韩国韩端机器人介绍

合集下载

nachi+那智机器人资料

nachi+那智机器人资料
外设接口
提供丰富的外设接口,如USB、HDMI等 ,方便用户连接各种外部设备和扩展功能 。
03
使用指南
安装与设置
安装步骤
打开包装,检查机器人各部件是 否齐全。 按照说明书指示,连接机器人与 电源。
安装与设置
• 下载并安装相关软件,以便于后 续操作。
安装与设置
设置指南
根据个人需求,调整机器人的各项参数, 如工作模式、速度等。
问题2
那智机器人移动不顺畅
解答
可能是由于电量不足或机械部件故障。请确保电池已充 电,并检查所有机械部件是否正常工作。
问题3
那智机器人无法识别障碍物
解答
请检查周围环境是否明亮,并确保障碍物不是透明或与 机器人颜色相近。同时,更新机器人固件或软件可能有 助于解决问题。
技术支持与联系信息
电话支持
拨打机器人包装盒上的技术支持电话,获得实时 帮助和指导。
根据实际使用情况,适时更换易损件和损 耗件。
维护与保养
01 维修与保养提示
02
若遇到无法解决的问题,请联系专业维修人员进行检
修。
03
不要自行拆卸机器人内部结构,以免造成损坏或安全
事故。
04
常见问题与解决方案
常见问题解答
问题1
那智机器人无法启动
解答
请检查电源是否正常,并确保电池已充满电。如果问题 仍然存在,请联系技术支持。
在线支持
访问那智机器人官方网站,查找常见问题解答、 在线论坛和教程等资源。
邮件支持
发送邮件至那智机器人技术支持邮箱,描述您的 问题和详细情况,以便得到及时回复。
产品更新与升级
软件更新
定期检查并安装机器人软件更新,以确保最佳性能和 安全性。

【推荐下载】现代工业智能机器人在焊接领域的广泛应用

【推荐下载】现代工业智能机器人在焊接领域的广泛应用

张小只智能机械工业网
张小只机械知识库现代工业机器人在焊接领域的广泛应用
焊接机器人是指从事焊接的工业机器人,包括切割与喷涂。

英文名:weldingrobot,工业机器人是一种多用途的、可重复编程的自动控制操作机,具有三个或更多可编程的轴,用于工业自动化领域。

为了适应不同的用途,机器人最后一个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。

焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊(割)枪的,使之能进行焊接,切割或热喷涂。

韩国现代重工生产的的焊接机器人
随着电子技术、计算机技术、数控及机器人技术的发展,无锡丹佛数控装备机械科技有限公司提供的韩国现代自动焊接机器人系统集成工作站,从80年代开始用于生产以来,其技术已日益成熟,主要有以下优点:
1)稳定和提高焊接质量;
2)提高劳动生产率;
3)改善工人劳动强度,可在有害环境下工作;
4)降低了对工人操作技术的要求;
5)缩短了产品改型换代的准备周期,减少相应的设备投资。

因此,在各行各业已得到了广泛的应用。

焊接机器人组成
焊接机器人主要包括机器人和焊接设备两部分。

机器人由机器人本体和控制柜(硬件及软件)组成。

而焊接装备,以弧焊及点焊为例,则由焊接电源,(包括其控制系统)、送丝机(弧焊)、焊枪(钳)等部分组成。

对于智能机器人还应有传感系统,如激视觉系统及其控制装置等。

BIP-7000 韩国蓝鸟

BIP-7000 韩国蓝鸟

大小(宽×长×高) 重量 显示屏 触摸屏 键盘 标准电池 大容量电池 扩展插槽 用户识别码插槽 音响 摄像头 全球定位系统
处理器 操作系统 内存 界面
操作温度 库存温度 防湿 落地测试 防震/防尘/水参数
WWAN RADIO WLAN RADIO WPAN RADIO
条码
规格
72 毫米×196.7 毫米×33.6 毫米/2.8×7.7×1.3inch 包括标准电池:306 克/包括大容量电池:326 克 2.8QVGA with back light, TFT Touch Window LCD,260K,240×320
超市商场
销售团队自动化降低运行成本迅速提高销售额以利益最大化。使用带刷卡功能 的手持 POS 系统可改善客户服务。另外,直接从客户现场访问大型 CRM 数 据库可实现对关键客户操作的移动式指导与商机管理。销售经理通过分析采购 模式和客户的要求可以管理库存信息和拟定营销策略。
蓝鸟 BIP-7000 手持数据采集终端参数配置
Windows Mobile 6.5/Windows CE 5.0
128MB RAM(up to 256MB)/256MB ROM(up to 512MB)
RS232C,USB1.1 Host &Client 使用环境
-20℃ to 55℃/-4℉ to 131℉ -30℃ to 70℃/-22℉ to 158℉
在政府/公共部门,让该领域的流程更为规范简明,由此可提高公共机构的服务 水平,降低其成本。能够应付紧急情况,及时紧急报告和实时处理大火和洪水 情况。此外,还具有其他功能,处理罚款逃税罪犯,收集的证据在事故现场相 机的功能。
公共交通部门
在公共交通部门,例如出租车、公共汽车、火车、轮船或航班它可以帮助你快 速准确确认售票、发车时间,与全球定位系统功能,它使你能够有效控制运输 路线和协调服务区间。移动计算技术主要包括无线网络和手持终端的技术。要 保证货物即时供应,必须实现实时记录数据,缩短信息与实物发生中的时间差, 真实地反映整个运输过程。

韩国韩端机器人介绍

韩国韩端机器人介绍
玩具单品
图示为教学类
人 形 舞 蹈
韩端产品
机 器 人 竞 赛
图示为家庭普及类
机器人教育 图示为人形舞蹈类
Page
1
宝乐、CLASS、TOP
校外培训班或学校,幼儿园
韩 端 科 技 产 品
人形舞蹈机器人
学校及公司展览
FUN&BOT系列
超市 玩具店 家庭
韩端产品消费群分布图
Page
2
韩端产品体系 1、教育用机器人 5-7岁用---宝乐系列(含初级、中级)
Page
18
Page
5
2、玩与学并进
玩中学,学中玩,玩中智是我们提倡的一种教育方式,通过游戏让孩子学习,通过 学可以让玩变得更有层次,在玩中收获智慧。 课程主要是通过讲解机器人知识、了解课程内容、进行动手搭建及编程到最后的调 试运行。 我们每节课都会设置一个比赛,比赛的意义是我们通过比赛让孩子们了解自己机器 人的性能,让他们明白自己的问题出在哪里,学会发现并解决问题。
Page
6
3、独具特色的六面体积木结构
韩端自主专利的积木结构保证我们的积木拥有超强的拓展性,相比较市面流行的上 下颗粒的积木结构,我们可以完成上下、前后、左右的一个立体搭建过程
Page
7
4、良好的售后保障及价格体系
韩端教育机器人产品都采取自主研发,生产,销售。有独立的生产工厂为韩端教育 产品注入活力,我们提供零件丢失补充服务,零件损坏补充服务,零件更新升级服务。 让我们的消费者可以放心的使用,并保障孩子们可以在享受到机器人带来的乐趣。让丢 失零件不在成为负担。
7-10岁用---好伙伴系列(含初级、中级编程、高级编程)
Page
3
10-13岁用---高手系列(含初级、中级)铝制材质,原装韩国进口

服务员机器人发展史

服务员机器人发展史
推广期(21世纪初至今)
- 2003年,韩国将服务机器人作为国家经济增长点
国家层面大力支持,推动服务机器人产业发展
- 2010年代,服务机器人广泛应用于酒店、餐饮等行业
服务员机器人成为提升服务质量、降低人力成本的重要手段
- 机器人技术不断创新,如仿生技术、柔性化、AI分析与理解能力等
机器人形态、功能和控制方式不断进化,向更高智能化发展
发展期(20世纪中后期)
- 1984年,约瑟夫开发服务机器人Helpmate
专为医院设计,实现送饭、送药及送信等功能
- 1988年,日本东京电力公司研发巡检机器人
自主规划服务机器人技术逐步成熟,开始应用于特定场景(如医院、酒店)
机器人技术逐步向实用化、智能化发展
- 2024年政府工作报告提出加快发展新质生产力,开展“人工智能+”行动
政策支持进一步推动服务机器人产业的发展
服务员机器人发展史
时间段
关键事件/里程碑
主要特点/影响
萌芽期(17世纪-20世纪初)
- 1662年,日本竹田近江发明自动机器玩偶
早期尝试,基于机械原理的简单自动化
- 1738年,法国杰克发明机器鸭
多功能自动化玩具,展示基本机械运动能力
- 1927年,美国西屋电气公司发明“电报箱”机器人
初步实现机器人与人交互,通过无线电发报机回答问题

