初三数学中考必考题
【必考题】数学中考试题含答案
【必考题】数学中考试题含答案一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A .2.3×109 B .0.23×109 C .2.3×108 D .23×1072.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+3.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .234.下表是某学习小组一次数学测验的成绩统计表:分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分B .85分C .90分D .80分和90分5.-2的相反数是( ) A .2B .12C .-12D .不存在6.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .187.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B .255C .52D .238.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°9.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 10.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.311.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则1232014a a a a ++++=L L __________.15.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .16.如图,点A 在双曲线y=4x上,点B 在双曲线y=kx (k≠0)上,AB ∥x 轴,过点A 作AD⊥x 轴 于D .连接OB ,与AD 相交于点C,若AC=2CD ,则k 的值为____.17.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 18.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 19.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是 20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元? 22.解分式方程:23211x x x +=+-23.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt △ABC 三个顶点都在格点上,请解答下列问题: (1)写出A ,C 两点的坐标;(2)画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(3)画出△ABC 绕原点O 顺时针旋转90°后得到的△A 2B 2C 2,并直接写出点C 旋转至C 2经过的路径长.24.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A 级:非常满意;B 级:满意;C 级:基本满意;D 级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______. (2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为,,,,a b c d e )中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e 的概率. 25.解方程:3x x ﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】230000000= 2.3×108 ,故选C.2.D解析:D 【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.3.C解析:C 【解析】 【分析】画出树状图即可求解. 【详解】 解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况, ∴两张卡片上的数字恰好都小于3概率=13; 故选:C . 【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.4.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D . 【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.5.A解析:A 【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2. 故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.B解析:B 【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6. 3+6>6,符合条件.成立. ∴C=3+6+6=15. 故选B .考点:等腰三角形的性质.7.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.8.D解析:D 【解析】 【分析】根据折叠的知识和直线平行判定即可解答. 【详解】解:如图可知折叠后的图案∠ABC=∠EBC , 又因为矩形对边平行,根据直线平行内错角相等可得 ∠2=∠DBC ,又因为∠2+∠ABC=180°, 所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°. 可求出∠2=70°. 【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.9.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.B解析:B 【解析】 【分析】 【详解】A 18323B 3C =D =10故选B .11.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.12.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.二、填空题13.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE 的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2解析:2011 2【解析】【分析】分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106. 【解析】 【分析】 【详解】将9600000用科学记数法表示为9.6×106. 故答案为9.6×106. 16.12【解析】【详解】解:设点A 的坐标为(a )则点B 的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a 则AB=2a∴点B 的横坐标是3a∴3a=解析:12 【解析】 【详解】解:设点A 的坐标为(a ,4a ),则点B 的坐标为(ak 4,4a), ∵AB ∥x 轴,AC=2CD , ∴∠BAC=∠ODC , ∵∠ACB=∠DCO , ∴△ACB ∽△DCO , ∴AB AC 2DA CD 1==, ∵OD=a ,则AB=2a , ∴点B 的横坐标是3a ,∴3a=ak 4, 解得:k=12. 故答案为12.17.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.18.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1 解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=k x,可得k =-6,然后可得反比例函数的解析式为y =-6x,代入点(m ,6)可得m=-1. 故答案为:-1. 19.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k ≠0.考点:根的判别式.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 - 解析:12【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 三、解答题21.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.22.x =-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x +1)( x -1),化为整式方程求解,求出x 的值后不要忘记检验.【详解】解:方程两边同时乘以(x +1)( x -1)得: 2x (x -1)+3(x +1)=2(x +1)( x -1)整理化简,得 x =-5经检验,x =-5是原方程的根∴原方程的解为:x =-5.23.(1)A 点坐标为(﹣4,1),C 点坐标为(﹣1,1);(2)见解析;. 【解析】【分析】(1)利用第二象限点的坐标特征写出A ,C 两点的坐标;(2)利用关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 2、B 2、C 2,然后描点得到△A 2B 2C 2,再利用弧长公式计算点C 旋转至C 2经过的路径长.【详解】解:(1)A 点坐标为(﹣4,1),C 点坐标为(﹣1,1);(2)如图,△A 1B 1C 1为所作;(3)如图,△A2B2C2为所作,OC=2213+=10,点C旋转至C2经过的路径长=9010180π⋅⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.24.(1)60;(2)54°;(3)1500户;(4)见解析,2 5 .【解析】【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为:54°(3)9 10000150060⨯=(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中e的结果有8种∴P(选中e)=82 205=.【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.25.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。
初三数学常考试题及答案
初三数学常考试题及答案一、选择题1. 已知一个二次函数的图像经过点A(-1,0)和点B(3,0),且函数的开口向上,则该二次函数的对称轴是()。
