况,将其与实际情况进行比较,以验证模拟结果的准确性和可靠性。

工程应用实例:基于ANSYS Workbench的流固耦合计算在许多工程领域都有广泛的应用。

以下以汽车空气动力学为例进行说明。

在汽车设计中,空气动力学是一个非常重要的研究方向。

ansys workbench的管道热流固耦合案例例子

ansys workbench的管道热流固耦合案例例子
图 25 结构静力学计算中导入温度 图 26 温度对管道造成的应力
图 27 温度导致管道的变形
图 1 管道结构示意图 二、设计思路
几何模型建立 流体域网格划分 Fluent 计算 温度加载 稳态热分析 温度加载 热应力分析 三、模型建立 在 workbench 的工具箱中拖拽 Fluid Flow(Fluent)、Steady-State Thermal 和 Static Structural 模块进入工作界面中,数据传送关系如图 2 所示。
图 2 数据传送关系
在 SolidWorks 中 建 立 相 应 模 型 , 并 转 化 成 ansys 适 用 的 x_t 格 式 。 双 击 A2 打 开 DesignModeler,导入相应模型。
图 3 模型分别在 SolidWorks 中和在 DesignModeler 中显示
选择 Tools 工具栏下的 Fill 命令,选定管道内壁的三个面,单击 Details View 面板中的 Apply 按钮,之后单击 Generate 按钮,生成相应的流体域,并将流体域命名为 Fluid。在流体域 Fluid 中分别定义冷流入口端面,热流入口端面 1,热流入口端面为 2 为 coldinlet,hotinletone 和 hotinlettwo,定义出口端面为 outlet。
图 8 单位设置
图 9 general 面板设置
图 10 模型面板设置
图 11 材料面板设置
图 12 冷流入口流速和强度设置
图 13 冷流入口温度设置
图 12 和图 13 仅显示了冷流入口的设置,其余的入口和出口以及避免的设置与图 12 和 图 13 的设置方法相同,不在作图展示。
图 14 自动生成的接触面