哈佛大学研发出新型柔性机器人

哈佛大学研发出新型柔性机器人

行业动态News9Robot Technique and Application20182行业动态(新技术)近日,哈佛大学的研究人员以日本古老的剪纸艺术kirigami 为设计灵感,利用蛇鳞结构的“各向异性摩擦特性”研发出一种充气式柔性机器人。

该机器人能够像蛇一样,通过充气与放气的循环动作来实现爬行,可用于探索危险地形,进行勘探或执行搜索救援等任务。

这款机器人实现运动的关键在于“皮肤”。

为了制造与蛇鳞类似的鳞片皮肤,研究人员制作了各种可伸缩的塑料片,并尝试了多种不同的切口形状,且每一片鳞片都通过激光蚀刻技术刻上独特的图案,然后再将该片材缠绕在可膨胀与放气的硅胶管周围。

这种结构使得机器人在躯体膨胀并拉伸鳞片材料时,原本平均的鳞片会变形并从机器人体内弹出进而抓住地面,并将躯体的反复膨胀转化为向前运动。

为找到最佳的鳞片切割模式,研究人员通过比较线条、梯形、三角形以及圆形等不同的比例模型,发现梯据悉,韩国首尔大学研发出能够依靠吸收周围环境中水分而前行的微型机器人。

该机器人可以爬行、蠕动,并像蛇一样弯曲。

这种微型机器人的设计灵感来自于植物,其可以通过吸收地面或空气中的水分来改变自身形状和大小。

研究人员通过模仿非洲的灌木植物“枯野葵种子的鬃毛”,利用纳米纤维制作成该微型机器人,并将其分成两层:一层用来吸收水分,另一层则不吸收水分。

当机器人置于潮湿的表面上时,吸湿层膨胀,从而使机器人弓起;机器人一旦2月7日,广州云从信息科技有限公司(以下简称云从科技)正式宣布推出3D 结构光人脸识别技术。

据悉,这是中国企业首次将结构光技术应用在人脸识别系统上,标志着中国突破了结构光人脸识别技术的壁垒。

3D 结构光人脸识别系统基于“飞龙II”深度学习结构光算法与3D 结构光深度摄像头,不仅能够利用结构光设备同时获取场景中的彩色、红外、深度图片,而且还能对场景中的人脸进行检测分析,形成3D 人脸图像。

该人脸识别技术具有3大优势:用户只需在摄像头前被捕捉到面部画面,不需要进行其他动作配合,即可完成生物活性验证,有效应对纸张、面具、手机屏幕等各类道形鳞片最适合这款机器人,因为梯形能够让鳞片充分伸展,从而帮助机器人在膨胀自身躯体时得以产生更长的“步幅”。

大锤机器人知识点总结

大锤机器人知识点总结

大锤机器人知识点总结大锤机器人是一款由科技公司开发的智能机器人,具备多种功能和特点。

下面将从机器人的外观、功能、应用领域以及未来发展等方面进行详细总结。

一、外观特点大锤机器人外观设计独特,采用了现代科技感十足的金属外壳,给人一种高端大气的感觉。

机器人的身高大约为1.5米,体积适中,便于携带和移动。

它的头部设计为一个可旋转的球形,内置了高清摄像头和麦克风,可以实时感知周围环境。

二、功能特点1. 语音交互:大锤机器人内置了先进的语音识别和语音合成技术,可以与人进行自然对话。

用户可以通过语音指令控制机器人的行为,例如播放音乐、讲故事、查询天气等。

2. 智能导航:大锤机器人内置了多个传感器和地图导航算法,可以自动识别室内环境并规划最优路径。

它可以自主移动,避开障碍物,并准确到达目的地。

3. 人脸识别:大锤机器人配备了高精度的人脸识别系统,可以准确辨认人脸信息。

它可以通过人脸识别技术实现身份认证、人员统计等功能。

4. 智能家居控制:大锤机器人可以连接到智能家居设备,通过语音控制实现家居设备的开关、调节等操作。

例如,可以通过语音指令让机器人打开电视、调节空调温度等。

5. 智能安防监控:大锤机器人内置了高清摄像头和智能图像识别算法,可以实时监控室内环境。

当机器人发现异常情况时,会立即向用户发送通知。

三、应用领域1. 家庭助理:大锤机器人可以成为家庭的智能助理,帮助用户管理日程、提醒事项、播放音乐等。

它还可以与家庭成员进行互动,提供娱乐和休闲服务。

2. 教育培训:大锤机器人可以用于教育培训领域,例如儿童早教、语言学习等。

它可以通过互动对话和游戏等方式,帮助儿童提高学习兴趣和能力。

3. 商业服务:大锤机器人可以应用于商业场景,例如餐饮服务、导购助手等。

它可以提供菜单推荐、商品介绍等服务,提升用户体验和销售效果。

四、未来发展随着人工智能技术的不断发展,大锤机器人的功能和应用领域还将不断扩展。

未来,它可能具备更强大的计算能力和学习能力,能够更好地理解人类的需求,并提供更个性化、智能化的服务。

心脏外断电机器人DDU-100系列产品说明书

心脏外断电机器人DDU-100系列产品说明书

Product Features • TYPE: Semi-automatic external defibrillator • MODEL: DDU-100A, DDU-100E • WAVEFORM: Biphasic Truncated Exponential (Impedance compensated)• ENERGY : Adult: 150 Joules / Pediatric: 50 Joules / (Nominal into 50 Ohm load)• CHARGE TIME**: DBP-2800: Less than 6 seconds DBP-1400: Less than 9 seconds • VOICE PROMPTS: Extensive voice prompts guide user through operation of the unit and CPR • CPR PACING: Metronome • CONTROLS: Lighted On/Off buttoNLighted Shock button • INDICATORS: “check pads” / “do not touch patient” / “analyzing” / AED Status LEDDimensions and Weight • SIZE: 8.5 x 11.8 x 2.7 inches (22 x 30 x 7 cm) • WEIGHT (Approximate):• With DBP-1400: 4.2 lbs (1.9 kg)• With DBP-2800: 4.4 lbs (2.0 kg)Defibrillator / Monitoring Pads:• Model: Adult – DDP-100 / Child/Infant – DDP-200P • Type: Pre-connected, single-use, non-polarized, disposable, self-adhesive electrodes with cable and connector • Surface Area: 103 cm2 (nominal, each pad) / 50 cm2 (nominal, each pad)• Pad Placement: Adult – Anterior/Anterior Child/Infant – Anterior/Posterior • Cable Length (typical): 48 in. (122cm)Call your local US Med-Equip representative or 877-677-7767 today for more information.Defibtech LifeLine AEDDefibrillator Product photo may include optional features.The Lifeline AED is a semi-automatic defibrillator that is technologically advanced enough to include all mission critical features necessary to provide the most advanced treatment for Sudden Cardiac Arrest. Yet is so simple and unintimidating to use that even non-medical personnel can effectively save lives. The Lifeline AED has a simple two button user interface, clear, calm voice prompts, brightly lit progress lights and actively illuminated status indicator. The Lifeline AED has a roomy handle and rubberized surfaces.The Lifeline AED is sold as part of the DCF package, which includes the following:• DDU-100 Lifeline AED • DCF-200 Five-Year Battery Pack or DCF-210 Seven-Year Battery Pack (both with 9V Batteries)• DDP-100 Adult Defibrillation PadsThe Lifeline AED supports current AHA and ERC Resuscitation Guidelines.。

Development of Humanoid Robot Platform KHR-2 (KAIST Humanoid Robot - 2)

Development of Humanoid Robot Platform KHR-2 (KAIST Humanoid Robot - 2)

