高中数学排列组合知识点

合集下载

高中数学排列组合知识点

高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。

高中数学排列组合的公式与理论基础解析

高中数学排列组合的公式与理论基础解析

高中数学排列组合的公式与理论基础解析在高中数学中,排列组合是一个重要的概念和技巧,它在解决问题和计算概率中起着重要的作用。

本文将对排列组合的公式和理论基础进行解析,以帮助高中学生更好地理解和应用这一知识点。

一、排列的概念和公式排列是从一组元素中选取若干个元素按照一定的顺序排列的方式。

在排列中,元素的顺序是重要的,不同的顺序会得到不同的排列结果。

下面我们来看一道例题:例题:某班有10位学生,要从中选出3位学生作为班长、副班长和学习委员,问有多少种不同的选举结果?解析:根据排列的定义,我们需要从10位学生中选出3位学生,并按照一定的顺序进行排列。

根据排列的计算公式,我们可以得到:P(10,3) = 10! / (10-3)! = 10! / 7! = 10 × 9 × 8 = 720所以,共有720种不同的选举结果。

通过这道例题,我们可以看到,排列的计算公式为P(n,r) = n! / (n-r)!,其中n表示元素的总数,r表示选取的元素个数。

二、组合的概念和公式组合是从一组元素中选取若干个元素,不考虑元素的顺序,即元素的选取是无序的。

下面我们来看一道例题:例题:某班有10位学生,要从中选出3位学生组成一个小组,问有多少种不同的组合方式?解析:根据组合的定义,我们需要从10位学生中选出3位学生,并不考虑他们的顺序。

根据组合的计算公式,我们可以得到:C(10,3) = 10! / (3! × (10-3)!) = 10! / (3! × 7!) = 10 × 9 × 8 / (3 × 2 × 1) = 120所以,共有120种不同的组合方式。

通过这道例题,我们可以看到,组合的计算公式为C(n,r) = n! / (r! × (n-r)!),其中n表示元素的总数,r表示选取的元素个数。

三、排列组合的应用排列组合不仅仅是一种计算方法,它还具有广泛的应用,特别是在概率计算中。

高中数学重点知识点:排列

高中数学重点知识点:排列

高中数学重点知识点:排列高中数学重点知识点:排列排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∴原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.。

高中数学公式大全排列组合与二项式定理

高中数学公式大全排列组合与二项式定理

高中数学公式大全排列组合与二项式定理高中数学公式大全:排列组合与二项式定理排列组合与二项式定理是高中数学中重要的概念和公式,它们在概率论、组合数学、代数等领域都有广泛应用。

本文将为您详细介绍排列组合与二项式定理的相关内容。

一、排列组合排列和组合是排列组合问题中最基础的概念。

排列表示从一组元素中选取若干元素按照一定顺序排列的方式,而组合则表示从一组元素中选取若干元素,顺序不考虑。

下面是排列组合中常见的公式:1. 排列公式:排列公式用于求解从 n 个元素中取出 m 个元素,按照一定顺序排列的方式。

排列的数量表示为 P(n,m),计算公式如下:P(n,m) = n! / (n-m)!其中,n! 表示 n 的阶乘。

2. 组合公式:组合公式用于求解从 n 个元素中取出 m 个元素,顺序不考虑的方式。

组合的数量表示为 C(n,m),计算公式如下:C(n,m) = n! / (m! * (n-m)!)二、二项式定理二项式定理是高中数学中另一个重要的公式,它表示了任意实数a、b 和正整数 n 的 n 次幂展开后,各项的系数。

二项式定理为:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2+ ... + C(n,n-1)*a^1*b^(n-1) + C(n,n)*a^0*b^n其中,C(n,m) 表示组合数,表示从 n 个元素中选取 m 个元素的方式数。

三、应用举例1. 排列组合的应用:在一群人中选出特定的几个人组成小组,或者在一串数字中找出满足某种条件的特定数字。

排列组合在组合数学、概率论等领域有广泛的应用。

2. 二项式定理的应用:在数学展开、概率计算、代数运算等方面常常用到二项式定理。

它在概率论中常用于计算二项分布的概率,也可以用于计算方程式的展开。

总结:排列组合与二项式定理是高中数学中重要的概念和公式。

它们在概率论、组合数学、代数等领域都有广泛应用。

高中数学排列组合中c和a的区别

高中数学排列组合中c和a的区别

高中数学排列组合中c和a的区别排列组合知识点:排列组|排列组合知识点:排列组,是将n个单项式按某个字母的次序依次排列起来;组合是指用n个单项式中的任意3个单项式相加或相乘的形式,所得的结果作为基础,再按照一定的规则进行新的组合。