ANSYS流固耦合计算实例

ANSYS流固耦合计算实例

ANSYS流固耦合计算实例Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:,Features,Overview of the Problem to Solve,Setting up the Solid Physics in Simulation (ANSYS Workbench),Setting up the Fluid Physics and ANSYS Multi-field Settings inANSYS CFX-Pre,Obtaining a Solution using ANSYS CFX-Solver Manager,Viewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is importantto review the following topicsbefore beginning:,Setting the Working Directory,Changing the Display ColorsUnless you plan on running a session file, you should copy thesample files used in this tutorial from the installation folder for your software (<CFXROOT>/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File・Sample files referenced by this tutorial include:,OscillatingPlate・ pre,OscillatingPlate・ agdb,OscillatingPlate・ gtm,OscillatingPlate・ inp1.FeaturesThis tutorial addresses the following features of ANSYS CFX. Component Feature DetailsUser Mode General ModeANSYS CFX-Pre TransientSimulation TypeANSYS Multi-fieldComponent Feature DetailsFluid Type General FluidDomain Type Single DomainTurbulence Model LaminarHeat Transfer NoneMonitor Points Output ControlTransient Results FileWall: Mesh Motion = ANSYS MultiFieldBoundary Details Wall: No SlipWall: AdiabaticTimestep TransientAnimationANSYS CFX-Post Plots ContourVectorIn this tutorial you will learn about:,Moving mesh,Fluid-solid interaction (including modeling solid deformation using ANSYS) ,Running an ANSYS Multi-field (MFX) simulation,Post-processing two results files simultaneous!y.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, wherethe fluid physics is solved in ANSYS CFX and thesolid physics is solved in the FEA package ANSYS. Coupling between thetwo solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for thecoupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity・ A thin plate isAn initial pressure of 100 Pa is applied to one side of the thin plate for 0.5 seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time・ The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressureand the pressure resulting from the presence of the fluid・ Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre・ If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file OscillatingPlate・ inp・ If you prefer, you can instead use the provided OscillatingPlate・ inp file and continue from Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1・ If required, launch ANSYS Workbench.2・ Click Empty Project・ The Project page appears displaying an unsaved project・3・ Select File > Save or click Save button.4・ If required, set the path location to a different folder・ The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files createdduring this tutorial, change the path・3.Under File name, type OscillatingPlate・6・ Click Save・7.Under Link to Geometry File on the left hand task bar clickBrowse・ Select the providedfile OscillatingPlate・agdb and click Open.8.Make sure that OscillatingPlate・agdb is highlighted and click New simulation from theleft-hand taskbar・Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2・ Select Solid, and in the Details view below, select Materia1.e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Materialfrom the tree view5.Enter 2・ 5e06 for Young J s Modulus, 0. 35 for Poisson's Ratio and 2550 for Density・Note that the other properties are not used for this simulation, andthat the units for thesevalues are implied by the global units in Simulation.6・ Click the Simulation tab near the top of the Workbench window toreturn to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with atimestep of 0・ 1 sand a time duration of 5 s.1・ Select New Analysis > Flexible Dynamic from the toolbar・2・ Select Analysis Settings from the tree view and in the Details viewbelow, set Auto TimeStepping to Off.3. Set Time Step to 0. 1・4.Under Tabular Data at the bottom right of the window, set EndTime to 5.0 for theSteps = 1 setting・Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX・ In this section, you will set a fixed support, a fluid-solid interface, and a pressure load・ Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place・1・ Right-click Flexible Dynamic in the tree and select Insert > Fixed Support from theshortcut menu.二2・ Rotate the geometry using the Rotate button so that the bottom (low-y) face of thewsolid is visible, then select Face and click the low-y face・That face should be highlighted to indicate selection.3. Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary)・Click Applyto set the fixed support・Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS・ Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu.2・ Using the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-xfaces) by holding down <Ctrl> to select multiple faces・ Note that this loadisautomatically given an interface number of 1・Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa. for the first 0.5 seconds of the simulation. It is defined using a step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2・ Select the low-x face for Geometry.3. In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time)・4.Under Tabular Data, set a pressure of 100 in the table row corresponding toa time of 0・[s] and [Pa., Note: The units for time and pressure in this table are the global units of respectively.5・ You now need to add two new rows to the table・ This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation willautomatically re-order the table in order of time value・ Enter a pressure of 100 for a timevalue of 0・ 499, and a pressure of 0 for a time value of 0. 