Development of Humanoid Robot Platform KHR-2 (KAIST Humanoid Robot - 2)Ill-Woo Park, Jung-Yup Kim, Seo-Wook Park, and Jun-Ho OhDepartment of Mechanical Engineering,Korea Advanced Institute of Science and Technology (KAIST),373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701Republic of Korea{mrquick,kirk1,seowook.park,junhoh}@mclab3.kaist.ac.krThe mechanical and electrical system designs and system integration including controllers and sensory devices of the humanoid KHR-2 are presented. The design concept and the objective are also discussed. Since last year (2003), we have been developing KHR-2, which has 41 DOF (degrees of freedom). Each arm of KHR-2 has 11 DOF in total that amounts to 5 DOF/hand (i.e. fingers), 2DOF/wrist, and 4 DOF/arm. Each leg constitutes 6 DOF. Head constitutes 6 DOF (2 DOF for eyes and 2 DOF at the neck), and trunk has 1 DOF. KHR-2 has been mechanically designed to have a human friendly appearance and also wide ranges of angular motions. Its joint actuators have been designed in order to reduce motion uncertainties such as backlash. All axes of KHR-2 are under the distributed control, which reduces the computation burden on the main controller (PC) and also to facilitate device expansions. We have developed a microprocessor-based sub-controller for servo motor operations, onto which sensory feedback is interfaced. The main controller (PC), which is mounted on the back of the robot communicates with sub-controllers in real-time through CAN (Controller Area Network). Windows XP is used as the OS (Operating System), which enables rapid program development. RTX (Real Time eXtension) HAL extension software is used to realize the real-time control in Windows XP environment.KHR-2 has several sensor types such as 3-axis F/T (Force/Torque) sensors at foot and wrist, inertia sensor system (accelerometer and rate gyro) and CCD camera. The F/T sensor at the foot is crucially important for stable walking. The inertia sensor system is essential to determine the inclination of the robot with respect to the ground.Keywords: Humanoid robot, KHR-2, biped locomotion.1. IntroductionThe research in humanoid robots is now on its way of diverging into various categories. The research on such areas as artificial intelligence, robot hardware development, realization of biped locomotion, and interaction with the environment are gaining a rapid phase of development with the help of the rapid growth of technology. The research on humanoid robotics has gained a particular interest in this new phase as humanoids tend to change the concept of the robot. In the past, robots were confined to the industry carrying out such jobs as welding, and parts-assembly (automobile and electronic devices) in that the objectives, specification and optimal design parameters were clearly defined with concern to the economic aspects, productivity and efficiency. As the economical paradigm is changing from mass production to small quantity batch production, people’s concept of the robot has been gradually diverging. By today, it has come to a situation, where the robot should be able to perform a wide variety of functions that helps people in their daily life.Recently, many researches have been focused on a development of humanoid biped robot that looks similar to a human being. Honda R&D’s humanoid robots[1], WABIAN series of Waseda University[2], ASIMO[3], H6 & H7[4], HRP[5] and JOHNNIE[6] are well known human size humanoid biped robots. Since the humanoid biped robot is very complicated, expensive and unstable, it is very difficult to realize a real-time motion control based on the sensory feedback similar to human behavior.The objective of this project is to develop a reliable humanoid platform which allows the implementation of various theories and algorithms such as dynamic walking, human interaction, AI (Artificial Intelligence), visual & image recognition, and navigation. We used Windows XP as the OS, which is the most familiar OS to design, implement, and maintain those theories easily. The mechanical parts have been designed to have simple shapes that can be easily machined by the 2-D process. The electrical system was designed with concern to easy upgrading, replacement, and reprogramming.The ZMP equation of the humanoid can be simplified to find a useful relationship between robot’s natural frequency and size, which says that if the size of the robot is small, the natural frequency is high, and vice versa. Finding the optimal size of the robot is a different research problem. The actuator specifications such as power, torque, and speed were investigated in KHR-0[7]. KHR-0 which was developed in 2001 has 2 legs without upper body. Based on KHR-1[8] design, we designed KHR-2, the latest version of KHR series. Compared to KHR-1, KHR-2 is different in size, and it has updated designs in the mechanical and electrical systems. In mechanical design, the joint stiffness and the movable joint angle ranges have been improved, and its appearance has become more human-like and human friendly. It has hands, head and neck, eyes, and fingers. In electrical design, control hardware system has changed from centralized control in that the joints are directly controlled by the main PC, to decentralized control through CAN communication protocol. While developing the platform of KHR-2, walking control algorithm has been studied on the KHR-1 platform.2. KHR-2: KAIST Humanoid Robot – 2Fig. 1. Humanoid Robot KHR-2KHR-2 shown in Fig. 1 is a new humanoid robot platform. The height is 1.2m and the weight is 56Kg. Its design concepts are human-like shape, stiff joints with no backlash, self-contained controller system, and simple kinematics. We wanted to make it to have a human-like appearance, wide motion capability, and adequate number of degrees of freedom (DOF) to perform human-like motions. Using harmonic drive reduction gear, we designed backlash free joints. Its joint controller, motor drive, battery and main controller (PC) are installed in the robot itself. KHR-2 has simple kinematics by crossing the joint axis in the shoulder, wrist, hip and ankle joint. Windows XP and RTX provide many references for developing the hardware and software, and it is a convenient programming environment for the KHR-2. The specifications of KHR-2 are given in Table 1.Table 1. KHR-2 specificationsResearch term 2003~Weight 56KgHeight 1.2mWalking Speed 1.0Km/hWalking Cycle 0.95sec Fixed Cycle, 52cm Fixed StrideGrasping Force 0.5Kg/fingerActuator Servo motor + Harmonic Speed Reducer+ Drive UnitControl Unit Walking Control Unit, Servo Control Unit,Sensor Communication Unit,Communication UnitFoot 3-Axis Force Torque SensorSensorsTorso Rate Gyro & Inclination SensorBattery (Ni-H)24V/8AH (192Wh), 12V/12AH (144Wh) PowerSection ExternalPower 12V, 24V (Battery and External Power Supply Changeable)Operation Section Keyboard, Mouse, Wireless LANOperating System (OS) Windows XP and RTXTotal Degree of Freedom 41 DOF3. The KHR-2 Design: Concepts and ObjectivesIn this section, we introduce the concepts and objectives of the KHR-2 design. As briefly mentioned above, there are four design concepts as follows.(1)Human like shape and movement(2)Negligible uncertainty of actuators – Stiffness and no backlash(3)Self-contained system(4)Simple kinematics3.1 Human like shape and movementBeing human-like refers to two concerns: The human-like appearance and human-like motion. Regarding the first, the appearance of the robot should consist of both human and robot characteristics. The second, the robot should be able to imitate the human movements. To be human-like, a humanoid robot needs to have an adequate number of DOF, sufficient power, and wide ranges of joint motions.3.2 Negligible uncertainty of actuatorsThe major joints such as all the joints of legs should be robust. In other words, the output side of the major joint should have a negligible motion uncertainty such as backlash and noise. This is the reason why harmonic drive reduction gears are used in the joints such as legs, arms and trunk. Moreover, the motor drive units such as servo controllers and amplifiers are mounted close to the actuators to reduce cable noise. It is important to design reliable actuators as actuator uncertainty could destabilize the robot system.3.3 Self-contained systemThe main controller, servo controller units, sensor units and batteries are stored inside the robot to accomplish autonomous movement and human-like appearance. It further makes KHR-s free of having a backpack. The robot should be able to be operated remotely through wireless LAN using a portable PC. In the future, using the wireless protocol, we may be able to operate the robot by various kinds of devices that are operable with wireless LAN modules.3.4 Simple kinematicsThe robot joints have been designed to have simple kinematics. By intersecting the joint axes such as hip (3-axis), ankle (2-axis), shoulder (3-axis), and wrist (2-axis), a simple closed form inverse kinematics solution has been created [10]. In this closed form solution, trigonometric functions such as sin() and cos() are involved, but no Jacobean inverse involved. Therefore, path generation and controller design became simple4. Mechanical DesignThe mechanical design concerns the cost, development time, wiring, and movable joint angle ranges in particular. Mechanical design should concern the convenience of manufacturing the robot, therefore, 3-D manufacturing process such as die casting, CNC machining have been avoided to reduce development time, maintenance, and cost. Only 2-D machining process such as turning, milling, wire cutting and drilling processes have been considered.There is lot of wiring in the robot. Communication cables, power supply cables (which are used in controllers and actuators), and sensor signal cables should have organized paths with proper tradeoffs between moving joint paths, good appearance, line length, etc. To make the wiring as simple as possible, cable paths were designed to go through the center of joint axes. And, length was shortened using small slacks.Table 2 lists up the 41 DOF of KHR-2. There are 12 DOF in legs for walking and 19 DOF are in the upper body. Hand mechanism has 7 DOF/hand, 1 DOF/finger and 2 DOF/wrist. It has 5 fingers in hand. Head mechanism has 6 DOF, 2 DOF/eye and 2 DOF at the neck. The eyes have been designed to move independently so that to perform visual image tracking and stereo vision. Torso has 1 DOF in yaw axis for compensation of yaw moment when the robot walks. Table 3 shows the joint angle ranges. A wider range of angular motions are used in KHR-2 joints that makes it capable of performingwalking, running, as well as various other human-like movements such as sitting down on a chair and floor, and crawling on the ground. It enables other features of KHR-2, such as being able to sit in the car to take a ride with its human companion. As a matter of fact, a wider range of movable joint angles allows a robot platform to extend its application area.Table 2. Degree of Freedom (DOF) of KHR-2Head Torso Arm Hand Leg Total2 Neck 2/Eye (pan & tilt)1/Torso Yaw 3/Shoulder1/Elbow5/Hand2/Wrist3/Hip1/Knee2/Ankle6 DOF 1 DOF 8 DOF 14 DOF 12 DOF 41 DOFTable 3. Movable Angle Range of Lower Body JointJoint Movable angle rangeRoll -90 to +38°Pitch-90° to +90°HipYaw -77° to +60°Knee Pitch0° to +150°Roll -40° to +23°AnklePitch-90° to +90°Fig.2 Schematic of KHR-24.1 Upper Body DesignFor the vision system, pan and tilt mechanism is used in the neck and eye as shown in Fig. 3 and Table 4. The mechanism of a DC motor coupled to a planetary gear is used as pan actuator in the neck and eye. The same mechanism further coupled with a pulley-belt is used as tilt actuators. There is space for a PC which could be used for visionprocessing as shown in Fig. 3. At present, the robot has one PC as the main controllerwhich is used for walking (scheduling and control), but may need more PCs to realizethe vision processing algorithm such as recognition and tracking.Fig. 3 Head mechanismThe objective of the finger design is to imitate the human hand. The important factorwhen designing the hand is not manipulation but dexterity. For this purpose, we designedthe fingers to have 5 DOF/hand. One DOF/finger is designed using pulley-belt series asshown in Fig. 4. The thumb of human hand is somewhat inclined with respect to otherfingers. In the robot hand, however, the thumb is parallel to the other fingers for the sakeof design simplicity.Fig. 4 Schematic of finger mechanismTable 4. Actuators in upper body Joint Reduction Gear type Pulley-Belt Ratio Motor Power Finger 14/9:1 2.64WHand Wrist Yaw Planetary gear head No pulley-belt 11WPitch 1.6:1 3.46WPan No pulley-belt Neck Tilt 2:111WPan No pulley-belt Head Eye Tilt 1.5:12.64WElbow Pitch No pulley-beltRoll No pulley-belt Pitch 2:1Arm ShoulderYaw No pulley-beltTrunk YawHarmonic Drive, FB series No pulley-belt 90WHarmonic drive reduction gear has been excluded in the design of head and hands after considering the compactness and cost issues. Therefore, backlash may be observed in the head and hand motions, yet, it is considered a minor factor in the system stability. When backlash free smooth motion is required, the head and hands can be redesigned easily.There is only one joint located in the trunk as pitch and roll motions are considered redundant. The pitch joints are located in the shoulder, hip, knee, and ankle and the roll joints are located in the shoulder, hip and ankle. The DOF and the length and mass of the link for moment compensation may be adequate in lateral and frontal view, but the yaw joints, which are necessary when walking direction has to