A. x = 0B. x = 1C. x = 2D. x = -1答案:B解析:二次函数的对称轴是其顶点的x坐标,由于函数图像经过点A(-1,0)和点B(3,0),且开口向上,根据二次函数的性质,对称轴是这两点x坐标的平均值,即x = (-1 + 3) / 2 = 1。
2. 下列哪个选项是不等式2x - 3 > 0的解集?A. x > 3/2B. x < 3/2C. x > 3D. x < 3答案:A解析:将不等式2x - 3 > 0移项得到2x > 3,再除以2得到x > 3/2,因此选项A是正确的。
二、填空题3. 计算绝对值:|-7| = _______。
答案:7解析:绝对值表示一个数距离0的距离,因此|-7|表示-7距离0的距离,即7。
4. 计算平方根:√9 = _______。
答案:±3解析:平方根是一个数的平方等于给定数的那个数,9的平方根是3,因为3的平方是9。
同时,-3的平方也是9,所以9的平方根是±3。
三、解答题5. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
答案:5解析:根据勾股定理,直角三角形的斜边长度等于两直角边长度的平方和的平方根。
即斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5。
6. 某工厂生产一种零件,每件成本为10元,售价为15元,若该工厂希望获得的利润不低于1000元,问至少需要生产多少件零件?答案:100件解析:设需要生产的零件数量为x件,则总利润为(15 - 10)x = 5x元。
根据题意,5x ≥ 1000,解得x ≥ 200。
因此,至少需要生产200件零件。
四、证明题7. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
初三中考必考的数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. √42. 若a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 下列函数中,定义域为实数集R的是()A. y = √xB. y = x^2C. y = 1/xD. y = |x|4. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是()A. 22cmB. 24cmC. 26cmD. 28cm6. 已知一次函数y = kx + b的图象经过点(2,3)和(-1,1),则该函数的解析式为()A. y = 2x - 1B. y = -2x + 1C. y = 2x + 1D. y = -2x - 17. 下列图形中,不是轴对称图形的是()A. 矩形B. 正方形C. 菱形D. 梯形8. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°9. 若一个数x满足不等式x - 3 < 2x + 1,则x的取值范围是()A. x > -4B. x < -4C. x ≥ -4D. x ≤ -410. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2二、填空题(每题3分,共30分)11. 若m = 2,则方程2m - 3 = 0的解是______。
初三中考数学试卷完整版
考试时间:120分钟满分:150分一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. 2.52. 若 a < b,则下列不等式中正确的是()A. a - 1 < b - 1B. a + 1 > b + 1C. -a > -bD. a + 1 < b + 13. 已知一次函数 y = kx + b 的图象经过点(2,-1),则下列选项中,k的值可能是()A. 1B. -1C. 0.5D. -0.54. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°5. 若 x^2 - 4x + 3 = 0,则 x 的值是()A. 1 或 3B. -1 或 3C. 1 或 -3D. -1 或 -36. 下列函数中,y是x的反比例函数的是()A. y = x + 1B. y = 2xC. y = 1/xD. y = x^27. 若平行四边形ABCD的对角线BD平分对角∠ABC,则∠BAD的度数是()A. 45°B. 90°C. 135°D. 180°8. 在直角坐标系中,点P(-2,3)关于y轴的对称点是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,-3)9. 若 a、b、c 是等差数列的连续三项,且 a + b + c = 12,则 b 的值是()A. 3B. 4C. 5D. 610. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 等腰三角形D. 梯形二、填空题(每小题3分,共30分)11. 2的平方根是______,-3的立方根是______。
12. 若 a = -2,则 |a| + a = ______。
13. 在△ABC中,∠A = 90°,AB = 6,AC = 8,则BC的长度是______。
初中数学中考必考题试卷
1. 已知三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°2. 下列各数中,有理数是()A. √2B. πC. √-1D. 0.1010010001…3. 下列运算正确的是()A. (-2)^3 = -8B. (-2)^3 = 8C. (-2)^2 = -4D. (-2)^2 = 44. 已知等腰三角形ABC中,AB=AC,AD是底边BC上的高,则∠BAD的度数是()A. 45°B. 60°C. 90°D. 120°5. 下列函数中,一次函数是()A. y = x^2B. y = 2x + 3C. y = √xD. y = 1/x6. 已知一元二次方程ax^2 + bx + c = 0(a≠0)的解为x1、x2,则下列结论正确的是()A. x1 + x2 = aB. x1 x2 = bC. x1 + x2 = -bD. x1 x2 = c7. 下列图形中,中心对称图形是()A. 等腰三角形B. 等边三角形C. 正方形D. 等腰梯形8. 已知函数y = kx + b(k≠0)的图象经过点A(2,3),则下列结论正确的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 09. 下列各数中,无理数是()A. √2B. πC. √-1D. 0.1010010001…10. 已知一元一次方程3x - 2 = 5的解是x = 3,则下列方程的解也是x = 3的是()A. 2x + 1 = 7B. 2x - 1 = 7C. 3x + 2 = 9D. 3x - 2 = 711. 若a > b,则a - b > 0,a + b > 0。
初三数学中考真题试卷
初三数学中考真题试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1416B. 0.3333...C. √2D. 22/72. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 如果一个数的平方等于该数本身,那么这个数可能是:A. 1B. -1C. 0D. 1或-14. 下列哪个表达式的结果是一个正整数?A. √49B. √0.16C. -√4D. √(-1)5. 一个圆的半径为5,那么它的面积是:A. 25πC. 100πD. 125π6. 一个多项式P(x) = 2x^3 - 3x^2 + x - 5,它的导数P'(x)是:A. 6x^2 - 6x + 1B. 6x^2 - 6xC. 2x^2 - 3x + 1D. 2x^3 - 3x^27. 如果a和b是方程x^2 + 5x + 6 = 0的两个根,那么a + b的值是:A. -3B. -5C. -6D. 08. 一个数列1, 2, 3, ..., 10的和可以用以下哪个公式表示?A. (10 × 11) / 2B. 10 × 11C. 10^2D. 10^2 / 29. 下列哪个是等差数列5, 7, 9, 11, ...的第10项?A. 25B. 26C. 27D. 2810. 如果一个函数f(x) = 3x - 2,那么f(3)的值是:A. 7C. 9D. 10二、填空题(每题2分,共20分)11. 一个正数的平方根是4,那么这个数是________。
12. 一个数的相反数是-5,那么这个数是________。
13. 如果一个圆的直径是14cm,那么它的周长是________cm。
14. 一个直角三角形的两条直角边分别为6cm和8cm,那么它的面积是________cm²。
15. 一个等差数列的首项是2,公差是3,那么第5项是________。
初三数学中考试题及答案
初三数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √4C. πD. √9答案:C2. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. 2x - 3y = 0D. x³ - 2x² + 3 = 0答案:B3. 若一个角的补角是120°,则该角的度数为:A. 60°B. 30°C. 150°D. 90°答案:A4. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x² + 1C. y = √xD. y = 1/x答案:A5. 在一个直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰梯形D. 任意五边形答案:C7. 已知一个等腰三角形的两边长分别为5和8,那么它的周长可能是:A. 18B. 21C. 26D. 30答案:C8. 以下哪个选项是反比例函数?A. y = 2/xB. y = x + 3C. y = x²D. y = √x答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个圆的半径是3cm,那么它的直径是______。
答案:6cm13. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是______。
答案:16cm14. 一个角的余角是40°,那么这个角的度数是______。
初三中考数学必刷试卷答案
一、选择题1. 下列各数中,不是有理数的是()A. -3.14B. √2C. 0.5D. 1/2答案:B解析:有理数包括整数和分数,而√2是无理数,不属于有理数。
2. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1答案:B解析:绝对值表示数与0的距离,0的绝对值最小。
3. 下列各方程中,无解的是()A. x + 3 = 6B. 2x - 4 = 0C. 3x + 5 = 0D. 5x - 2 = 10答案:C解析:将方程两边同时除以3得到x + 5/3 = 0,显然无解。
4. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为()A. x1 = 2, x2 = 3B. x1 = 3, x2 = 2C. x1 = -2, x2 = -3D. x1 = -3,x2 = -2答案:A解析:将方程因式分解得(x - 2)(x - 3) = 0,解得x1 = 2, x2 = 3。
5. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为()A. (2, -3)B. (-2, 3)C. (2, 6)D. (-2, -3)答案:A解析:点P关于x轴的对称点,横坐标不变,纵坐标取相反数,故坐标为(2, -3)。
二、填空题6. 若a = -3,则|a| + |a - 1|的值为()答案:4解析:|a| + |a - 1| = |-3| + |-3 - 1| = 3 + 4 = 7。
7. 已知一元二次方程x^2 - 4x + 3 = 0,则方程的解为()答案:x1 = 1, x2 = 3解析:将方程因式分解得(x - 1)(x - 3) = 0,解得x1 = 1, x2 = 3。
8. 在等腰三角形ABC中,底边AB = 4,腰AC = 5,则顶角A的度数为()答案:36°解析:由等腰三角形的性质,底边上的高CD等于底边AB的一半,即CD = 2。
在直角三角形ACD中,根据勾股定理,AD = √(AC^2 - CD^2) = √(5^2 - 2^2) = √21。
初三数学中考必考题试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001…(循环小数)D. √162. 已知二次函数y=ax^2+bx+c(a≠0)的图像与x轴有两个交点,且这两个交点的横坐标分别为-1和2,则a、b、c的关系是()A. a+b+c=0B. a-b+c=0C. a+b-c=0D. a-b-c=03. 在等边三角形ABC中,角A的度数是()A. 60°B. 75°C. 80°D. 90°4. 下列函数中,自变量x的取值范围是全体实数的是()A. y=√(x-1)B. y=1/xC. y=x^2-4x+4D. y=2x-15. 在直角坐标系中,点P(-2,3)关于y轴的对称点坐标是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)6. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 所有平行四边形都是矩形C. 相似三角形的对应边成比例D. 直线与平面垂直的充分必要条件是直线与平面上的任意直线垂直7. 已知一元二次方程x^2-4x+3=0的两个根分别为x1和x2,则x1+x2的值是()A. 1B. 3C. 4D. 78. 在梯形ABCD中,AD∥BC,AB=CD,若AD=4cm,BC=6cm,则梯形ABCD的面积是()A. 10cm^2B. 12cm^2C. 14cm^2D. 16cm^29. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 正五边形D. 正六边形10. 若等比数列{an}的首项a1=2,公比q=3,则第5项a5的值是()A. 18B. 54C. 162D. 486二、填空题(每题3分,共30分)11. 若x^2-5x+6=0,则x的值是________。
12. 已知等边三角形ABC的边长为a,则其周长是________。
13. 在直角三角形中,若∠A=30°,∠B=60°,则∠C的度数是________。
【必考题】数学中考试卷(含答案)
【必考题】数学中考试卷(含答案)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm4.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.5.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③7.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8B .16C .24D .328.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 9.下列计算正确的是( )A .a 2•a=a 2B .a 6÷a 2=a 3C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a10.估6的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.分解因式:x 3﹣4xy 2=_____.14.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.15.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.18.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.19.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____.20.分式方程32xx2--+22x-=1的解为________.三、解答题21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)按如下分数段整理、描述这两组样本数据在表中,a = ,b = . (分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x = ,y = .(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.5.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.6.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.7.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.8.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
初三数学中考必考题(2020年8月整理).pdf
初三数学中考必考题1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)2.如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AMABC D ER P H Q=x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.ABC MN图 3OABC MND 图 2OABMNP图 1O6如图,抛物线21:23L y x x =−−+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. C D A BE F NM(1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =−x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =−+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物x友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =−+与x 轴交于点A ,点B ,与直线34y x b =−+相交于点B ,点C ,直线34y x b =−+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?12.在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若yxODEC FA BC 的坐标为(0,2),AB=5,A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n −++−=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CMCN+的值是否为定值,若是,求出定值,若不是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1−=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<−x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.16.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.P图①压轴题答案1.解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==,所以AOB DBE ∆∆.2解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x−∴=, 即y 关于x 的函数关系式为:365y x =−+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫−+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x −+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x −+∴=,152x ∴=.ABCD ERP H QM21 HA BCD E R PHQ综上所述,当x 为185或6或152时,PQR △为等腰三角形. 3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴△AMN ∽△ABC .∴AM AN AB AC=,即43x AN=.∴AN =43x .……………2分∴S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4)……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知△AMN ∽△ABC .∴AM MN AB BC=,即45x MN=.∴54MN x =, ∴58OD x =.…………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴△BMQ ∽△BCA . ∴BM QM BC AC=. ∴55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴x =4996. ∴当x =4996时,⊙O 与直线B C 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵MN ∥BC ,∴∠AMN =∠B ,∠AOM =∠APC∴△AMO ∽△ABP .