5・This gives a step function for pressure that can be seen in the chart to the left of the table・ Writing the ANSYS Input FileThe Simulation settings are now complete・ An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1・ Instead, highlight Solution in the tree, select Tools > Write ANSYS Input File andchoose to write the solution setup to the file OscillatingPlate・ inp.2.The mesh is automatically generated as part of this process・ If you want to examine it,select Mesh from the tree・3・ Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself・4. Setting up the Fluid Physics and ANSYS Multi-field Settings inANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, thenrun the session file: OscillatingPlate.pre・ After you have playedthe session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager・Creating a New Simulation1.Start ANSYS CFX-Pre.2・ Select File > New Simulation.3.Select General and click OK.4・ Select File > Save Simulation As.3. Under File name, type OscillatingPlate・6・ Click Save・Importing the Mesh1・ Right-click Mesh and select Import Mesh・2.Select the provided mesh file, OscillatingPlate・gtm and click Open.Note:The file that was just created in Simulation,OscillatingPlate・ inp, will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps・ The Simulation Typetab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre sothat it knows which Fluid Solid Interfaces are available・Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is CouplingTime Duration, and similarly for the related settings Time Step and Initial Time・1.Click Simulation Type ・2.Apply the following settingsTab Setting ValueExternal Solver Coupling > Option ANSYS MultiFieldOscillatingPlate・ inpExternal Solver Coupling > ANSYS Input File[a]Coupling Time Control > Coupling Time Duration > Total 5 [sj TimeBasicCoupling Time Control > Coupling Time Steps > Option TimestepsSettingsCoupling Time Control > Coupling Time Steps > Timesteps 0・ 1 [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time DurationSimulation Type > Time Steps > Option Coupling Time StepsSimulation Type > Initial Time > Option Coupling Initial TimeLaZ This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used inANSYS CFX-Pre and the units contained within the ANSYS input file.While it is important toreview the units used in any simulation, you should be aware that, in this specific case, themessage is not crucial as it is related to temperature units and there is no heat transfer in this case・Therefore, this specific tutorial will not be affected by the physics message ・Creating the FluidA custom fluid is created with user-specified properties・ 1・ Click2・ Set the name of the new material to Fluid・ 3. Apply the followingsettingsTab Setting ValueOption Pure SubstanceBasic Settings Thermodynamic State (Selected)Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmoP-lZTab Setting ValueEquation of State > Density 1 [kg nT-3[Transport Properties > Dynamic Viscosity (Selected)Transport Properties > Dynamic Viscosity > Dynamic 0. 2 [Pa s] Viscosity4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX・1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected・ A domain named Default Domain should now appear under theSimulation branch・2.Double click Default Domain and apply the following settingsTab Setting ValueFluids List FluidGeneral Options Domain Models > Pressure > Reference Pressure 1 [atm] Domain Models > Mesh Deformation > Option Regions of MotionSpecifiedHeat Transfer > Option NoneFluid ModelsTurbulence > Option None (Laminar)3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutoria1.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process・When an ANSYS Multi-field specification is being made in ANSYS CFX~ Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created inSimulation. Since the interface number in Simulation was 1, the name in question is FSIN_1・(If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will sendback the total mesh displacement it calculates given the forces passed from CFX and the otherdefined loads・1.Create a new boundary condition named Interface・ 2・ Apply the following settingsTab Setting ValueBoundary Type Wall Basic SettingsLocation InterfaceMesh Motion > Option ANSYS MultiFieldMesh Motion > Receive From ANSYS Total Mesh DisplacementBoundary DetailsMesh Motion > ANSYS Interface FSIN_1Mesh Motion > Send to ANSYS Total Force3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with oneelement thickness in the Z direction) symmetry boundaries will be created on the low and high Z2D regions of the mesh・1・ Create a new boundary condition named Sym1・2. Apply the following settingsTab Setting ValueBoundary Type SymmetryBasic SettingsLocation Syml3.Click OK.4.Create a new boundary condition named Sym2・ 5・ Apply the following settingsTab Setting ValueBoundary Type Symmetry Basic SettingsLocation Sym26.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables・1・ Click Global Initialization ・2・ Apply the following settings:Tab Setting ValueInitial Conditions > Cartesian Velocity 0 [m s"T_ Components > UInitial Conditions > Cartesian Velocity 0 Lm s"T[ Components > V GlobalSettings Initial Conditions > Cartesian Velocity 0 Em s"T_ Components > WInitial Conditions > Static Pressure > Relative 0 [Pa. Pressure3. Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under SolverControl under the ExternalCoupling tab・ Most of these settings do not need to be changed for this simulation.Within each timestep, a series of "coupling” or 44stagger n iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent・ Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting・ In general, it is slightly more efficient to choose the solver that drives the simulation to runfirst・ In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.n1・ Click Solver Control ・2.Apply the following settings:Tab Setting ValueSecond Order Transient Scheme > Option Backward EulerConvergence Control > Minimum Number of (Selected) Basic Coefficient Loops SettingsConvergence Control > Minimum Number of [a]2 Coefficient Loops > Min. Coeff・LoopsConvergence Control > Max・ Coeff・ Loops 3External Coupling Step Control > Solution Sequence Before CFX FieldsCoupling Control > Solve ANSYS FieldsTab Setting Value[aZ This setting is options1. The default value of 1 is also acceptable・ 3・Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals・•用1・ Click Output Control ・2・ On the Trn Results tab, create a new transient result with the default name・3・ Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, Velocity[aZOutput Frequency > Option Every Coupling Step[aZ This setting writes a transient results file every multi-field