be changed are only located in the hip. Using the hip yaw joint, it may be difficult to compensate the yaw moment in top view. The yaw motion in the trunk is needed for yaw moment compensation in walking. Other platforms such as HRP[5] series and WABIAN[9] series have trunk joints, where pitch and yaw or pitch and roll motions are included.In KHR-2, the trunk encloses servo controllers and amplifiers, inertia senor system module, main controller PC, and batteries. As shown in Fig. 2, all the upper body components stated including the head and arms produce inertial effect on the trunk joint. If the trunk joints (Roll, Pitch and Yaw) are not controlled actively they may generate oscillatory motion and even become unstable. In other words, all the upper body inertia that affects on the trunk joint may cause such problem due to backlash or compliance of the actuator itself. If roll and pitch motions are required, it is possible to redesign the trunk, which is a future issue to be investigated. At present, the walking control algorithm of KHR-2 (same as in KHR-1) does not use roll and pitch motions.4.2 Lower Body DesignAs shown in Table 5, pulley-belt, DC motor and harmonic drive reduction gear system are used as the leg joint actuator. Pulley-belt is used mainly for compactness and reduction ratio adjustments. Except for the hip yaw joint, unit type harmonic drive is used. The leg joints should be stiff against the load exerted moments and forces. Because the unit type harmonic drive is a commercially assembled unit of harmonic gear tooth, wave generator, cross roller bearing, housing fixture and coupling at input side, itsperformance is guaranteed. This type of harmonic drive is assumed to be stiff and sufficiently robust.As shown in Table 5, FB series harmonic drive is used in the hip yaw actuator. High power actuator is not needed in this joint. This joint is used for changing the direction of walking where the leg’s rotational inertia has to be resisted. However, care has to be taken in designing the joint bearing as the loads exerted on this joint are complicated. When the robot walks, compression from the upper body and tension of the non-supporting leg are exerted along the axis, and pitch and roll moments are exerted perpendicular to the axis simultaneously. On the other hand, its size should be compact because of the limited space for the components in the upper body.It is known that the highest torque and angular velocity are required at the knee joint. To achieve these requirements simultaneously, as shown in Fig. 5, two DC motors and one harmonic drive reduction gear are used similar to the hip joint design of JOHNNIE[6]. This way, the actuator power can be doubled in the ideal case, which allows to increase the angular velocity without loss of torque performance, or increasing both torque and angular velocity of the joint. The servo controller of this joint will be explained later.Table 5. Actuators in lower bodyJoint Harmonic Drive Type Pulley Belt Ratio Motor PowerRoll 5/3:1Pitch Harmonic Drive, CSF Unit type 19/16:1150W Hip Yaw Harmonic Drive, FB series 2:1 90WKnee Pitch 1:1 2-150WRoll 2:1Ankle PitchHarmonic Drive, CSF Unit type 29/15:1 90WFig. 5 Thigh Design (Hip Pitch Joint & Knee Pitch Joint)5. Electrical DesignThe electrical parts that we have designed are JMC (Joint Motor Controller) module, F/T sensor module, and inertia sensor module. All the electrical modules are designed to have CAN communication protocol compatibility as KHR-2 uses distributed control architecture based on CAN protocol.Fig. 6 Simplified CAN Communication Hardware ArchitectureThe devices are connected as shown in Fig. 6. The CAN communication needs two wires; CAN high and CAN low. When the number of devices is increased, wiring becomes more complex, which resists the hardware improvement. However, CAN communication system saves much space in wiring and message arbitration as shown in Fig. 6, provisions are retained for maintenance and hardware expansions. The communication speed of CAN used in KHR-2 is 1Mbps1, which is adequate to control the robot provided that all devices which are to be attached to the system have CAN communication function. Therefore, we designed microprocessor units such as servo controller and sensor module, which are to be explained shortly.5.1 Controller Hardware ArchitectureAs mentioned above, the robot controller hardware architecture is based on CAN communication. Overview of the hardware structure is illustrated in Fig. 7. The main controller (PC) mainly uses PC104 BUS. Vision capture board for CCD cameras, CAN interface board and PC for main controller are piled up on the BUS. Through the CAN interface card, we can control the joint angle and read the sensor data.The OS of main controller is Windows XP. Because windows is not a real time OS, we 114-servo controller board, 4-F/T sensor board and 1-inertia sensor board are attached in KHR-2. The message has the length 8-byte/board. So, 152-byte message is transmitted 1 time. Because the message is transmitted every 10ms, the total message transmit ion speed is 15200byte/sec = 121600bps. So, 1Mbps communication speed is enough in KHR-2.used the RTX software. We can use the OS like a real time OS because it provides a real-time environment sub-system. The software architecture shown in Fig. 8 can be programmed for real time tasks using schedules in RTX HAL extension. Because the data transfer between Windows API and RTX can be accomplished by RTX sheared memory, we can monitor the real-time data in Windows GUI easily. This familiar software environment allowed rapid development of the controller software of KHR-2. There are two kinds of clocks in KHR-2. One is 1ms clock for servo controller for DC motor control, and the other is 10ms for main controller PC. Every 1ms servo controller interpolates the position data from the main controller as linear position data 2, and controls the actuator position through a PD controller. Every 10ms, on main controller side, the PC updates the sensor data, calculates the control laws and the angular position of the joint and sends the joint position data through CAN.Fig. 7 Controller Hardware ArchitectureWe used a commercial single board computer as the main controller instead of a DSP controller for that purpose. This decision was made for the sake of having various peripheral interfaces such as audio and Ethernet, easy and fast programming environment and good graphical user interface (GUI). The selecting criteria are fast CPU speed, low power consumption, compact size and expansion interfaces. Table 5 shows specification of the main computer (PC).Table 6. Specification of Main Controller (PC)CPU EBX Ezra – 800 MHzSystem memory 512 MBChipset VIA 8606T(Twister T)/82C686Expansion PC104+, PC104 and PCI slotPower consumption Typical 5V @ 3.8A Max 5V @ 4.5 A2This dual clock control method has 10ms control output delay. But considering the walking frequency of the robot is around 1Hz and the natural frequency of the system has the same order of walking frequency, 10ms control command delay is in the acceptable range.Size/Weight EBX form factor, 203 x 146 mm 0.27 kgI/O2 x EIDE (Ultra DMA 100),1 x FDD, 1 x K/B, 1x RS-232/422/4853 x RS-232, 1 x LPTEthernet(IEEE 802.3u 100BAS0E-T)Audio(Mic in, Speaker out)2 x USB 1.1Fig. 8 RTX Software Architecture5.2 Joint Servo Controller (JMC)The joint servo controllers operate at 1000Hz, which interpolates linearly the position commands issued by the main PC at a frequency of 100Hz. The detailed hardware configuration is shown in Fig. 9.There are two kinds of JMC as shown in Fig 10a and 10b. Both are composed of a microcontroller module and a power amplifier module. The one which controls the low power actuators like the joints in the head and hand can control 7-channel DC motors and it has also 5-channel A/D port for additional sensors such as pressure sensors for finger tips. The other one which controls the high power actuators like the joints in the legs, arms and trunk can handle 2-channel DC motors and 2-channel A/D port for additional sensors. Its power capacity is about 400W-channel.There are two kinds of input voltage sources in KHR-2. One is 12V-DC for the microcontroller module, PC, and sensors, and the other is 24V-DC only for the motor power amplification module. Those power sources are supplied by external power supply or batteries and we can select these power sources by simple switching.Fig. 9 Hardware Configuration of the Servo Controller of the Joint (JMC)Fig. 10 Servo Motor Controller6. SensorsWe developed F/T sensor and inertia sensor systems for KHR-2. The F/T sensor data are essential to compensate the designed ZMP path, and also to feel the ground contact condition, which are critical issues in stable walking. The F/T sensors are also mounted at the wrists of KHR-2 to enable it to interact with the external environment, and also to cooperate with human companions. For the more robust walking control of the platform, we also designed the inertia sensor system. The inertia sensor system is composed of anaccelerometer and a rate gyro[11]. These sensor systems are explained below in detail.6.1 F/T SensorWe developed 3-axis F/T sensors which can measure 1-normal force and 2-moment (roll and pitch). When the sensor is used to calculate ZMP, it is acceptable to use 3-axis F/T sensor 3 with the assumption that the distance between the sole and the sensor is negligible and transversal forces in x-y plane are small.There are two kinds of F/T sensors in KHR-2 as shown in Fig. 11. Both of these use the same signal processing module which is shown in Fig. 11a. The first one, shown in Fig. 11b, is attached on the wrist joint in the hand. It can be used for hand manipulations of the robot. The wrist F/T sensor is also useful in interactions with the environment such as carrying a bag or pushing a cart, or in corporative work with a human. The second one, shown in Fig. 11c, is attached onto the ankle joint. It is mainly used for stabilization control and to detect ground condition. Its maximum readings are 100Kg-normal force, 30Nm-roll & pitch moment.Fig. 11 F/T Sensor ModuleAs for a future development, we intend to attach pressure sensors on finger tips so that to make KHR-2 capable of feeling touch sense.3 From the principle of equivalent force-moment,Sensor ZMP ZMP M M r F =+× where x ZMP y z F F F F ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, ,,,s x Sensor s y s z M M M M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, x y z r r r r ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ This sensor can only sense F z , M s,x , M s,y .By the definition of ZMP,0ZMP M =We can assume that the F/T sensor is on the sole and transversal forces in the x-y plain are small.Then, z x r F and z yr F are negligible. By simple calculation, we can get the following equationy x z M r F ≈−, xy zM r F ≈6.2 Inertia Sensor System ModuleFig. 12 Inertia Sensor SystemFig. 13 Signal Processing Block Diagram of the Inertia Sensor SystemKHR-2 has inertia sensor system enclosed in its chest. The walking control algorithm of KHR-2 uses the attitude sensor actively, which was not there in KHR-1. The inertia sensor system is composed of 2-channel accelerometer, 2-channel rate gyro4 and signal condition processor board as shown in Fig. 12. In practice, accelerometer can sense the inclination using arcsine function. But it is very sensitive to the unwanted acceleration such as shock or jerk, and rate gyro is good for sensing the angular velocity, but it drifts in low frequency. So, we need to have some signal processing methods. As shown above in Fig. 13, we can use robot’s attitude and its rate of change instead. The detailed algorithm of the inertia sensor is out of scope of this paper.4These two channels are roll and pitch of the trunk7. Conclusion and Future WorkWe have presented the development process of KAIST humanoid robot platform KHR-2, which intends to have human-like appearance and movements. This paper has also presented the design concepts of KHR-2 and the details about the mechanical design including the movable joint angle range, electrical component design including the control system hardware architecture and sensor system design.Future work of KHR-2 aims at the improvement of platform performance such as walking. By utilizing the inertia sensor and vision sensor actively, better walking performance will be demonstrated in the future.8. AcknowledgementThis research was mainly supported by KAIST (Korea Advanced Institute of Science and Technology) and partly supported by HWRS (Human Welfare Robotic System), IRRC (Intelligent Robot Research Center) and BK-21 (Brain Korea - 21) project. Development of KHR-2 would have not been possible without the help of the members in Machine Control Laboratory at KAIST.9. Reference[1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, The Development of HondaHumanoid Robot, in Proc. IEEE Int. Conf. on Robotics and Automations, pp.1321-1326, 1998.[2] J. Yamaguchi, A. Takanishi, and I. Kato, Development of a biped walking robotcompensating for three-axis moment by trunk motion, in Proc. IEEE/RSJ Int. Conf.on Intelligent Robots and Systems, pp.561–566,1993.[3] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura,The intelligent ASIMO: System overview and integration, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478-2483, 2002[4] K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M. Inaba, and H. Inoue, Designand Development of Research Platform for Perception-Action Integration in Humanoid Robot: H6, in Proc. IEEE/RJS Int. Conf. on Intelligent Robots and Systems, pp.1559-1564, 2000.。