排列组合知识点:排列组,是将n个单项式按某个字母的次序依次排列起来;组合是指用n个单项式中的任意3个单项式相加或相乘的形式,所得的结果作为基础,再按照一定的规则进行新的组合。

组合有两种方式:一种是用单独的一个数去乘除以另一个数,把它们的积作为积的因式,再把这个积与除数连乘积的因式分别相乘,然后求和,从而得到一个新的乘法。

排列组合知识点:排列组,是将n个单项式按某个字母的次序依次排列起来;组合是指用n个单项式中的任意3个单项式相加或相乘的形式,所得的结果作为基础,再按照一定的规则进行新的组合。

组合有两种方式:一种是用单独的一个数去乘除以另一个数,把它们的积作为积的因式,再把这个积与除数连乘积的因式分别相乘,然后求和,从而得到一个新的乘法。

另一种是通过顺序不变的项的变换来得到新的乘法,如一个项除以另一个项,又可以变换成另一个乘法等。

排列组合知识点:排列组,是将n个单项式按某个字母的次序依次排列起来;组合是指用n个单项式中的任意3个单项式相加或相乘的形式,所得的结果作为基础,再按照一定的规则进行新的组合。

组合有两种方式:一种是用单独的一个数去乘除以另一个数,把它们的积作为积的因式,再把这个积与除数连乘积的因式分别相乘,然后求和,从而得到一个新的乘法。

另一种是通过顺序不变的项的变换来得到新的乘法,如一个项除以另一个项,又可以变换成另一个乘法等。

二者本质的区别就在于第二种方式是将整体不变的项拆成几部分之和去做乘除运算。

在实际的解题过程中我们常常会看到一些同学写出了一些“诡异”的答案。

比如1, 12, 21, 24, 56, 132等。

这类题目其实最关键的一步是理清数字的排列顺序,因为题干已经告诉了你必须先排除不满足条件的数字。

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。

本文将对这两个知识点进行总结和说明。

1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。

组合是指从一组元素中不考虑顺序地取出一部分元素的方式。

排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。

1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。

二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。

二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。

其中C(n, k)表示从n个元素中选择k个元素的组合数。

二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。

二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。

它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。

3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。

例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。

高中数学排列组合二项式概率统计知识点归纳及常考题型

高中数学排列组合二项式概率统计知识点归纳及常考题型

“排列、组合、二项式、概率、统计”复习资料一、基础知识和方法梳理 (一)排列组合 1.计数两原理:分类计数原理:完成一件事情,有n 类方法,在第1类方法中又有m 1种不同的方式可以完成这件事情,在第2类方法中,又有m 2种方式,……第n 类方法中有m n 种方式可以完成,那么要完成这件事情的方法共有:n m m m N +++= 21分步计数原理:完成一件事情,需要分成n 步完成,在第1步中,有m 1种不同的方式可以完成这一步,在第2步中,有m 2种方式,……第n 步中,有m n 种方式可以完成这一步,那么要完成这件事情的方法共有:n m m m N ⨯⨯⨯= 21 2.排列:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