timestep・4・ Click the Monitor tab・5・ Select Monitor Options・6.Under Monitor Points and Expressions:□7.Click Add new item and accept the default name・ 8. Set Option to Cartesian Coordinates・ 9. Set Output Variables List to Total MeshDisplacement X・ 10. Set Cartesian Coordinates to L0, 1, 0]・11. Click OK.Writing the Solver (・ def) File%1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed ・ 3・ Apply the following settingsSetting ValueFile name OscillatingPlate・def[a]Quit CFX - Pre (Selected)[aZ If using ANSYS CFX-Pre in Standalone Mode・4.Ensure Start Solver Manager is selected and click Save・5・ If you are notified the file already exists, click Overwrite・6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there・7.Quit ANSYS CFX-Pre, saving the simulation (・cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and conimunicating with each other・ ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both・1・ Ensure the Define Run dialog box is displayed・There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2・ On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved filesaround)・3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the vllO/ansysdirectory.4・ Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commandsfor ANSYS, and then the ANSYS Solver is started・ The CFX Solver is then startedin such a way that it knows how to communicate with the ANSYS Solver・After the run is under way, two new plots appear in ANSYS CFX-Solver Manager: ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed・ It shows convergence of the ANSYS Solver・ Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable・ For convergence, theL2 Norm should be below the criteria・ The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations・ Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges・ Youwill usually see a somewhat "spiky” plot, as each quantity will be unconverge d at the start of each timestep, and then convergence will improve・ANSYS Interface Loads (Structural) This plot shows the convergence for eachquantitythat is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY)・ Since the analysis is 2D, FZ and UZ are not exchanged・ Each quantity is converged when the plot shows a negative value・ The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep・ Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep・The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab・Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses・1・ Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up adialog boxto tell you this, click Yes to post-process the results・3.If using Standalone Mode, quit ANSYS CFX-Solver Manager・6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from afinished run in ANSYS CFX-Solver Manager・Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains・ The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation 一see the Simulation product documentation for more details・ Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options andusing the Pre-calculate variable global ranges setting under CFX- Post > Files)・ When theglobal range is first used for plotting a variable, it is calculated as the range within the current timestep・ As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range・1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2・ Right-click a blank area in the viewer and select Predefined Camera > ViewTowards一Z・ Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:Tab Setting ValueMode Variable ColorVariable Von Mises Stress4.Click Apply.5・ Select Tools > Timestep Selector from the task bar to open the Timestep Selectordialog box・ Notice that a separate list of timesteps is available for each results file loaded,although for this case the lists are the same・ By default, SyncCases is set to By TimeValue which means that each time you change the timestep for one results file, ANSYSCFX-Post will automatically load the results corresponding to the same time value for allother results files・6. Set Match to Nearest Available・7・ Change to a time value of 1 [sj and click Apply.The corresponding transient results are loaded and you can see the mesh movein both the CFX and ANSYS regions・1・ Clear the visibility check box of Boundary ANSYS・2・ Create a contour plot, set Locations to Boundary ANSYS and Sym2, and setVariable toTotal Mesh Displacement・ Click Apply.3・ Using the timestep selector, load time value 1・ 1 [s] (which is where the maximum totalmesh displacement occurs)・This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions・Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult・ ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements・Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions・1・ Using the timestep selector, load time value 0・ 1 [s] (which has a much smaller meshdisplacement than the currently loaded timestep)・2.Place the mouse over somewhere in the viewer where the background color is showing・Right-click and select Deformation > Auto. Notice that the mesh displacements are nowexaggerated・ The Auto setting is calculated to make the largest mesh displacement afixed percentage of the domain size・3.To return the deformations to their true scale, right-click and selectDeformation > TrueScale.Creating an Animation1. Using the Timestep Selector dialog box, ensure the time value of 0.1 [s] is loaded・2・ Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2・4.Apply the following settings to Sym2・Tab Setting ValueMode Variable ColorVariable Pressureset to Velocity ・ Setcheck box of Boundary ANSYS, and set Color to a constant blue, ffl8. Click Animation ・9. Select Keyframe Animation.10. In the Animation dialog box :□ a. Click New to create KeyframeNol.b ・ Highlight KeyframeNol, then change # of Frames to 48・c. Load the last timestep (50) using the timestep selector.d. Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at the default value.e. Select Save MPEG.f ・ Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file. 5・ Click Apply.6. Create a vector plot,set Locations to Syml and leave VariableColor to be Constant andchoose black ・ Click Apply.7. Select the visibilityThe Animation dialog box appears.。