韩国瑷偲特ist用法-概述说明以及解释

韩国瑷偲特ist用法-概述说明以及解释

韩国瑷偲特ist用法-概述说明以及解释1.引言1.1 概述瑷偲特IST(Asterisk IST)是一种韩国开发的新兴技术,它是一种基于图像识别和机器学习的智能系统。

瑷偲特IST利用高级图像处理算法和深度学习模型,能够对图像中的目标进行准确的识别和分类。

随着人工智能和计算机视觉技术的快速发展,瑷偲特IST在解决各种实际问题中显示出了巨大的潜力。

它可以应用于各个领域,如自动驾驶、智能安防、智能医疗等,为人们的生活带来了许多便利和创新。

本文将对瑷偲特IST的定义、背景、使用方法以及其优点和局限性进行详细介绍。

同时,我们还将展望瑷偲特IST在未来的发展趋势,并分析其在不同领域中的应用前景。

通过深入探讨和分析,我们旨在揭示瑷偲特IST在推动人工智能和计算机视觉技术发展方面的重要作用,以及它所带来的机遇和挑战。

通过本文的阅读,读者将能够全面了解瑷偲特IST的基本原理和应用场景,并对其在未来的发展趋势有更清晰的认识。

本文也将为研究人员和技术开发者提供有价值的参考和启示,以进一步推动瑷偲特IST的创新和应用。

1.2文章结构文章结构部分主要是对整篇文章的组织和安排进行介绍。

在本篇文章中,我们将按照以下结构来呈现瑷偲特IST的用法:1. 引言:本部分主要概述整篇文章的背景和目的,介绍瑷偲特IST的定义,以及对瑷偲特IST的使用方法进行预告。

2. 正文:2.1 瑷偲特IST的定义和背景:本部分将详细介绍瑷偲特IST的定义,包括其来源、概念和相关背景知识,为读者提供对瑷偲特IST的全面理解。

2.2 瑷偲特IST的使用方法:在这一部分,我们将介绍瑷偲特IST 的具体使用方法,包括其在不同领域和行业中的应用案例,以及使用瑷偲特IST时需要注意的事项和技巧。

我们会列举实际的例子,以便读者更好地理解和运用瑷偲特IST。

3. 结论:3.1 瑷偲特IST的优点和局限性:在这一部分,我们将对瑷偲特IST 的优点进行分析和总结,包括它的高效性、准确性和灵活性等方面的优势。

韩国现代重工lcd机器人详细介绍资料

韩国现代重工lcd机器人详细介绍资料

■ Hyundai LCD Robot – Sales Record by Glass Generation
As of May 06, 2015
ITEM
Mother Glass Robot Panel Glass Robot TOTAL :
G2 & 3
G4 & G4.5 233
G5 & G5.5 64 327 391
• System Consulting, Simulation • Design & Engineering • production • Project Management • Installation / Tryout • A/S & Maintenance
• Robot & System Development - Manipulator - Hardware - Software • Machinery • System Control
No.
Order Date
Customer Name
Shop & Process
Goods Delivered
Glass Size
Quantity Ordered
Quantity Shipped
Rated Capacity
Date of M. P
Remark
A. ORIGINAL GLASS HANDLING ROBOT
Marine Engine
Marine Turbines
Robot & System
Industrial Pump
Sale & Marketing
Design & Engineering