排列数)!(!)1()1(m n n m n n n A mn -=+--=3.组合:从n 个不同的元素中不重复选取m 个元素组成一组,与顺序无关; 组合公式:)!(!!!)1()1(m n m n m m n n n C mn -=+--=;组合数性质:m n n m n C C -=,mn m n m n C C C 11+-=+4.排列组合常用方法:分类讨论法:将0,1,2,3,4五个数字可以组成多少个无重复数字的五位偶数?间接法:100件产品含有5件次品,从中任取5件,则至少含有一件次品的取法有多少种? 捆绑、插空法:将3本语文书,3本数学书,2本英语书排成一排,数学书必须排在一起,英语书不能相邻,则有多少中排列方式?特殊元素特殊位置优先考虑法:例如,将0,1,2,3可以组成多少个无重复数字的四位数 分组法:将5个苹果分给甲、乙、丙三人,每人至少一个苹果,有多少种分配方案? 隔板法:例如,将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少盒子的编号数,这样的装法总数有多少种? 等可能性法:六个字母a 、r 、r 、r 、b 、c 排成一排,有多少种排列方式?(二)二项式定理1.二项式定理:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(,其中rn C 为第1+r 项的二项式系数,=-nb a )(2.通项公式:rr n r n r b a C T -+=1,),1,0(n r =3.二项式定理的性质: (1)对称性,二项式系数是关于2n对称 (2)增减性与最大值,当n 为偶数时,二项式系数最大项为第12+n项,最大值为2nn C当n 为奇数时,二项式系数最大项为第121+-n 项和第121++n 项,最大值为2121+-=n n n n C C (3)二项式系数之和nn n n n C C C 210=+++奇数项与偶数项的二项式系数之和相等131202-=++=++n n n n n C C C C(三)概率1.概率的定义:在大量重复进行同一试验时事件A 发生的频率nm总是接近于某个常数p ,这时就把这个常数叫做事件A 的概率,记做)(A P .2.事件的和A+B :表示事件A 和B 至少有一个发生; 事件的积A ×B :表示事件A 和B 同时发生B A B A B A B A ⋅=++=⋅,3.常见的几种类型的概率计算:(1)等可能事件:可预知的有限个结果,且每个结果出现的可能性相同 计算方法:nm A P =)( (2)互斥事件:在一次试验中,事件A 发生了,则事件B 一定不会发生,事件B 发生了,事件A 不可能发生互斥事件有一个发生的概率计算方法:)()()(B P A P B A P +=+, 特殊的,对立事件:1)()(=+A P A P(3)相互独立事件:在一次试验中,事件A 发生与否对事件B 发生的概率没有影响,同理,事件B 发生与否对事件A 发生的概率没有影响,若A 与B 是独立事件,则A 与B ,A 与B ,A 与B 都是独立事件 独立事件同时发生的概率的计算方法:)()()(B P A P B A P ⋅=⋅(4)n 次独立重复事件恰有k 次发生的概率:kn k k n n p p C k P --=)1()(4.关于两个事件常见的概率计算:(若21)(,)(p B P p A P ==)5.注意事项(1)等可能事件的概率中,基本事件数目的计算可以分化得细致一点或粗略一点,这样虽然形式上有所差别,结果往往是一样的,通常有这样一些不同考虑:“整体考虑或局部考虑” 、“元素可辨或不可辨” 、“元素放回或不放回” 、“元素有序或无序”.(2)重视几种概率类型的混合,注意概率加法、乘法的混合运算,适当注意概率类型的突破. (3)准确理解文字(生活)语言,如“至少”、“至多”、“都”、“不都”、“都不”、“恰有几个”、“有几个”,“只有第几次”、“第几次”,“直到第几次”等等,然后等价转化为数学(概率)语言,并注意表述规范.(四)统计1.离散型随机变量的定义:若随机试验的结果可以用一个变量表示,这个变量叫做随机变量。

高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理在高中数学中,排列组合是一种重要的概念与工具,它涉及到对对象的选取和排列的方式。

而在排列组合的基础上,我们还能引出二项式定理,进一步探讨多项式的展开与计算。

本文将对这些数学知识点进行归纳总结和讨论。

一、排列组合的基本概念1.1 排列排列是从给定的一组对象中,按照一定的顺序选择若干个对象进行排列。

假设有n个不同的对象,要从中选择r个对象进行排列,可以得到的排列数记为P(n,r)。

P(n,r) = n!/(n-r)!1.2 组合组合是指从给定的一组对象中,无视其顺序,选择若干个对象。

同样假设有n个不同的对象,要从中选择r个对象进行组合,可以得到的组合数记为C(n,r)。

C(n,r) = n!/(r!(n-r)!)1.3 重复排列与重复组合当给定的一组对象中存在重复的元素时,我们可以计算可能的重复排列与重复组合。

计算公式如下:重复排列:P(n1,n2,...,nk) = n!/(n1!n2!...nk!)重复组合:C(n+r-1,r) = (n+r-1)!/(r!(n-1)!)二、排列组合的应用2.1 生日问题生日问题是指在一个房间里,至少有两个人生日相同的概率有多大。

利用排列组合的思想可以很方便地解决这个问题。

在一个房间里,有n 个人,假设有365天可以选作生日。

我们可以计算至少有两个人生日相同的概率,即为1减去没有人生日相同的概率。

P(at least two people have the same birthday) = 1 - P(no two people have the same birthday)= 1 - C(365,n)/365^n2.2 二项式定理与展开二项式定理是代数中的重要定理之一,它描述了两个数之和的幂展开后的表达式。

假设有实数a和b以及正整数n,根据二项式定理可以将(a+b)^n展开为:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n2.3 二项式系数与组合恒等式二项式系数指的是二项式展开中各项的系数。