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:FeaturesOverview of the Problem to SolveSetting up the Solid Physics in Simulation (ANSYS Workbench)Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreObtaining a Solution using ANSYS CFX-Solver ManagerViewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:Setting the Working DirectoryChanging the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:Moving meshFluid-solid interaction (including modeling solid deformation using ANSYS)Running an ANSYS Multi-field (MFX) simulationPost-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation. The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file . If you prefer, you can instead use the provided file and continue from Setting up theFluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile and click Open.8.Make sure that is highlighted and click New simulation from the left-hand taskbar. Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter for Young's Modulus, for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to .4.Under Tabular Data at the bottom right of the window, set End Time to for the Steps= 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first seconds of the simulation. It is defined usinga step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of , and a pressure of 0 for a time value of .This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input File The Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file .2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre. Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: . After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, and click Open.Note:The file that was just created in Simulation, , will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiFieldExternal Solver Coupling > ANSYS Input File[]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value [] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[][] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile nameQuit CFX–Pre[](Selected)[] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such away that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the timestep selector, load time value [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the timestep selector, load time value [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animation/doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the Timestep Selector dialog box, ensure the time value of [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at the default value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from which ANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not be created yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of the Animation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since a timestep must be loaded and objects must be created for each frame. To view the MPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。

ansys应用-流固耦合

ansys应用-流固耦合
具体步骤:
1. 打开 AWB,由于要做 FSI 双向流固耦合,所以先在框架中建立瞬态结构场, 如图 3 所示:(如果是单向流固耦合,可以直接使用 FSI 模块,丌过里面的结 构场是稳态结构场)
图3 2. 在 setup 处单击鼠标右键,弹出如图 4 的对话框,本例中按照图 2 选择,添
加流体计算的 CFX 部分:
1、Design Simulation 中定义好结构分析中的材料、网格、约束及流体边界。 2、写出 INP 格式的 ANSYS 结构文件。 3、CFX 中在 Simulation Type 中设置好 External Solver Coupling 为 ANSYS MultiField,并将第 2 步中写出的 INP 格式的 ANSYS 结构文件选中设为 ANSYS 文件。
图1 b.利用 ANSYS 中的 Read input from 命令读入结果载荷。
二 、 实 现 双 向 流 固 耦 合 的 方 法 主 要 有 三 种 : CFX+Design Simulation(AWB) 、 CFX+ANSYS Classic 和 MFX+ANSYS Classic+CFX。 (1)、CFX+Design Simulation(AWB)方法流程:
(2)、CFX+ANSYS Classic 方法流程:
1、ANSYS Classic 中定义好结构分析中的材料、网格、约束及流体边界。 2、设置好 MFX 中的不 CFX 相联的系列条件,如载荷时间步及求解类型和步数 等等。 3、在 MFX 下的利用 write input 写出 ANSYS 的流固耦合文件(dat 格式)。 4、同方式一中的第 3 步,丌同就是将 CFX 中联结的 ANSYS 文件转为第 3 步写 出的 DAT 文件。 5、同方式一中的 4 至 6 步。注意的是 CFX 中的单位要不 ANSYS Classic 默认 的单位保持一致,ANSYS 不 CFX 中默认的耦合条件基本一样,只是在 CFX 中 默认为先求解 CFX,而 ANSYS 中默认为先求解 ANSYS,所以此处要注意保持 一致。