赫尔莱机器人机械工业(Hermle)的产品介绍说明书

赫尔莱机器人机械工业(Hermle)的产品介绍说明书

C52 www.hermle.deMilling at its best: Hermle machines are often at the forefront when it comes to optimized results.The proverbial Hermle precision in conjunction with process consultation and project management has made us an important machine manufacturer in nearly all key sectors:from large complex components to the smallest componentsin the high-tech area. Versatile applications, uncompromising results – Hermle “The Original”.Contents.01Industry sectors02The machine03Technical data04Automation05Precision06Energy efficiency07ServicesMachine constructionHermle is at home in all sectors. For us, ensuring the highest precision and reliable machining is always paramount. Our machines are made for daily operation, whether as linked linear segments in production or as stand-alone workshop machinery.Tool and mould construction Subcontractor industry060702The machineThe C 52: a highly dynamic machining centre designed consistently for 5-axis/5-side machining.Features galore to ensure high-precision, economical parts production. Numerous automation solutions extend the application range many times over.02.1The machine . MTThanks to the revolutionary MT design, all turning operations can be performed even with the table swivelled. The C 52 U MT machining centre can also process workpieces up to 2000 kg in weight.02.2A new dimension of dynamics3 axes in the tooldynamics independent of workpieceForce characteristics: 3 guideways with one guide shoe for ideal force balanceTandem drive (Y axis) for high machine dynamicsin the Y axisTorque motor (C axis) for high dynamics Modified gantry designwith optimum main axis support Pick-up magazine integrated into the base body to save spaceSwivelling range of swivelling rotary table +100° to -130°Stainless steel lining of entire working areaLarge working area relative to the installation area Tandem drive (A axis) Torsion avoidance and high level of accuracyOptimised chip ejection in working area during dry machining Accessibility,excellent ergonomicsLinear axes above the working area121302.3The workpieceMany important points must be observed in order to guarantee that every workpiece is machined perfectly. For this reason, Hermle has been working on perfecting and optimising the machining process for many years. This is the reason that the C 52 is now equipped with: - The largest working area relative to the installation area- The largest swivelling range of workpieces in the working area- Utilisation of the entire traverse range- A large collision circle between the table flanges5-axis / MTØ 1000 x 810 mmmax. 2000 kgMT: max. 1000 / 2000 kgCollision circle: Ø 1290 mmVertical table clearance: max. 950 mm1415ErgonomicsBuilt for daily use: the Hermle C 52 can be ergonomically adapted for every machine operatorfor optimum ease of use, simple operation and uncomplicated maintenance.Door opening 1250 mm Vertical table clearance 950 mm Loading height 890 mm Control panel pivotable02.5Table variantsHermle’s swivelling rotary table has revolutionised the concept of 5-axis machining.Also with the C 52, five axis operation is a key attribute, this capability is enhanced through the use of a torque drive. All machining tables are manufactured exclusively and entirely at our plant in Gosheim.Uncompromised perfection: this tandem drive design accesses the gearwheel on the table housing directly and so completely eliminates shaft torsion. This is the only way to achieve the highest precision.02.5Made in Germany – made in Gosheim: the C 52 table variants stand for the highest quality and optimum material usage from the cast housing to the installed torque motors.At our main plant in Gosheim, these machining tables are laying the foundations for the precision, accuracy and quality of the machined surfaces.Hermle tables are equipped with cutting edge drive technology for high dynamic performance during 5 axis machining, as it is the slowest axis that determines the speed when milling in 5 axes. High-torque motors and the adapted gear can position loads of up to 2000 kg rapidly and, most importantly, with exceptional precision.Tandem drive20Zero-point clamping systems / pallet clamping systemsClamping surface: Ø 700T grooves:parallel 9 / 14 H7 Swivelling range: + 100° / - 130°C-axis drive type: Torque Speed - rotary axis C:30 rpm Speed - swivelling axis A (tandem drive): 20 rpm Max. table load: 2000 kgClamping surface: Ø 1150 x 900T grooves:parallel 9 / 18 H7 Swivelling range: + 100° / - 130°C-axis drive type: Torque Speed - rotary axis C:30 rpm Speed - swivelling axis A (tandem drive): 20 rpm Max. table load: 2000 kgThe “Torque” swivelling rotary table provides the ideal conditions for highly dynamic 5-axis and simultaneous 5-axis machining.Swivelling rotary tableClamping surface: Ø 1000T grooves:star 16 / 18 H7Swivelling range: + 100° / - 130°C-axis drive type: Torque Speed - rotary axis C:500 rpm Speed - swivelling axis A (tandem drive): 20 rpm Max. turning table load: 1000 kg Max. milling table load: 2000 kgZero-point clamping systems / pallet clamping systemsSwivelling rotary table . MT2202.640 %100 %20 %120007800890040001500n [rpm]356,0293,026,0M [Nm]24,0197,056,0P [kW]31,046,040 %100 %20 %9000780040001500n [rpm]356,0293,048,0M [Nm]35,0197,056,0P [kW]31,045,5The C 52 is equipped with compact spindles. All spindles can be replaced quickly and easily in case of failure.With the different speed ranges and tool holding fixtures the tool spindles are suitable for a wide variety of machining tasks. Like the machining tables, all tool spindles are manufactured exclusively and entirely at our plant in Gosheim.40 %100 %20 %180001180040001500n [rpm]215,018,0M [Nm]9,0166,0108,035,0P [kW]17,527,040 %100 %20 %150001550n [rpm]215,0166,011,0M [Nm]108,016,035,0P [kW]17,527,040001180024Tool Spindle 9000 rpm40%100%20%m]90005200650023001200n [rpm]560,0441,043,0M [Nm]324,070,0P [kW]41,056,002.7The tool magazineThe C 52’s tool magazine holds up to 60 tools in the standard version and is integrated into the machine bed to save space. On the rear of the machine is the ground-level tool loading point with operator control panel. The adapted platform enhances ergonomics with easy accessibility.Integration into the machine bed Pick-up magazineTool changer (pick-up)Excellent accessibility Covers for tool holding fixtureAdditional control panel next to tool loading pointErgonomically optimum platform for the machine operator28Additional magazine single Additional magazine doubleThe Hermle additional magazine, for space-optimised expansion of the tool storage capacity.Adjustable feet with integrated transport rollers facilitate attachment to the Hermle machiningcentre C 52. The additional magazine is available as a single or double version.Two magazines that canbe combinedLoading and unloading positionwith 2 x 2 or 2 x 3 tool pockets(depending on the interface)Up to 325 tool pockets(depending on the interface)With an additional control panelOnly 3 m2 footprintThe C 52 can be equipped with two types of control unit. All control units provide diverse pro-gram functions. Hermle simplifies programming and operation still further with comprehensiveextra features.02.8Control unitMilling and turning using one control unitHeidenhain TNC 640- Dynamic Efficiency – Active Chatter Control (ACC),Adaptive Feed Control (AFC), trochoidal milling- Dynamic Precision – Cross Talk Compensation (CTC),Active Vibration Damping (AVD), Load Adaptive Control (LAC)- Further special turning cycles are integrated such as roughing,finishing, grooving and threading- Easy to switch from milling to turning mode- 19" TFT colour flat screen- Keyboard unit with full keyboard, integrated trackball, USB andEthernet interfaces- Fully digital with HSCI interface andEnDat interface- P rogramming in Heidenhain plain textor per DIN/ISO- Standard drilling and milling cycles- Touch probe system cycles- Free contour programming- Special functions for fast 3D machining- Automatic calculation of cutting data- Pallet management- Software option Kinematic Opt (Measurement cycle for improvingaccuracy of rotational and swivelling operations)For further advantages and detailed technical data, please see the Heidenhain brochures.Milling and turning using one control unitSiemens S 840 D sl- 19" TFT colour flat screen- Keyboard unit with full keyboard, additional panel with integratedtrackball, key-operated switch and buttons, USB and Ethernetinterfaces- Complete and flexible diagnostics and service concept- All inverter and control components are connected with each otherby the Drive-Cliq-Interface- I ncluding shell transformation, 5-axis transformation,process-oriented measuring, 3D tool radius compensationand Spline-Interpolation- Incl. software option Kinematic Opt(Measurement cycle for improvingaccuracy of rotational andswivelling operations)- Tool management forall machines HOTS- The S 840 D sl is also equipped forturning mode and can handle allintegrated milling and turningprocesses- Operating Interface OPERATE with ShopMill- SINUMERIK MDynamics incl. Advanced Surface- High Speed Settings - CYCLE832For further advantages and detailed technical data, please see the Siemens brochures.32 33Hermle setupsHeavy Duty Machining StandardHigh-Production - Standard setting.- S witches back to the standardsetting after a different setuphas been used.- Q uicker machining with programs which have many cycle calls or sub-programs. Standard Heavy duty machining Production - For roughing in conjunction with high milling power. - Greater machining performance possible thanks to reduced machinevibration (depending on the tool andthe selected technology data). 02.8Control unit Machine status is continually monitored by the Hermle wear diagnosis system.It facilitates rapid machine diagnosticsand status-oriented detection of maintenance tasks.Hermle "Wear Diagnosis System"Simple, Hermle tool management for Heidenhain controls.Hermle "Tool Management Control"Simple, Hermle order management software.Hermle "Automation Control System"Simple, Hermle tool management for the Siemens S 840 D sl.Hermle “Operate-Tool-System”The …Information-Monitoring-Software“ isused to display the live status of machi-nes and send events via e-mail.Hermle “Information-Monitoring-Software“02.9The detailsThe C 52 is built using an elegant cassette panel construction. This high-tech building blockconcept is used throughout from the standard machine to the flexible manufacturing system.The machining centre can be transported without any disassembly and set up without a foundation. Furthermore, all units are arranged for easy maintenance and servicing.Comprehensive fluid technologyOptimised chip managementDiverse cooling lubricant unitsSpace-saving chip conveyor arrangementChip conveyorChip conveyor with internal cooling lubricant supplyand recooling unit Chip conveyor with internal cooling lubricant supply, recooling unitand emulsion mist extraction Chip conveyor with internal cooling lubricant supply 363703Technical data . C 5238 3903.1 Technical data . C 52TraverseX axis 1000 mm TraverseY axis 1100 mm TraverseZ axis 750 mm Rapid linear traversesX-Y-Z 60-60-55 m/min Linear accelerationX-Y-Z 6 m/s2Linear feed forceX-Y-Z 16000 N Max. vertical table clearance950 mm Max. workpiece diameterØ 1000 mm Max. workpiece height810 mm Collision circle (A-axis) 0° position Ø 1290 mm Working area SpeedMain power/Torque9000 rpm 20% c.d.f.SK 50 56 kW / 356 Nm SpeedMain power/Torque12000 rpm 20% c.d.f.HSK A 10056 kW / 356 Nm SpeedMain power/Torque15000 rpm 20% c.d.f.SK 4035 kW / 215 Nm Speed Main power/Torque18000 rpm 20%c.d.f.HSK A 6335 kW / 215 Nm SpeedMain power/Torque 9000 rpm 20% c.d.f.HSK T 100 70 kW / 560 Nm Speed12000 rpm HSK T 100 Main power/Torque 20% c.d.f.35 kW / 215 NmMain spindle drive Control unitInterface SK 40 / HSK A 63 / HSK T 63SK 50 / HSK A 100 / HSK T 100Magazine pockets6042Chip-to-chip time* approx. 7.0 s*(chip-to-chip times for 3-axis units inmilling mode calculated in keepingwith German standard VDI 2852, page 1)approx. 7.0 sMax. tool length500 mm500 mmMax. tool diameterØ 160 mmØ 250 mmMax. magazine load480 kg462 kgMax. tool weight15 kg30 kgTool changer (pick-up)Clamping surface flattenedon 2 sides-900 mm-Swivelling range+100° / -130°+100° / -130°+100° / -130°C-axis drive mode torque torque torqueSpeed - swivelling axis A (tandem)20 rpm20 rpm20 rpmSpeed - rotary axis C30 rpm30 rpm500 rpmMax. milling table load2000 kg2000 kg2000 kgMax. turning table load--1000 kgT grooves parallel9 units / 14 H79 units / 18 H7-T grooves star-shaped--16 units / 18 H7*All tables available on demand Table variants*Included in standard deliveryAvailable upon requestSK 50ZM 72 / ZM 92 ZM 176 / ZM 21672 / 92176 / 216HSK A 63 / HSK T 63ZM 110 / ZM 135ZM 265 / ZM 325110 / 135265 / 325HSK A 100 / HSK T 100ZM 88 / ZM 108ZM 212 / ZM 26088 / 108212 / 260*The tool length depends on the use of the magazineand is at max. 500 mm. More details on request. Extension of toolstorage capacity*4041Operating pressure120 bar(standard version without optional extras, attachments, workpieces and cooling lubricant)Approx. 21.0 tTp in X-Y-Z axes according to VDI/DGQ 3441(calculated at a constant ambient temperature of 20 °C +/-1 °C. Our products are subject to the German Export Lawand require authorization since the attainable precision may be less/greater than 6 µm.)0.008 mmHinged belt conveyor Chip conveyor ejection height at least 940 mmChip cart450 l Amount of cooling lubricant 500 lPump capacity5 bar / 80 l/minAmount of cooling lubricant 1700 lPressure (manually adjustable up to)max. 80 bar / 47 l/minMains connection (ICS)400 V / 50 HzPower consumption (ICS)18.5 kVA Mains connection 400 V / 50/60 HzPower consumption C 52 U to 94 kVA Power consumption C 52 U MT to 94 kVACompressed air6 barChip conveyorCooling lubricant unitConnected loadsInternal cooling lubricant supply Hydraulics Central lubrication Weight Included in standard delivery Available upon requestPositional tolerance03.2 OptionsThe C 52 is prepared for anything: Numerous optional extras make machining even more efficient and powerful in real applications and enable you to optimise your work with the machining centre still further.1 Machining centre2 Emulsion mist extraction3 Chip conveyor4 Chip cart5 Internal cooling lubricant supply6 Recooling unitC 52 U dimensionsexternal - BDE signal- Control panel height adjustable with 19“ swivel screen - Bed flushing- Blow air through spindle centre- Recooling unit - Chip conveyor - Coolant nozzle - Chip cart- Air purge for linear scales - Status lamp-Preparation buttonmodule- Elec. heat compensation - Emulsion mist extraction - Internal cooling lubricant supply- Touch probe incl. preparation - Pallet storageC 52 U MT dimensions1 Machining centre2 Emulsion mist extraction3 Chip conveyor4 Chip cart5 Internal cooling lubricant supply6 Recooling unit- Additional magazine44451 Machining centre2 Emulsion mist extraction3 Chip conveyor4 Chip cart5 Internal cooling lubricant supply6 Recooling unit7 Additional magazine singleC 52 U dimensions . Additional magazine singleexternal- BDE signal- Control panel height adjustablewith 19“ swivel screen- Bed flushing- Blow air through spindlecentre- Recooling unit- Chip conveyor- Coolant nozzle- Chip cart- Air purge for linear scales- Status lamp- Preparation buttonmodule- Elec. heat compensation- Emulsion mist extraction- Internal cooling lubricantsupply- Touch probe incl. preparation- Pallet storage- Additional magazine1 Machining centre2 Emulsion mist extraction3 Chip conveyor4 Chip cart5 Internal cooling lubricant supply6 Recooling unit8 Additional magazine doubleC 52 U dimensions . Additional magazine double464704AutomationC 52 U with pallet changer PW 200004.1Our pallet changer is setting new standards for parallel setup in our highly dynamic machining centres. A further increase in productivity allows for more adaptable storage systems.Machining centres can be set up via pallet storage for production-oriented machine runs with minimum operator interference/without operator interference or for customer-specific runs using a wide range of parts. Furthermore, multiple machining centres can be linked to form a complete manufacturing system.。