∴12AM AO AB AP ==.AM =MB =2. 故以下分两种情况讨论:①当0<x ≤2时,2Δ83x S y PMN ==.∴当x =2时,2332.82y =⨯=最大……………………………………8分 ②当2<x <4时,设PM ,PN 分别交BC 于E ,F .BD 图 2P 图 3∵四边形AMPN 是矩形, ∴PN ∥AM ,PN =AM =x . 又∵MN ∥BC ,∴四边形MBFN 是平行四边形. ∴FN =BM =4-x .∴()424PF x x x =−−=−. 又△PEF ∽△ACB .∴2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴()2322PEF S x ∆=−.………………………………………………9分 MNP PEF y S S ∆∆=−=()222339266828x x x x −−=−+−.……………………10分当2<x <4时,29668y x x =−+−298283x ⎛⎫=−−+ ⎪⎝⎭.∴当83x =时,满足2<x <4,2y =最大.……………………11分 综上所述,当83x =时,y 值最大,最大值是2.…………………………12分4解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =, 以直线AB的解析式为43y x =−+ (2)由旋转知,AP=AD,∠PAD=60o, ∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=, ∴GB=2BD=32,OH=OE+HE=OE+BG=37222+=∴D(532,72)(3)设OP=x,则由(2)可得D(323,2x x++)若ΔOPD的面积为:133(2)2x x+=解得:2321x−±=所以P(2321−±,0)567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .……………1分 ∵AB ∥CD ,∴DG =CH ,DG ∥CH .∴四边形DGHC 为矩形,GH =CD =1.∵DG =CH ,AD =BC ,∠AGD =∠BHC =90°,∴△AGD ≌△BHC (HL ).∴AG =BH =2172−=−GH AB =3.………2分 ∵在Rt △AGD 中,AG =3,AD =5, ∴DG =4.∴()174162ABCD S +⨯==梯形.………………………………………………3分(2)∵MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ME =NF ,ME ∥NF .∴四边形MEFN 为矩形. ∵AB ∥CD ,AD =BC , ∴∠A =∠B .∵ME =NF ,∠MEA =∠NFB =90°, ∴△MEA ≌△NFB (AAS ).∴AE =BF .……………………4分设AE =x ,则EF =7-2x .……………5分C DA B E FN M G H C DA B E F NM G H∵∠A =∠A ,∠MEA =∠DGA =90°, ∴△MEA ∽△DGA . ∴DGME AG AE =. ∴ME =x 34.…………………………………………………………6分∴6494738)2(7342+⎪⎭⎫ ⎝⎛−−=−=⋅=x x x EF ME S MEFN 矩形.……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能.……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得1021=x .……………………………………………11分∴EF =21147272105x −=−⨯=<4. ∴四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形.8解:(1)由题意可知,()()()131−+=+m m m m .解,得m =3.………………………………3分∴A (3,4),B (6,2); ∴k =4×3=12.……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵四边形AN 1M 1B 为平行四边形,∴线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴N 1点坐标为(0,4-2),即N 1(0,2);………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0).………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321−=k .∴直线M 1N 1的函数表达式为232+−=x y .……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴M 2点坐标为(-3,0),N 2点坐标为(0,-2).………………………9分设直线M 2N 2的函数表达式为22−=x k y ,把x =-3,y =0代入,解得322−=k ,∴直线M 2N 2的函数表达式为232−−=x y .所以,直线MN 的函数表达式为232+−=x y 或232−−=x y .………………11分(3)选做题:(9,2),(4,5).………………………………………………2分9解:(1)直线y =−x 轴交于点A ,与y 轴交于点C .(10)A ∴−,,(0C ,·················································································· 1分 点A C ,都在抛物线上,0a c c ⎧=⎪∴⎨⎪=⎩a c ⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x =− ······················································ 3分 ∴顶点13F ⎛⎫− ⎪ ⎪⎝⎭, ······················································································· 4分 (2)存在 ····································································································· 5分1(0P ··································································································· 7分2(2P ··································································································· 9分 (3)存在 ··································································································· 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ················································································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =−(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =,在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴−−, ············································· 12分设直线B F '的解析式为y kx b =+x3k bk b⎧−=−+⎪∴⎨=+⎪⎩解得6kb=⎪⎪⎨⎪=⎪⎩62y x∴=− ······················································································· 13分yy x⎧=−⎪∴⎨=−⎪⎩377xy⎧=⎪⎪⎨⎪=−⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛⎫−⎪⎪⎝⎭,. ······· 14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ································ 11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠HFG CBO∴∠=∠同方法一可求得(30)B,.在Rt BOC△中,tan3OBC∠=,30OBC∴∠=,可求得3GH GC==,GF∴为线段CH的垂直平分线,可证得CFH△为等边三角形,AC∴垂直平分FH.即点H为点F关于AC的对称点.0H⎛∴−⎝⎭, ··········································· 12分设直线BH的解析式为y kx b=+,由题意得03k bb=+⎧⎪⎨=⎪⎩kb⎧=⎪⎪⎨⎪=⎪⎩y∴=······················································································ 13分xy y ⎧=⎪∴⎨⎪=⎩77x y =⎪⎪⎨⎪=−⎪⎩377M ⎛∴− ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫− ⎪ ⎪⎝⎭,. 