弹性力学 王光钦 课后解答

合集下载

弹性力学课后答案

弹性力学课后答案

弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。

2-4 按习题2-2分析。

2-5 在的条件中,将出现2、3阶微量。

当略去3阶微量后,得出的切应力互等定理完全相同。

2-6 同上题。

在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。

其区别只是在3阶微量(即更高阶微量)上,可以略去不计。

2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。

2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。

2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。

2-10 参见本章小结。

2-11 参见本章小结。

2-12 参见本章小结。

2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。

2-14 见教科书。

2-15 2-16 见教科书。

见教科书。

2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。

2-18 见教科书。

2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。

第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。

由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。

3-3 见3-1例题。

3-4 本题也属于逆解法的问题。

首先校核是否满足相容方程。

再由求出应力后,并求对应的面力。

本题的应力解答如习题3-10所示。

应力对应的面力是:主要边界:所以在边界上无剪切面力作用。

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(参考题)

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学教材习题及解答完整版

弹性力学教材习题及解答完整版

弹性力学教材习题及解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】1-1. 选择题a. 下列材料中,D属于各向同性材料。

A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。

b. 关于弹性力学的正确认识是A。

A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

c. 弹性力学与材料力学的主要不同之处在于B。

A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。

d. 所谓“完全弹性体”是指B。

A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。

2-1. 选择题a.所谓“应力状态”是指B。

A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。

2-2. 梯形横截面墙体完全置于水中,如图所示。

已知水的比重为,试写出墙体横截面边界AA',AB,BB’的面力边界条件。

2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。

根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。

试写出楔形体的边界条件。

2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如图所示。

试写出球体的面力边界条件。

2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。

弹性力学第3版王光钦第二章习题解答

弹性力学第3版王光钦第二章习题解答

- 7 -第二章 弹性力学的基本方程和一般定理习题2-1 已知矩形截面杆件自由端受力P 的作用而发生横向弯曲,如图所示,梁的高度为h ,力P 的分布规律为)4(222y h J P p --=,不计体力,按材料力学方法求得应力分量为式中J 为截面惯性矩,试检查该应力分量是否满足平衡方程和边界条件。

解:1)将应力分量代入平衡微分方程 (1) (2)(3)考虑体力分量均为零,则由(1)式得左边===+-0JPy J Py 右边 题2-1图- 8 - 将应力分量代入平衡微分微分方程的(2)、(3),显然平衡微分方程满足。

2)应力边界条件 n m l T zx yx x x ττσ++= (4) n m l T zy y xy y τστ++= (5)n m l T z yz xz z σττ++=(6)这里必须注意:应力边界条件必须满足所有的边界,而不是仅仅求出待定常数。

下面考虑上边界 i )上边界0,1,0===n m l ,0,0,0===z y x T T T将上式代入(4)、(5)、(6)式,得0)(2==hy yx τ 0)(2==h y y σ 0)(2==h y yz τ上式就是简化后的边界条件。

必须强调的是:在考察边界条件时,需将已知的边界坐标值代入表达式。

将应力分量代入上面三式,显然三式成立。

ii )下边界0,1,0=-==n m l ,0,0,0===z y x T T T将上式代入(4)、(5)、(6)式,得0)(2=-=hy yx τ 0)(2=-=h y y σ 0)(2=-=h y yz τ将应力分量代入上面三式,显然三式成立。

- 9 -iii )右边界0,0,1===n m l ,,0=x T )4(222y h J P T y --=0,=z T 应注意:所有的面力都是与坐标正向一致为正。

将上式代入(4)、(5)、(6)式,得0)(==l x x σ)4(2)(22y h J P lx xy --==τ0)(==l x xz τ同样,在检验边界条件时,应该将l x =的值代入,显然三式成立。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中,Mdxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得, )1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学全程导学及习题全解