NACHI 那智机器人资料(操作篇)

NACHI 那智机器人资料(操作篇)

定期检查
对机器人关键部件进行定期检查,如 传感器、电池等,确保其正常工作。
易损件更换
根据需要,定期更换易损件,如轴承、 密封圈等,延长机器人使用寿命。
保养记录
建立保养记录制度,对每次保养和维 护工作进行详细记录,方便后续管理。
04
那智机器人操作常见问题解

操作问题解答
Q1
那智机器人如何开机?
Q2
故障诊断与排除
故障检测
通过观察机器人运行状态、传 感器数据等,及时发现潜在故
障。
故障定位
利用专业工具和软件,定位故 障发生的位置和原因。
故障排除
根据故障定位结果,采取相应 的措施排除故障,如更换部件 、调整参数等。
预防措施
针对常见故障,制定预防措施 ,降低故障发生概率。
维护与保养
日常保养
定期对那智机器人进行清洁、润滑等 保养工作,保持机器人的良好状态。
发展趋势
未来那智机器人将朝着智 能化、自主化、协作化等 方向发展,成为人类生产 生活的重要辅助工具。
感谢观看
THANKS
特点
nachi机器人具有高精度、高稳定性和高可靠性的特点。它们采用先进的控制系 统和传感器技术,能够实现精确的位置控制和运动轨迹规划。此外,nachi机器 人还具有易于编程、操作简单和维护方便的优点。
机器人应用领域
• 应用领域:nachi机器人广泛应用于制造业、物流业和医疗保健 业等领域。在制造业中,nachi机器人可用于自动化生产线上的 装配、检测和包装等环节,提高生产效率。在物流业中,nachi 机器人可用于自动化仓库中的货物搬运和码垛等任务。在医疗 保健业中,nachi机器人可用于辅助手术操作、康复训练和医疗 服务等场景。

turtlebot3 waffle技术指标

turtlebot3 waffle技术指标

TurtleBot3 Waffle技术指标一、概述TurtleBot3 Waffle是一款基于ROS(Robot Operating System)的移动机器人平台,它由韩国Robotis公司开发和制造,主要用于教育、实验室研究和个人创客等领域。