1 10解:(1)点E 在y 轴上 ··············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM = 点D 在第一象限,∴点D的坐标为122⎛⎫ ⎪ ⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨++=⎪⎩解得99a b =−⎪⎪⎨⎪=−⎪⎩∴所求抛物线表达式为:28299y x x =−−+ ·················································· 9分 (3)存在符合条件的点P ,点Q . ································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =−−+上28229m ∴−+=解得,10m =,2m = 1(02)P ∴,,22P ⎛⎫ ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB ==, ∴当点1P 的坐标为(02),时, 点Q 的坐标分别为1(Q,22)Q ; 当点2P 的坐标为28⎛⎫−⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫−⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =−+中,令0y = 23304x ∴−+=12x ∴=,22x =−(20)A ∴−,,(20)B , (1)又点B 在34y x b =−+上 302b ∴=−+32b =BC ∴的解析式为3342y x =−+ ········································································ 2分 (2)由23343342y x y x ⎧=−+⎪⎪⎨⎪=−+⎪⎩,得11194x y =−⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ····················································· 4分 914C ⎛⎫∴− ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =······················································································· 5分 1994242ABC S ∴=⨯⨯=△ ·················································································· 6分 (3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥BNP BEO ∴△∽△ ······················································································· 7分 BN NPBE EO∴=································································································· 8分 由直线3342y x =−+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE =25322t NP ∴=,65NP t ∴= ················································································ 9分 16(4)25S t t ∴=−2312(04)55S t t t =−+<< ············································································· 10分 2312(2)55S t =−−+ ····················································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解:(1)m=-5,n=-3 (2)y=43x+2 (3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h , 设△ABCAB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h +=又H=CM CN MN⋅化简可得(CM+CN)﹒1MN CM CN h=⋅故111CM CN h+=13解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOBDBE ∆∆.14解(Ⅰ)当1==b a ,1−=c 时,抛物线为1232−+=x x y , 方程01232=−+x x 的两个根为11−=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10−,和103⎛⎫ ⎪⎝⎭,. ············································ 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124−=∆≥0,有c ≤31. ···································· 3分①当31=c 时,由方程031232=++x x ,解得3121−==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫− ⎪⎝⎭,. ······························ 4分 ②当31<c 时, 11−=x 时,c c y +=+−=1231, 12=x 时,c c y +=++=5232.由已知11<<−x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31−=x ,。
数学初三中考必考试题
数学初三中考必考试题
中考数学必考题目类型包括但不限于以下几个方面:
1. 代数式求值:根据已知条件,求代数式的值。
2. 方程与方程组:包括一元一次方程、二元一次方程组、分式方程等。
3. 不等式与不等式组:包括一元一次不等式、一元一次不等式组等。
4. 函数及其图像:包括一次函数、反比例函数、二次函数等,要求能根据已知条件求函数的解析式,能绘制函数图像,理解并掌握函数的性质。
5. 三角形:包括直角三角形、等腰三角形、等边三角形、等腰直角三角形等,要求掌握三角形的性质和相关定理,能进行简单的证明和计算。
6. 四边形:包括矩形、菱形、正方形、梯形等,要求掌握四边形的性质和相关定理,能进行简单的证明和计算。
7. 圆:包括圆的性质、圆的定理、圆的面积和周长等,要求掌握圆的性质和相关定理,能进行简单的证明和计算。
8. 锐角三角函数:要求掌握锐角三角函数的定义和性质,能进行简单的计算和应用。
9. 概率与统计:要求能进行简单的概率和统计计算,掌握常用的统计方法和技巧。
10. 实际应用题:要求能运用所学数学知识解决实际问题,包括路程问题、
工程问题、增长率问题、利率问题等。
以上是中考数学的一些必考题目类型,具体题型可能会因地区和考试年份而有所不同。
建议考生在备考期间多做真题和模拟题,熟悉题型和考试难度,提高解题能力和应试技巧。
数学初中中考必考题试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. √4D. √-92. 下列运算正确的是()A. (-3)² = -9B. (-2)³ = -8C. (-5)⁴ = 625D. (-4)² = 163. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 04. 下列函数中,自变量x的取值范围是全体实数的是()A. y = 2x + 1B. y = √(x - 3)C. y = 1/xD. y = x² - 45. 在直角坐标系中,点P(-2, 3)关于y轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)6. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 16cmB. 18cmC. 20cmD. 22cm7. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等边三角形D. 等腰梯形8. 下列方程中,解为x = 2的是()A. 2x + 3 = 7B. 3x - 4 = 2C. 4x + 5 = 11D. 5x - 6 = 99. 下列数据中,众数是5的是()A. 1, 2, 3, 4, 5, 5, 6B. 2, 3, 4, 5, 6, 7, 8C. 3, 4, 5, 6, 7, 8, 9D. 4, 5, 6, 7, 8, 9, 1010. 下列不等式中,不正确的是()A. 2x + 3 > 7B. 3x - 4 < 5C. 4x + 5 ≥ 9D. 5x - 6 ≤ 7二、填空题(每题3分,共30分)11. 若a² = 9,则a = _______。
12. 在直角三角形中,若∠A = 30°,∠B = 60°,则∠C = _______。
(必考题)中考数学试卷经典练习题(答案解析)
一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 4.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁 5.函数21y x =-中的自变量x 的取值范围是( ) A .x ≠12 B .x ≥1 C .x >12 D .x ≥126.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B .255C .52D .237.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .9.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .8610.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm11.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)12.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S 的值为( )A .24B .12C .6D .3 13.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,3 14.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( ) A . B . C . D .15.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个二、填空题16.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .17.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .18.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.19.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.20.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.21.