高中数学排列组合讲解

高中数学排列组合讲解

高中数学排列组合讲解
一、概念介绍
排列组合是一种统计学中常见的概念, 指的是从一组有限的物体中抽取满足一定要求的组合方式。

它涉及从一系列物体中按照一定的规律去选择其中的某几个物体而组合成一个新的组合,并且这种组合总数取决于初始物体个数。

排列组合解决的问题有很多,如从n个数中取出m个数使得它们和最多,最少;从n 个数中取出m个数使得它们积最多,最少等等。

二、排列组合基本公式
(1)排列组合的基本公式为A m n =n×(n-1)×(n-2)……×(n-(m-1)),由此可见,如果m=n时,排列组合的概念与阶乘n! 相同,可以将阶乘式写成A m n 的形式,即A n n = n!。

(2)从n个物体中取出m(m≤n)个物体,排列组合的个数称为组合数,组合数的基本公式为 C m n=A m n/A m m = n!/(m!×(n-m)!)。

三、排列组合的应用
(1)在实际的实验研究中,通常会对实验因素采用设置不同的处理水平,来研究其对实验结果的影响,此时每个处理水平中的每个因素必须设置多种不同的组合,并将其均匀的分散到每类处理中,这里就需要引入排列组合技术。

(2)对于寻找一组数中满足要求的组合问题,也可以应用排列组合方法。

例如,一个长度为 n 的正整数序列,要求任意挑选 k 个数,使它们的和最大或最小,这是一个组合问题。

(3)排列组合在抽奖、普查、实验设计等中占有重要的作用,如抽取实验样本时,如果采用随机抽取的方式,就要使用到排列组合的思想。

高二数学知识点排列组合c和a

高二数学知识点排列组合c和a

高二数学知识点排列组合c和a 排列组合是高中数学中的一个重要内容,其中C和A是其中两个常见的概念。

下面将逐个介绍这两个概念及其相关的数学知识点。

一、排列排列是指从一组不同的元素中按照一定顺序选取若干个元素进行组合的方法。

在排列中,元素的顺序是重要的。

1. 简单排列简单排列是指从n个不同元素中选取m个元素进行排列,用符号P表示。

P(n, m) = n! / (n - m)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

2. 复杂排列复杂排列是指排列中包含重复元素的情况。

- 重复元素的全排列当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,全排列的总数为P = n! / (m1! * m2! * ... * mk!)- 重复元素的部分排列当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,选取其中r个元素进行排列的情况下,部分排列的总数为P(n; m1, m2, ..., mk) = n! / (m1! * m2! * ... * mk!) / [(n - r)!]二、组合组合是指从一组不同的元素中按照一定顺序选取若干个元素进行组合的方法。

在组合中,元素的顺序不重要。

1. 简单组合简单组合是指从n个不同元素中选取m个元素进行组合,用符号C表示。

C(n, m) = n! / (m! * (n - m)!)2. 复杂组合复杂组合是指组合中包含重复元素的情况。

- 重复元素的组合当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,组合的总数为C = (n + m1 - 1)! / (m1! * (n - 1)!)- 重复元素的部分组合当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,选取其中r个元素进行组合的情况下,部分组合的总数为C(n; m1, m2, ..., mk) = (n + m1 - 1)! / (m1! * (n - 1)!) / [r! * (n - r)!]三、应用场景排列组合在各个领域都有广泛的应用,尤其在概率统计、计算机科学和组合数学等领域中起着重要的作用。