本文将介绍TurtleBot3 Waffle的技术指标及其相关内容。

二、硬件部分TurtleBot3 Waffle的硬件部分包括车身、电机驱动器、传感器和通信模块等组成,具体技术指标如下:1. 车身尺寸•长度:354 mm•宽度:369 mm•高度:144 mm2. 电机驱动器•电机数量:2个•最大扭矩:0.56 Nm•最大转速:61 RPM3. 传感器•惯性测量单元(IMU):6轴(加速度计和陀螺仪)•碰撞传感器:3个•超声波传感器:1个•摄像头:1个4. 通信模块•Wi-Fi:支持IEEE 802.11b/g/n标准•蓝牙:支持蓝牙4.0三、软件部分TurtleBot3 Waffle的软件部分主要基于ROS进行开发和运行,提供了丰富的功能和工具,下面是具体介绍:1. ROS支持TurtleBot3 Waffle完全兼容ROS操作系统,用户可以使用ROS提供的丰富功能和工具进行开发和控制。

2. 导航和地图构建TurtleBot3 Waffle支持SLAM(Simultaneous Localization and Mapping)技术,可以在未知环境中实现自主导航和地图构建。

3. 控制算法TurtleBot3 Waffle内置了多种控制算法,包括PID控制、逆运动学控制等,用户可以根据需要选择合适的算法进行控制。

4. 仿真和模拟TurtleBot3 Waffle提供了仿真和模拟功能,用户可以在虚拟环境中进行算法开发和测试,大大减少了硬件开发成本和风险。

四、应用领域TurtleBot3 Waffle广泛应用于教育、实验室研究和个人创客等领域,以下是几个典型的应用场景:1. 教育TurtleBot3 Waffle可以作为教育机器人,用于教授机器人技术、编程和算法等知识。

韩国韩端机器人介绍

韩国韩端机器人介绍

韩国韩端介绍韩国韩端介绍1.引言韩国韩端(Han-Droid Robot)是由韩国技术公司开发的一款高度先进的。

该具有先进的技术和人类般的外貌,广泛应用于各个领域,包括家庭、医疗、教育等。

本文将详细介绍韩端的特点、功能以及应用领域。

2.技术特点2.1 技术韩端搭载了先进的技术,包括自然语言处理、计算机视觉和机器学习等。

通过这些技术,能够理解和交流人类语言,识别物体和人脸,并根据环境自主学习和改进。

2.2 仿真人类外貌韩端的外貌和表情非常接近人类,使用了先进的造型技术和人造肌肉材料。

能够模拟人类的面部表情和身体动作,给人一种亲切和真实的感觉。

2.3 自主导航系统韩端配备了自主导航系统,可以通过激光雷达和摄像头感知周围环境,并规划路径进行移动。

还能够避开障碍物,确保安全和稳定的导航能力。

3.功能介绍3.1 语音交互韩端能够与人进行自然语言交互,理解和回答问题,提供信息和服务。

能够根据用户的需求,执行各种任务,如播放音乐、讲故事、查找资料等。

3.2 家庭韩端可以作为家庭,帮助居民完成各种家务和日常任务。

能够控制家电设备,监控家庭安全,提供健康和娱乐服务。

3.3 医疗辅助韩端在医疗领域的应用也非常广泛。

可以协助医护人员进行例行检查和手术操作,提供患者康复训练和心理支持。

3.4 教育培训韩端可以作为教育培训的助教,提供个性化学习和辅导。

能够与学生进行互动,解答问题,提供学习材料和讲解。

4.应用领域4.1 家庭韩端可以成为家庭的智能,帮助家庭成员管理日常生活,提供娱乐和安全保障。

4.2 医疗韩端在医疗领域的应用可以提高医疗效率和患者体验,辅助医护人员进行各项工作。

4.3 教育韩端可以改变传统的教育方式,提供个性化学习和互动体验,促进学生的学习兴趣和能力发展。

5.附件本文档不涉及附件内容。

6.法律名词及注释本文档不涉及法律名词及注释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7-10岁用---好伙伴系列(含初级、中级编程、高级编程)
Page
3
10-13岁用---高手系列(含初级、中级)铝制材质,原装韩国进口
人形机器人系列(ROBOBUILDER5720/RQ-160)
Page
4
韩端机器人产品理念 1、让孩子每周拥有快乐的一天
越来越多的孩子在学习中感受到的只有压力,他们在枯燥的应试教育中得到的只有 负担,他们在很小便戴上了 眼镜,韩端机器人教育就是想让孩子从枯燥中得到释放, 让他们可以拥有快乐的一天
Page
8
IYRC赛事介绍
Page
9
IYRC简介
国际青少年机器人竞赛(简称IYRC),竞赛是由韩国机 器人协会,韩国SRC机器人会社组办,韩端科技(深圳)有 限公司负责中国赛区承办的一项机器人赛事,比赛于2011年 7月在中国深圳成功举办第一届,并在韩国丽水举办了国际 赛。 在中国赛区中,汇聚了来自广东,湖南,安徽,福建, 重庆,四川,新疆等约500名选手及教练员,在韩国国际赛 中,有100多名中国优秀选手参加了在韩国丽水举行的国际 赛。
Page
15


2011国际赛旅游部分部分线路安排
在酒店吃完早餐后,坐大巴去龙仁EVER LAND观光游玩。龙仁EVER LAND 是韩国最大的主题游乐园。里面有各种游乐设施和商店,公园,动物园等。相 当于大型迪斯尼乐园的概念。晚上在龙仁住宿。 交通工具:豪华40坐大巴,一车配一名导游。 住宿条件:3星级或4星级HOTEL。
Page
5
2、玩与学并进
玩中学,学中玩,玩中智是我们提倡的一种教育方式,通过游戏让孩子学习,通过 学可以让玩变得更有层次,在玩中收获智慧。 课程主要是通过讲解机器人知识、了解课程内容、进行动手搭建及编程到最后的调 试运行。 我们每节课都会设置一个比赛,比赛的意义是我们通过比赛让孩子们了解自己机器 人的性能,让他们明白自己的问题出在哪里,学会发现并解决问题。
玩具单品
图示为教学类
人 形 舞 蹈
韩端产品
机 器 人 竞 赛
图示为家庭普及类
机器人教育 图示为人形舞蹈类
Page
1
宝乐、CLASS、TOP
校外培训班或学校,幼儿园
韩 端 科 技 产 品
人形舞蹈机器人
学校及公司展览
FUN&BOT系列
超市 玩具店 家庭
韩端产品消费群分布图
Page
2
韩端产品体系 1、教育用机器人 5-7岁用---宝乐系列(含初级、中级)
Page
16


2011国际赛旅游部分部分线路安排
在酒店吃完早餐后,坐大巴去首尔观光游玩。游玩韩国首都。晚上在首尔住宿。 交通工具:豪华40坐大巴,一车配一名导游。 住宿条件:3星级或4星级HOTEL。
Page
17


2011国际赛旅游部分部分线路安排
在酒店吃完早餐后(首尔),统一坐大巴去仁川机场。到达后点名确认人数 并交接后,结束此次行程。 交通工具:豪华40坐大巴,一车配一名导游。
Page
10
IYRC比赛构成
1:比赛时间
国内:2012.7-8月份之间 国际:2012.11-12月份之间
2:参加人群
3:比赛内容
国内机器人爱好者,机器人培训机构或学校,普通学生,韩 端机器人使用者
教育机器人比赛,创意机器人比赛,人形舞蹈比赛等等
Page
11
国 际 比 赛 活 动 交 流 ︵ 一 ︶
Page
6
3、独具特色的六面体积木结构
韩端自主专利的积木结构保证我们的积木拥有超强的拓展性,相比较市面流行的上 下颗粒的积木结构,我们可以完成上下、前后、左右的一个立体搭建过程
Page
7
4、良好的售后保障及价格体系
韩端教育机器人产品都采取自主研发,生产,销售。有独立的生产工厂为韩端教育 产品注入活力,我们提供零件丢失补充服务,零件损坏补充服务,零件更新升级服务。 让我们的消费者可以放心的使用,并保障孩子们可以在享受到机器人带来的乐趣。让丢 失零件不在成为负担。
Page
18
Page 12
APRC
国 际 比 赛 活 动 交 流 ︵ 二场
机器人比赛现场
中国区代表合影留念
Page
13
ARPC的媒体支持
Page
14


2011国际赛旅游部分部分线路安排
在酒店吃完早餐后,去大田国立中央科学体验馆观摩体验,并参观天文馆。大田是韩国高端科学技术最为发达且最为 集中的地区之一。而且有很多的科学成果馆和体验馆。其中最著名的是国立中央科学馆。在那里可以体验和学习关于 科学、机器人、天文等方面的知识。晚上在大田住宿。 交通工具:豪华40坐大巴,一车配一名导游。 住宿条件:3星级或4星级HOTEL。
相关文档
最新文档