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)22.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.23.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.24.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 25.3x +x 的取值范围是_____.三、解答题26.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?27.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E .(1)求证:直线CD 是⊙O 的切线.(2)求证:CD BE AD DE ⋅=⋅.28.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.29.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.30.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度3i =B 到C 坡面的坡角45CBA ∠=︒,42BC =.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.012 1.4143 1.732)【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.A4.D5.D6.A7.B8.A9.C10.C11.D12.B13.A14.B15.C二、填空题16.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°17.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×10618.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出19.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD=2xCF=3x∴∴tan∠DCF=故答案为:【点20.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主21.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合22.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=23.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多24.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=25.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x-- =2x x-, ∴出现错误是在乙和丁,故选D . 【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.5.D解析:D【解析】【分析】由被开方数为非负数可行关于x 的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x ≥12, 故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 6.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB ===3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 3AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.7.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B . 考点:简单组合体的三视图.8.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 9.C解析:C【解析】【分析】设第n 个图形中有a n 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n =12n 2+72n+1(n 为正整数)”,再代入n =9即可求出结论. 【详解】设第n 个图形中有a n 个点(n 为正整数),观察图形,可知:a 1=5=1×2+1+2,a 2=10=2×2+1+2+3,a 3=16=3×2+1+2+3+4,…, ∴a n =2n+1+2+3+…+(n+1)=12n 2+72n+1(n 为正整数), ∴a 9=12×92+72×9+1=73. 故选C .【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n =12n 2+72n+1(n 为正整数)”是解题的关键. 10.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.11.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D .【点睛】本题考查规律型:数字的变化类.12.B解析:B【解析】【分析】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S =12.故选B.13.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.14.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.15.C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .二、填空题16.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°17.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106. 故答案为9.6×106. 18.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲=9030=3m/s ,V 追=90120−30=1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:12004=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V 甲=9030=3m/s ,V 追=90120−30=1m/s , ∴V 乙=1+3=4m/s ,∴乙走完全程所用的时间为:12004=300s ,此时甲所走的路程为:(300+30)×3=990m .此时甲乙相距:1200﹣990=210m则最后相遇的时间为:2103+4=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义. 19.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.故答案为:2. 【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.20.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.21.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.22.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.23.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.24.y2>y1>y3【解析】【分析】根据图象上的点(xy )的横纵坐标的积是定值k 可得xy=k 据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y 2>y 1>y 3.【解析】【分析】根据图象上的点(x ,y )的横纵坐标的积是定值k ,可得xy=k ,据此解答即可.【详解】解:∵函数y=-3x 的图象上有三个点(-2,y 1),(-1,y 2),(12,y 3), ∴-2y 1=-y 2=12y 3=-3, ∴y 1=1.5,y 2=3,y 3=-6,∴y 2>y 1>y 3.故答案为y 2>y 1>y 3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.25.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题26.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型. 27.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.28.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出222OA AB OB =-=.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒. ∴222OA AB OB -=.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.29.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.30.(1)隧道打通后从A 到B 的总路程是(434)公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】 (1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中,∵3CD i AD==, ∴343AD CD ==∴()434AB =公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+∵434AB =, ∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.。
【必考题】数学中考试卷(含答案)