高中数学排列组合及二项式定理知识点及练习

高中数学排列组合及二项式定理知识点及练习

摆列组合及二项式定理【基本知识点】1. 分类计数和分步计数原理的观点2.摆列的观点:从n 个不同元素中,任取m(m n )个元素(这里的被取元素各不同样)按照一.定.的.顺.序.排成一列,叫做从n 个不同元素中拿出m 个元素的一.个.排.列.3.摆列数的定义:从n 个不同元素中,任取m (m n )个元素的全部摆列的个数叫做从n个元素中拿出m 元素的摆列数,用符号mA 表示nm4.摆列数公式:A n(n 1)(n 2)L (n m 1) (m,n N ,m n)n5.阶乘:n!表示正整数1 到n 的连乘积,叫做n 的阶乘规定0! 1.6.摆列数的另一个计算公式:mA =nn! (n m)!7.组合观点:从n 个不同元素中拿出m m n 个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合8.组合数的观点:从n 个不同元素中拿出m m n 个元素的全部组合的个数,叫做从n 个不同元素中拿出m 个元素的组.合.数..用符号mC 表示.n9.组合数公式:mA n(n 1)(n 2)L (n m 1)m nCn mA m!m或 C m nm!(n!n m)!(n, m N ,且m n)10.组合数的性质1:m n m 0C n C .规定:C 1 ;n n11.组合数的性质2:mCn 1 =m m 1C +C Cn nn n n0+C1+⋯ +C n=20+C1+⋯ +C n=2n12. 二项式睁开公式: (a+b) n=C0a n+C1a n-1 b+⋯ +C k a n-k b k+⋯ +C n bnn n n n13.二项式系数的性质:n(a b) 睁开式的二项式系数是C ,n1C ,n2C ,⋯,nnC .nrC 能够当作以r为自变量的函数nf (r ) ,定义域是{0,1,2, L ,n} ,(1)对称性.与首末两头“等距离”的两个二项式系数相等(∵m n mC C ).n nn(2)增减性与最大值:当n是偶数时,中间一项C 2 获得最大值;当n是奇数时,中间两项nn 1 n 12 C ,n2C 获得最大值.n(3)各二项式系数和:∵n 1 r r n(1 x) 1 C x L C x L x ,n n令x 1,则n 0 1 2 r n2 C C C L C L Cn n n n n【常有考点】一、可重复的摆列求幂法:重复摆列问题要划分两类元素:一类能够重复,另一类不可以重复,把不可以重复的元素看作“客”,能重复的元素看作“店”,则经过“住店法”可顺利解题,在这种问题使用住店办理的策略中,重点是在正确判断哪个底数,哪个是指数(1)有 4 名学生报名参加数学、物理、化学比赛,每人限报一科,有多少种不同的报名方法?(2)有 4 名学生参加抢夺数学、物理、化学比赛冠军,有多少种不同的结果?(3)将 3 封不同的信投入 4 个不同的邮筒,则有多少种不同投法?【分析】:(1)43 (2)34 (3)4 3二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看作一个大元素参加排列.(4)A, B,C, D, E 五人并排站成一排,假如A, B 一定相邻且B 在A的右侧,那么不同的排法种数有【分析】:把A,B视为一人,且B 固定在A的右侧,则此题相当于4 人的全摆列,4A4 24种(5)3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360B. 188C. 216D. 96【分析】:间接法 6 位同学站成一排, 3 位女生中有且只有两位女生相邻的排法有,2 2 2 2C A A A =432 种3 24 2此中男生甲站两头的有 1 2 2 2 2A C A A A =144 ,切合条件的排法故共有 2882 3 2 3 2三.相离问题插空法:元素相离(即不相邻)问题,可先把无地点要求的几个元素全摆列,再把规定的相离的几个元素插入上述几个元素的空位和两头 . (6)七人并排站成一行,假如甲乙两个一定不相邻,那么不同的排法种数是【分析】:除甲乙外,其他 5 个摆列数为 5A 种,再用甲乙去插 6 个空位有52A 种,不同的排6法种数是 5 2A5 A6 3600 种(7)书架上某层有 6 本书,新买3 本插进去,要保持原有 6 本书的次序,有种不同的插法(详细数字作答)【分析】: 1 1 1A A A =5047 8 9(8)马路上有编号为1,2,3⋯, 9 九只路灯,现要关掉此中的三盏,但不可以关掉相邻的二盏或三盏,也不可以关掉两头的两盏,求知足条件的关灯方案有多少种?【分析】:把此问题看作一个排对模型,在 6盏亮灯的 5 个缝隙中插入 3盏不亮的灯 3C 种方5 法, 所以知足条件的关灯方案有 10 种.四.元素剖析法(地点剖析法):某个或几个元素要排在指定地点,可先排这个或几个元素;再排其他的元素。

高中数学排列组合知识讲解

高中数学排列组合知识讲解

模块九 排列与组合、二项式定理第一部分:排列、组合 一。

计数原理加法计数原理:如果完成一件事情可以分为m 类,每一类的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1+N 2+N 3+…..+N m 种方法。

(又称分类计数原理)乘法计数原理:如果完成一件事情须分为m 步,每一步的方法数分别是:N 1,N 2,N 3,…..N m ,则完成这件事情共有N 1⨯N 2⨯N 3⨯…..⨯N m 种方法。

(又称分类计数原理) 分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决。

正确区分和使用两个原理是学好本章的关键,其核心是“完成一件事”是“分类”完成,还是“分步”完成. 二。

排列数、组合数的定义①排列数:从n 个元素中取出m 个排成一列(即排入m 个位置),共有mn A 种排法。

A m n =n (n -1)(n -2)…(n -m +1).特别的:!n A nn = ②组合数:从n 个元素中取出m 个形成一个组合,共有mn C 种取法。