ansys耦合仿真成功案例

ansys耦合仿真成功案例

ansys耦合仿真成功案例ANSYS耦合仿真是一种将不同物理场耦合在一起进行综合分析的方法,可以用于模拟多种产品的性能和行为。

下面列举了10个成功的ANSYS耦合仿真案例,展示了其在不同领域的应用。

1. 汽车碰撞仿真在汽车碰撞仿真中,ANSYS耦合仿真可以将结构力学、流体动力学和热传导等物理场耦合在一起,模拟汽车碰撞过程中的变形、应力、温度等。

通过分析碰撞后的车辆变形情况和乘员受力情况,可以优化车辆结构设计,提高安全性能。

2. 电子设备散热仿真对于高性能电子设备,散热是一个重要的问题。

ANSYS耦合仿真可以将流体动力学和热传导耦合在一起,模拟设备内部的热传导和外部的空气流动。

通过优化散热设计,可以提高设备的散热效果,降低温度,提高性能和可靠性。

3. 风力发电机叶片仿真风力发电机叶片在风场中工作时受到复杂的力学和流体动力学作用。

ANSYS耦合仿真可以将结构力学和流体动力学耦合在一起,模拟叶片受力和气动性能。

通过优化叶片的结构和形状,可以提高风力发电机的转换效率和可靠性。

4. 高速列车运动仿真高速列车在高速运动时会受到空气动力学、结构力学和电磁场等多个物理场的耦合作用。

ANSYS耦合仿真可以模拟高速列车在不同速度下的空气动力学和车体振动情况,进一步优化列车设计,提高运行安全性和乘客舒适性。

5. 电池系统热耦合仿真电池系统在充放电过程中会产生大量热量,需要进行有效的热管理。

ANSYS耦合仿真可以将热传导和流体动力学耦合在一起,模拟电池内部的温度分布和热量传递。

通过优化散热设计和控制策略,可以提高电池系统的安全性和寿命。

6. 油气管道腐蚀仿真油气管道在使用过程中容易受到腐蚀的影响,会导致泄漏和事故发生。

ANSYS耦合仿真可以将结构力学和化学反应耦合在一起,模拟管道内部的应力和腐蚀过程。

通过优化材料选择和防腐措施,可以延长管道的使用寿命并减少安全风险。

7. 水力涡轮发电机仿真水力涡轮发电机在水流作用下转动产生电能,其性能直接影响发电效率。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例
1. Ansys流固耦合是一种将流体和固体结构相互耦合的分析方法,可以用于模拟和研究各种流体和固体结构的相互作用。