【必考题】数学中考试卷(含答案)【必考题】数学中考试卷(含答案)第一题:计算下列各式的值:(1) $\frac{3}{4}-\frac{1}{2}+\frac{5}{6}$(2) $2\frac{1}{5}+\left(1\frac{1}{3}-\frac{5}{6}\right)$(3) $3\frac{2}{5}-\left(1\frac{1}{4}+\frac{3}{8}\right)$答案:(1) $\frac{3}{4}-\frac{1}{2}+\frac{5}{6}=\frac{9}{12}-\frac{6}{12}+\frac{10}{12}=\frac{13}{12}$(2) $2\frac{1}{5}+\left(1\frac{1}{3}-\frac{5}{6}\right)=\frac{11}{5}+\left(\frac{4}{3}-\frac{5}{6}\right)=\frac{11}{5}+\frac{8}{6}-\frac{5}{6}=\frac{71}{30}$(3) $3\frac{2}{5}-\left(1\frac{1}{4}+\frac{3}{8}\right)=\frac{17}{5}-\left(\frac{5}{4}+\frac{3}{8}\right)=\frac{44}{10}-\frac{13}{8}=\frac{47}{20}$第二题:已知$a=3,b=5$,求:(1) $2(a^2-b^2)+5(a+b)$(2) $\sqrt{4a^2+3b^2}$(1) $2(a^2-b^2)+5(a+b)=2(9-25)+5(3+5)=-32+40=8$(2) $\sqrt{4a^2+3b^2}=\sqrt{4\cdot 3^2+3\cdot 5^2}=\sqrt{4\cdot 9+3\cdot 25}=\sqrt{36+75}=\sqrt{111}$第三题:解方程:(1) $2x+5=17$(2) $3(2x-4)-5x=1$答案:(1) $2x+5=17$将方程中的常数项移到右边,得到$2x=17-5=12$再将方程两边同除以2,得到$x=\frac{12}{2}=6$所以方程的解为$x=6$(2) $3(2x-4)-5x=1$展开方程,并将同类项合并,得到$6x-12-5x=1$合并同类项,得到$x-12=1$将方程中的常数项移到右边,得到$x=1+12=13$所以方程的解为$x=13$求解下列不等式:(1) $2x+3>5x-1$(2) $4(x-3)>2x+7$答案:(1) $2x+3>5x-1$将方程中的常数项移到右边,得到$2x-5x>-1-3$合并同类项,得到$-3x>-4$将方程两边同除以$-3$,注意不等号方向的改变,得到$x<\frac{4}{3}$所以不等式的解为$x<\frac{4}{3}$(2) $4(x-3)>2x+7$展开方程,并将同类项合并,得到$4x-12>2x+7$合并同类项,得到$4x-2x>7+12$将方程两边合并同类项,并将常数项移到右边,得到$2x>19$将方程两边同时除以2,得到$x>\frac{19}{2}$所以不等式的解为$x>\frac{19}{2}$综上所述,本次数学中考试卷共含有四道题目,涉及到了基本的四则运算、方程的解和不等式的求解。
中考数学考试题及答案
中考数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √3B. 0.3C. πD. 1/3答案:A2. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 4D. 8答案:A4. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个正方体的体积是64立方厘米,它的表面积是多少?A. 64B. 96C. 128D. 256答案:C6. 一个数列的前三项是1, 2, 3,如果这个数列是等差数列,第四项是多少?A. 4B. 5C. 6D. 7答案:A7. 一个二次方程x² - 5x + 6 = 0的解是什么?A. x = 2, 3B. x = 1, 6C. x = 3, 2D. x = 4, 1答案:C8. 一个函数y = 2x - 1在x = 3时的值是多少?A. 5B. 4C. 3D. 2答案:A9. 下列哪个图形是中心对称图形?A. 正方形B. 圆C. 等边三角形D. 矩形答案:B10. 一个长方体的长、宽、高分别是6, 4, 3,它的体积是多少?A. 72B. 64C. 84D. 96答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是________。
答案:±512. 一个数的立方根是2,这个数是________。
答案:813. 一个数的倒数是1/4,这个数是________。
答案:414. 一个数的相反数是-3,这个数是________。
答案:315. 一个数的平方是25,这个数是________。
答案:±516. 一个圆的直径是14,它的半径是________。
答案:717. 一个三角形的三边长分别是3, 4, 5,这是一个________三角形。
数学初三必考试题及答案
数学初三必考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 双曲线答案:B2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是:A. 3B. 5C. 8D. 不能确定答案:B4. 下列哪个选项是圆的面积公式?A. A = πrB. A = πr²C. A = 2πrD. A = r²答案:B5. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A6. 一个数的绝对值是它自己,这个数是:A. 正数B. 负数C. 0D. 非负数答案:D7. 一个数的倒数是它自己,这个数是:A. 1B. -1C. 0D. 2答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 2答案:A, B, C9. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 2答案:A, B10. 一个数的平方根等于它的立方根,这个数是:A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。
答案:±52. 一个数的立方是-8,那么这个数是____。
答案:-23. 一个数的绝对值是5,那么这个数是____。
答案:±54. 一个数的倒数是2,那么这个数是____。
答案:1/25. 一个数的平方根是3,那么这个数是____。
答案:9三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为4和6,求第三边的长度。
答案:第三边的长度为6。
2. 已知一个数的平方是36,求这个数。
答案:这个数是±6。
3. 已知一个数的绝对值是7,求这个数。
答案:这个数是±7。
4. 已知一个数的倒数是3,求这个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学中考必考题1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AMA BC D ER P H Q=x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.ABCMN P图 3OABMND 图 2 OABMNP图 1O6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. C D A BE F NM(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物x图16友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?12.在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若y ODEC FA BC 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CM CN+的值是否为定值,若是,求出定值,若不是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.P '图①16.已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,== ==所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOB DBE ∆∆.2 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QCAB BC∴=,10610y x-∴=,即y关于x的函数关系式为:365y x=-+.(3)存在,分三种情况:①当PQ PR=时,过点P作PM QR⊥于M,则QM RM=.1290∠+∠=,290C∠+∠=,1C∴∠=∠.84cos1cos105C∴∠===,45QMQP∴=,1364251255x⎛⎫-+⎪⎝⎭∴=,185x∴=.②当PQ RQ=时,312655x-+=,6x∴=.③当PR QR=时,则R为PQ中垂线上的点,于是点R为EC的中点,11224CR CE AC∴===.tanQR BACCR CA==,366528x-+∴=,152x∴=.综上所述,当x为185或6或152时,PQR△为等腰三角形.3解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.∴△AMN ∽△ABC.∴AM ANAB AC=,即43x AN=.∴AN=43x.……………2分∴S=2133248MNP AMNS S x x x∆∆==⋅⋅=.(0<x<4)……………3分(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO=OD =21MN.在Rt△ABC中,BC .AB CD ERPH QM21H QAB CD ERPH QB图 1由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2. 故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 P图 4BP 图 3MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得3k =-, 以直线AB的解析式为4y x =+ (2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=2,DH=GH+GD=2+2, ∴32,OH=OE+HE=OE+BG=37222+=∴,72)(3)设OP=x,则由(2)可得D(,2x x )若ΔOPD的面积为:13(2)22x x += 解得:3x -=所以P(3-567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H . ……………1分 ∵ AB ∥CD ,∴ DG =CH ,DG ∥CH .∴ 四边形DGHC 为矩形,GH =CD =1.∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°,∴ △AGD ≌△BHC (HL ).