C m n =!)!(!m m n n -特别地:1,10==nn n C C组合数的两个性质: (1)C m n =C mn n-; (2)C m n 1+=C m n +C 1-m n. 三。

解决排列、组合问题的四大原则及基本方法1. 特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置.范例甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( ) A.90种 B.89种 C.60种 D.59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C. 评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑. 2.先取后排原则该原则充分体现了mmmn m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ). A.12种 B.24种 C.36种 D.48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.3.正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( ) A.12694C CB.12699C CC.3310094C C -D.3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C.如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B:12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复.评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则. 4.策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.①相邻问题捆绑法(整体法),不相邻问题插空法人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学公式大全排列组合与概率计算公式

高中数学公式大全排列组合与概率计算公式

高中数学公式大全排列组合与概率计算公式高中数学公式大全:排列组合与概率计算公式一、排列组合1. 排列公式排列是指从一个有限元素集合中选取若干元素按照一定的顺序进行排列的方法。

当从n个不同元素中选取r个元素进行排列时,排列数可以用以下公式表示:P(n, r) = n! / (n-r)!其中,P(n, r)表示从n个元素中选取r个元素进行排列的总数,n!表示n的阶乘。

2. 组合公式组合是指从一个有限元素集合中选取若干元素,不考虑元素的顺序进行组合的方法。

当从n个不同元素中选取r个元素进行组合时,组合数可以用以下公式表示:C(n, r) = n! / [r! * (n-r)!]其中,C(n, r)表示从n个元素中选取r个元素进行组合的总数。

二、概率计算1. 概率公式概率是指某个事件在所有可能事件中发生的可能性大小。

一般用P(A)表示事件A的概率。

当事件 A、B 互斥且独立时,可以使用以下概率公式:P(A ∪ B) = P(A) + P(B)其中,P(A ∪ B)表示事件 A 或事件 B 发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。

2. 条件概率公式条件概率是指在已知事件 B 发生的条件下,事件 A 发生的概率。

可以使用以下条件概率公式计算:P(A|B) = P(A ∩ B) / P(B)其中,P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B)表示事件 B 发生的概率。

3. 乘法定理乘法定理是指在一系列独立事件中,它们同时发生的概率等于每个事件发生的概率的乘积。

可以使用以下乘法定理计算:P(A ∩ B) = P(A) * P(B)其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。

4. 加法定理加法定理是指当两个事件互斥时,它们其中一个事件发生的概率等于两个事件发生概率的和。

高中数学排列组合知识点总结

高中数学排列组合知识点总结

高中数学排列组合知识点总结排列组合是高中数学中的一个重要概念,涉及到数学中的选择、排列和组合等问题。

在解决实际问题中,排列组合常常能够提供有效的理论框架和计算方法。

本文将对高中数学中的排列组合知识点进行总结,帮助读者更好地理解和应用这一内容。

一、基本概念在开始讨论排列组合知识点之前,先来明确一些基本概念。

1.排列(Permutation)指的是从给定的一组元素中选出若干个元素按照一定的顺序进行排列。

2.组合(Combination)指的是从给定的一组元素中选出若干个元素进行组合,不考虑其顺序。

二、排列计算1.排列定义:从n个不同元素中取出m(m≤n)个元素进行排列,称为从n个不同元素中取出m个元素的排列。

记作A(n,m)或P(n,m)。

2.排列计算公式:A(n,m) = n! / (n-m)!其中,n!表示n的阶乘,表示从1到n的所有正整数相乘。

三、组合计算1.组合定义:从n个不同元素中取出m(m≤n)个元素进行组合,称为从n个不同元素中取出m个元素的组合。

记作C(n,m)。

2.组合计算公式:C(n,m) = n! / (m! * (n-m)!)四、问题求解1.排列问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定排列的范围和规模;c.根据排列计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

2.组合问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定组合的范围和规模;c.根据组合计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

五、常见问题类型1.选择问题:从给定的选项中选择若干个进行排列或组合。

2.分组问题:将一组元素进行分组排列或组合。

3.座位问题:将若干个人或物品按不同的排列规则安排座位。

4.商业问题:涉及到商品的排列和组合。

5.应用问题:将排列组合运用到实际生活和科学研究中。

六、应用示例1.案例一:某队伍有7名运动员,其中需要选出3名队员参加比赛,有多少种不同的选择方式?解答:根据组合计算公式C(7,3),可以得到答案为35种。

第十三章排列组合与概率(高中数学竞赛标准教材)