2. 在汽车工程中,Ansys流固耦合可以用于模拟汽车车身在行驶过程中的空气动力学特性,以及车身和悬挂系统之间的相互作用。

3. 在航空航天工程中,Ansys流固耦合可以用于模拟飞机机翼在高速飞行过程中的气动力特性,以及机翼和飞机结构之间的相互作用。

4. 在建筑工程中,Ansys流固耦合可以用于模拟建筑物在强风或地震等自然灾害下的响应,以及结构和周围环境之间的相互作用。

5. 在能源工程中,Ansys流固耦合可以用于模拟并优化风力发电机的风叶设计,以及风叶和发电机结构之间的相互作用。

6. 在生物医学工程中,Ansys流固耦合可以用于模拟人体血液在血管中的流动,以及血液和血管壁之间的相互作用。

7. 在石油工程中,Ansys流固耦合可以用于模拟油井中的油气流动,以及油井壁和地层之间的相互作用。

8. 在电子器件设计中,Ansys流固耦合可以用于模拟电路板上的散热问题,以及电路板和散热器之间的相互作用。

9. 在船舶工程中,Ansys流固耦合可以用于模拟船舶在水中的运动,以及船体和水流之间的相互作用。

10. 在化工工程中,Ansys流固耦合可以用于模拟化工设备中的流体流动,以及设备结构和流体之间的相互作用。

Ansys流固耦合在各个工程领域都有广泛的应用,可以用于模拟和
研究不同系统中流体和固体结构的相互作用。

这种分析方法可以帮助工程师更好地理解和优化系统的性能,提高工程设计的效率和可靠性。

几个耦合的例子

几个耦合的例子

一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。

在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。

即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。

ANSYS CD中包含有MpCCI库和一个相关实例。

关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合的例子length=2width=3height=2/prep7et,1,63et,2,30 !选用FLUID30单元,用于流固耦合问题r,1,0.01mp,ex,1,2e11mp,nuxy,1,0.3mp,dens,1,7800mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水mp,sonc,2,1400mp,mu,0,!block,,length,,width,,heightesize,0.5mshkey,1!type,1mat,1real,1asel,u,loc,y,widthamesh,allalls!type,2mat,2vmesh,allfini/soluantype,2modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,frontmxpand,10,,,1nsel,s,loc,x,nsel,a,loc,x,lengthnsel,r,loc,yd,all,,,,,,ux,uy,uz,nsel,s,loc,y,width,d,all,pres,0allsasel,u,loc,y,width,sfa,all,,fsi !定义流固耦合界面allssolvfini/post1set,firstplnsol,u,sum,2,1fini再给大家一个实例!考虑结构在水中的自振频率:例子是一加筋板在水中的模态分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。

在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。

即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。

ANSYS CD中包含有MpCCI库和一个相关实例。

关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合的例子length=2width=3height=2/prep7et,1,63et,2,30 !选用FLUID30单元,用于流固耦合问题r,1,0.01mp,ex,1,2e11mp,nuxy,1,0.3mp,dens,1,7800mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水mp,sonc,2,1400mp,mu,0,!block,,length,,width,,heightesize,0.5mshkey,1!type,1mat,1real,1asel,u,loc,y,widthamesh,allalls!type,2mat,2vmesh,allfini/soluantype,2modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,frontmxpand,10,,,1nsel,s,loc,x,nsel,a,loc,x,lengthnsel,r,loc,yd,all,,,,,,ux,uy,uz,nsel,s,loc,y,width,d,all,pres,0allsasel,u,loc,y,width,sfa,all,,fsi !定义流固耦合界面allssolvfini/post1set,firstplnsol,u,sum,2,1fini再给大家一个实例!考虑结构在水中的自振频率:例子是一加筋板在水中的模态分析。

命令流如下:FINISH/CLEAR/FILENAME,plane/UNITS,SI/TITLE,plane/PREP7!*********ELEMENT DEFINE********ET,63,63ET,4,beam4et,30,fluid30!****MATERIAL DEFINE*********MP,EX,1,2.10E11MP,DENS,1,7850MP,NUXY,1,0.3mp,dens,30,1025mp,sonc,30,1500mp,mu,30,0.5!*******REAL CONSTANT***********r,30,1e-06r,50,0.05r,75,0.375e-02,0.78125e-06,0.000016406k,1k,4,1kfill,1,4,2,,1kgen,4,1,4,1,,1/3,,10a,1,2,12,11*do,i,0,2*do,j,0,2*10,10a,1+i+j,2+i+j,12+i+j,11+i+j*enddo*enddo!***************************fluid element****************k,100,-14.5,-14.5k,101,-14.5,15.5k,102,15.5,15.5k,103,15.5,-14.5k,140,-14.5,-14.5,30k,141,-14.5,15.5,30k,142,15.5,15.5,30k,143,15.5,-14.5,30a,100,101,102,103,4,14,24,34,33,32,31,21,11,1a,1,2,3,4,103,100a,140,141,142,143a,100,101,141,140a,101,102,142,141a,142,143,103,102a,140,143,103,100a,14,24,34,33,32,31,21,11,1,2,3,4asel,u,,,1,FLST,2,8,5,ORDE,FITEM,2,FITEM,2,V A,nummrg,allallsMSHKEY,0 MSHAPE,0esize,1lsel,s,loc,y,1/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,y,2/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,1/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,2/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,allasel,s,,,1,9aatt,1,50,63amesh,allallsMSHAPE,1,3desize,3vsel,s,,,1type,30 $mat,30 $real,30 vmesh,allallsFINISH/solualls!**** 求解***********!********************* ANTYPE,MODAL MODOPT,lanb,25,0 SOLVEFINISH总是出现error 说矩阵不对称,不可以用lanb计算。