∴ AG =BH =2172-=-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.∴ ()174162ABCD S +⨯==梯形. ………………………………………………3分 (2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ ME =NF ,ME ∥NF .∴ 四边形MEFN 为矩形.∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .∴ DGME AG AE =. ∴ ME =x 34. …………………………………………………………6分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分 C D A B E FN M G H C DA B E F N M G H当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分 (3)能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF .即 =34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4.∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分 9解:(1)直线y =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ·················································································· 1分点A C ,都在抛物线上,03a c c ⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为233y x x =-- ······················································ 3分 ∴顶点13F ⎛- ⎝⎭, ······················································································· 4分 (2)存在 ····································································································· 5分1(0P ··································································································· 7分2(2P ··································································································· 9分 (3)存在 ··································································································· 10分 理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ·············································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线2y x x =(30)B ∴, 在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ············································· 12分设直线B F '的解析式为y kx b =+33k b k b ⎧-=-+⎪∴⎨-=+⎪⎩解得2k b ⎧=⎪⎪⎨⎪=-⎪⎩62y x ∴=- ······················································································· 13分x图9y y x ⎧=⎪∴⎨=⎪⎩解得37x y ⎧=⎪⎪⎨⎪=⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. ······· 14分解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ································ 11分 过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=,BCO FHG ∠=∠HFG CBO ∴∠=∠同方法一可求得(30)B ,.在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,可求得GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.0H ⎛∴ ⎝⎭, ··········································· 12分设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=······················································································ 13分y y ⎧=-⎪∴⎨⎪=⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛- ⎝⎭,. 1x10解:(1)点E 在y 轴上 ··············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D的坐标为122⎛⎫⎪ ⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P 在抛物线28299y x x =--+上 282299m m ∴--+=解得,10m =,28m =-1(02)P ∴,,22P ⎛⎫⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q 的坐标分别为1(Q ,2Q ;当点2P 的坐标为28⎛⎫- ⎪ ⎪⎝⎭时,点Q 的坐标分别为328Q ⎛⎫-⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , · (1)又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ········································································ 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩222x y =⎧⎨=⎩ ·················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =······················································································· 5分 1994242ABC S ∴=⨯⨯=△ ·················································································· 6分 (3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥BNP BEO ∴△∽△ ······················································································· 7分 BN NPBE EO∴=································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= ················································································ 9分 16(4)25S t t ∴=-2312(04)55S t t t =-+<< ············································································· 10分2312(2)55S t =--+ ····················································································· 11分此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解:(1)m=-5,n=-3 (2)y=43x+2 (3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h , 设△ABC AB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h +=又 H=CM CN MN⋅化简可得 (CM+CN)﹒1MN CM CN h=⋅故 111CM CN h+=13解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,====所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且AO BO BD BE ==所以AOBDBE ∆∆.14解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ···························· 4分②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤.综上,31=c 或51c -<-≤. ····································································· 6分(Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ···························································································· 7分。