第十三章排列组合与概率(高中数学竞赛标准教材)

第十三章排列组合与概率(高中数学竞赛标准教材)第十三章排列组合与概率一、基础知识.加法原理:做一件事有n类办法,在第1类办法中有1种不同的方法,在第2类办法中有2种不同的方法,……,在第n类办法中有n种不同的方法,那么完成这件事一共有N=1+2+…+n种不同的方法。

.乘法原理:做一件事,完成它需要分n个步骤,第1步有1种不同的方法,第2步有2种不同的方法,……,第n步有n种不同的方法,那么完成这件事共有N=1×2×…×n种不同的方法。

.排列与排列数:从n个不同元素中,任取个元素,按照一定顺序排成一列,叫做从n个不同元素中取出个元素的一个排列,从n个不同元素中取出个元素的所有排列个数,叫做从n个不同元素中取出个元素的排列数,用表示,=n…=,其中,n∈N,≤n,注:一般地=1,0!=1,=n!。

.N个不同元素的圆周排列数为=!。

.组合与组合数:一般地,从n个不同元素中,任取个元素并成一组,叫做从n个不同元素中取出个元素的一个组合,即从n个不同元素中不计顺序地取出个构成原集合的一个子集。

从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出个元素的组合数,用表示:.组合数的基本性质:;;;;;。

.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。

[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。

反之B中每一个解,将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。

故定理得证。

推论1不定方程x1+x2+…+xn=r的非负整数解的个数为推论2从n个不同元素中任取个允许元素重复出现的组合叫做n个不同元素的可重组合,其组合数为.二项式定理:若n∈N+,则n=.其中第r+1项Tr+1=叫二项式系数。

高一排列组合知识点总结

高一排列组合知识点总结

高一排列组合知识点总结排列组合是数学中的一个重要概念,也是高中数学的一项重要内容。

在高一学年的数学教学中,排列组合是一个必须掌握的知识点。

下面将对高一排列组合的相关知识点进行总结。

一、排列的概念及性质1. 排列的定义:从n个不同元素中取出m(1≤m≤n)个元素,按照一定的顺序排列起来,称为从n个元素中取出m个元素的排列。

2. 排列的计算公式:当元素可以重复取出时,排列数为 n^m;当元素不重复取出时,排列数为 A(n,m)=n!/(n-m)!。

二、组合的概念及性质1. 组合的定义:从n个不同元素中取出m(1≤m≤n)个元素,不考虑元素的顺序,称为从n个元素中取出m个元素的组合。

2. 组合的计算公式: C(n,m)=n!/((n-m)!m!)。

三、排列组合的应用1. 排列组合在概率论中的应用:通过排列组合的算法,可以计算出事件发生的可能性,从而进行概率计算。

2. 排列组合在选择问题中的应用:从一组元素中选取若干个元素,根据排列组合的原理,可以计算出选择的可能性。

3. 排列组合在密码学中的应用:通过排列组合的算法,可以生成不同排列组合的密码,提高密码的安全性。

四、排列组合的解题技巧1. 排列组合的分析:首先明确题目中的条件,确定问题所涉及的元素数量和选取的数量。

2. 使用排列组合公式:根据题目的条件和问题的要求,使用相应的排列组合公式进行计算。

3. 注意特殊情况:在解决排列组合问题时,要特别关注元素是否可以重复取出、是否考虑元素的顺序等特殊情况。

4. 灵活运用公式:对于一些复杂的问题,可通过将问题进行转化,利用排列组合的公式来求解。

五、典型例题分析1. 从10个人中选出3个人组成委员会,求不同的组合数。

解答:根据组合的计算公式C(n,m),将n=10,m=3带入公式,得到结果C(10,3)=10!/((10-3)!3!)=120。

2. 一个三位数,各位上的数字都不相同,共有多少种排列方式?解答:根据排列的计算公式A(n,m),将n=9(0不能作首位),m=3带入公式,得到结果A(9,3)=9!/(9-3)!=504。

高中数学-排列组合21种模型

高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学排列组合

高中数学排列组合

高中数学排列组合
高中数学中关于排列组合的内容主要包括排列、组合以及
排列组合的应用。

1. 排列
排列是从一组元素中按照一定的顺序取出若干个元素,排
成一列,形成一个新的序列。

排列要区分顺序,即不同的
顺序就是不同的排列。

- 全排列:从n个元素中按照顺序取出m(m≤n)个元素
进行排列,称为从n个不同元素中取出m个元素的排列数,记作A(n, m)。

全排列的计算公式是A(n, m) = n! / (n-m)!
- 循环排列:将n个元素按照一定的顺序排列,使得前n-1个元素排列之后得到的结果与后n-1个元素排列之后得到
的结果一致,称为n个元素的循环排列。