总结:流体单元不能用对称的解法应该采用非对称解法。

例子是一圆环在水中的模态分析。

命令流如下:finish/clear/PREP7!定义单元类型ET,1,PLANE42 ! structural elementET,2,FLUID29 ! acoustic fluid element with ux & uyET,3,129 ! acoustic infinite line elementr,3,0.31242,0,0ET,4,FLUID29,,1,0 ! acoustic fluid element without ux & uy !材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0MP,DENS,2,1030MP,SONC,2,1460! 创建四分之一模型CYL4,0,0,0.254,0,0.26035,90CYL4,0,0,0.26035,0,0.31242,90! 选择属性,网格划分ASEL,S,AREA,,1AA TT,1,1,1,0LESIZE,1,,,16,1LESIZE,3,,,16,1LESIZE,2,,,1,1LESIZE,4,,,1,1MSHKEY,1MSHAPE,0,2D ! mapped quad meshAMESH,1ASEL,S,AREA,,2AA TT,2,1,2,0LESIZE,5,,,16,1LESIZE,7,,,16,1LESIZE,6,,,5LESIZE,8,,,5MSHKEY,0MSHAPE,0,2D ! mapped quad meshAMESH,2! 关于Y轴镜像nsym,x,1000,all ! offset node number by 1000 esym,,1000,all! 关于y轴镜像nsym,y,2000,all ! offset node number by 2000 esym,,2000,allNUMMRG,ALL ! merge all quantitiesesel,s,type,,1nsle,sesln,s,0nsle,sesel,invensle,semodif,all,type,4esel,allnsel,all! 指定无限吸收边界csys,1nsel,s,loc,x,0.31242type,3real,3mat,2esurfesel,allnsel,all! 标识流固交接面nsel,s,loc,x,0.26035esel,s,type,,2sf,all,fsi,1nsel,allesel,allFINISH/soluantype,modalmodopt,damp,10mxpand,10,,,yessolvefinish为了便于对比,也对圆环在空气中做了模态分析finish/clear/PREP7!定义单元类型ET,1,PLANE42 ! structural element!材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0! 创建四分之一模型CYL4,0,0,0.254,0,0.26035,90! 选择属性,网格划分ASEL,S,AREA,,1AA TT,1,1,1,0LESIZE,1,,,16,1LESIZE,3,,,16,1LESIZE,2,,,1,1LESIZE,4,,,1,1MSHKEY,1MSHAPE,0,2D ! mapped quad meshAMESH,1! 关于Y轴镜像nsym,x,1000,all ! offset node number by 1000esym,,1000,all! 关于y轴镜像nsym,y,2000,all ! offset node number by 2000esym,,2000,allNUMMRG,ALL/soluantype,modalmodopt,lanb,10mxpand,10,,,yessolvefinish在水中的自振频率为SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE 1-0.19544E-10 1 1 12 0.29640E-03 1 1 13-0.21663E-10 1 2 24-0.29640E-03 1 2 25 0.30870E-03 1 3 36 0.0000 1 3 37-0.30870E-03 1 4 48 0.0000 1 4 49-0.53726E-03 1 5 510 0.57522E-11 1 5 511 0.53726E-03 1 6 612-0.89057E-11 1 6 613 0.98059E-01 1 7 714 35.232 1 7 715 0.98059E-01 1 8 816 -35.232 1 8 817 0.98061E-01 1 9 918 35.233 1 9 919 0.98061E-01 1 10 1020 -35.233 1 10 10在空气中的自振频率为SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 0.0000 1 1 12 0.0000 1 2 23 0.73609E-03 1 3 34 60.805 1 4 45 60.805 1 5 56 172.97 1 6 67 172.97 1 7 78 334.40 1 8 89 334.40 1 9 910 546.59 1 10 10主要有以下疑问:1)考虑流固耦合,做模态分析时流体单元是否只能用fluid29(2d)和fluid30(3d),对于fluid129和fluid130在耦合中具体起到什么作用,能不能不设,而用边界约束条件代替?2)流体范围怎样确定,如本例中(CYL4,0,0,0.26035,0,0.31242,90),外半径为0.31242。

相关文档
最新文档