2. 组合
组合是从一组元素中不考虑顺序地取出若干个元素,形成
一个新的组合。

组合不考虑元素的顺序,即不同的顺序被
看作是同一组合。

- 对于n个元素,取出m个元素的组合数称为从n个不同
元素中取出m个元素的组合数,记作C(n, m)。

组合数的
计算公式是C(n, m) = n! / (m! * (n-m)!)
3. 排列组合的应用
排列组合的应用广泛存在于概率统计、数学竞赛、密码学
等领域。

常见的应用有计算概率问题、计算组合型数列的
项数、计算排列型数列的项数、计算集合的子集数目等等。

需要注意的是,在解决实际问题时,需要灵活运用排列组
合的知识,并结合具体情况进行分析和求解。

高中数学知识点:排列组合

高中数学知识点:排列组合

排列组合
一、排列
1. 定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn。

2. 排列数的公式与性质
排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2) (321)
规定:0!=1
二、组合
1. 定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2. 比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理高中数学知识点总结及公式大全:排列组合与二项式定理一. 排列组合排列组合是高中数学中重要的知识点之一,用于解决计数问题。

排列组合分为排列和组合两种情况。

1. 排列排列是指从一组对象中按照一定的顺序选择若干个对象进行排列。

高中数学中常用的排列公式为:An= n!/(n-r)!,其中n表示总数,r表示选取的个数。

排列的特点是考虑顺序,即不同的顺序被视为不同的排列。

2. 组合组合是指从一组对象中选择若干个对象进行组合,不考虑顺序。

高中数学中常用的组合公式为:Cn= n!/[(n-r)!*r!],其中n表示总数,r表示选取的个数。

组合的特点是不考虑顺序,即不同的顺序被视为相同的组合。

二. 二项式定理二项式定理是高中数学中的重要定理之一,用于展开一个任意次数的二项式表达式。

二项式定理的公式为:(a+b)^n = Cn0 * a^n * b^0 + Cn1 * a^(n-1) * b^1 + Cn2 * a^(n-2) * b^2 + ... + Cnr * a^(n-r) * b^r + ... + Cnn * a^0 * b^n 其中Cnr代表组合数,表示从n中选取r个的组合数。

三. 相关数学公式除了排列组合和二项式定理,高中数学还有许多重要的公式需要掌握。

1. 三角函数相关公式:- 三角恒等式:sin^2x + cos^2x = 1;tanx = sinx/cosx- 三角和差公式:sin(x ± y) = sinx*cosy ± cosx*siny;cos(x ± y) = cosx*cosy - sinx*siny- 三角倍角公式:sin2x = 2sinxcosx;cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2. 数列与数列求和公式:- 等差数列通项公式:an = a1 + (n-1)d;等差数列前n项和公式:Sn = n/2(a1 + an) = n/2(2a1 + (n-1)d)- 等比数列通项公式:an = a1 * r^(n-1);等比数列前n项和公式:Sn = (a1(1-r^n))/(1-r)3. 平面几何相关公式:- 点到直线的距离公式:d = | Ax0 + By0 + C | / √(A^2 + B^2)- 两点间距离公式:d = √[(x2 - x1)^2 + (y2 - y1)^2]- 矩形面积公式:S = a * b- 三角形面积公式:S = 1/2 * a * b * sinγ以上只是数学知识点的一部分,针对不同的题目和问题,可能还需要运用其他公式和方法进行解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m种不同3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 443解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法 六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!七.多排问题直排策略例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法 .十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。

这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +。

再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +-十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有3A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有6423/C C C A 种分法。

十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。

选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有 22112223353455C C C C C C C ++种。

十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有35C 种 十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法解:从5个球中取出2个与盒子对号有25C 种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有252C 种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:1234555555C C C C C ++++练习:正方体的8个顶点可连成多少对异面直线解:我们先从8个顶点中任取4个顶点构成四体共有体共481258C -=,每个四面体有3对异面直线,正方体中的8个顶点可连成358174⨯=对异面直线 十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方法有111321C C C 种。

再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有3355C C 选法所以从5×5方阵选不在同一行也不在同一列的3人有3311155321C C C C C 选法。

十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数解:297221122334455=++++=A A A A A N十九.树图策略例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______10=N二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法解:二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得75种.。

相关文档
最新文档