弹性力学全程导学及习题全解

1-7 试画出题1-7图中的的矩形薄板的正的体力,面力和应力的方向。

注意:(1)无论在哪一个位置的体力,在哪一个边界面上的面力,均为沿坐标轴正方向为正,反之为负。

(2)边界面上的应力应是以在正坐标面上,方向沿坐标轴正方向为正,反之为负,在负坐标面上,方向沿坐标轴负方向为正,反之为负。

1-8 试画出题1—8图中的三角形薄板的正的面力和体力的方向.2—7 在导出平面问题的三套基本方程时,分别应用了哪些基本假设?这些方程的适用条件是什么?【解答】(1)在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性.在两种平面问题( 平面应力、平面应变问题)中,平衡微分方程和几何方程都适用。

(2)在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。

在两种平面问题(平面应力、平面应变)中的物理方程不一样,如果将平面应力问题的物理方程中的E 换位21E μ-,1μμμ-换为,就得到平面应变问题的物理方程。

2-8 试列出题2-8图(a ),题2-8图(b )所示问题的全部边界条件.在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。

【解】(1)对于图(a )的问题在主要边界0,x x b ==上,应精确满足下列边界条件:0(),(),x x x x b gy gy σρσρ===-=- 0()0()0xy x xy x b ττ====;。

在小边界(次要边界)y=0上,能精确满足下列边界条件:01(),y y gh σρ==-()0yx τ=。

在小边界(次要边界)2y h =上,有位移边界上条件:22()0,()0y h y h u v ====。

这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚1δ=时,22212000()(),()0,()0b y y h by y h byx y h dx g h h b xdx dx σρστ===⎧=-+⎪⎪=⎨⎪⎪=⎩⎰⎰⎰。

弹性力学简明教程[第四版]_课后习题解答

弹性力学简明教程[第四版]_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学答案完整版

弹性力学答案完整版

x
u , x
y
v v u , xy y x y
a.应力中只有平面应力 b.且仅为 f x, y 第二种:平面应变问题 。
σ x从几方面考虑?各方面反映的是那些变量间的关 系?
答: 在弹性力学利分析问题, 要从 3 方面来考虑: 静力学方面、 几何学方面、 物理学方面。 平 面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问题的平衡 微分方程.平面问题的几何学方面主要考虑的是形变分量与位移分量之间的关系,也就是平 面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关 系,也就是平面问题中的物理方程. 2.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说 明。 答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。(2) 假定物体是完全弹性的。(3)假定物体是均匀的。(4)假定物体是各向同性的。(5)假 定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近 似视为“理想弹性体” 3.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明. 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问
几何方程
物理方程
例1
试列出图中的边界条件。
在小边界 x = l, 当平衡微分方程和其它各边界条件都已满足的条件下, 三个积分的边界条件 必然满足,可以不必校核。
注意在列力矩的条件时两边均是对原点 o 对于 y = h 的小边界可以不必校核。 2 证明:
的力矩来计算的。
简述材料力学和弹性力学在研究对象,研究方法方面的异同点。 答:在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的 构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如 板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进 行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学 推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假 定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。

弹性力学简答题答案======1.doc

弹性力学简答题答案======1.doc

弹性力学考试简答题弹性力学的概念,任务。

答:弹性体力学通常简称为弹性力学,是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。

弹性力学中的基本假定。

答:①连续性一假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留卜任何空隙。

②完全弹性一假定物体能完金恢复原形而没有任何剩余形变。

③均匀性一假定整个物体是由同一材料组成的。

④各向同性一假定物体的弹性在所有各个方向都相同.⑤小变形假定一假定位移和形变是微小的。

什么是理想弹性体。

答:凡是符合连续性、完全弹性、均匀性利各向同性这四个假定的物体就称为理想弹性体。

弹性力学依据的三大规律。

答:变形连续规律、应力-应变关系利运动(或平衡)规律。

边界条件。

答:边界条件表示在边界上位移与约束,或应力与面力之间的关系式。

它可以分为位移边界条件、应力边界条件和混合边界条件。

简述圣维南原理。

答:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主距也相同),那么,近处的成力分布将有显著的改变,但是远处所受的影响可以不计。

简述平面应力问题。

答:设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。

同时,体力也平行于板面并且不沿厚度变化。

弹性力学的问题解法有儿种,并简述。

答:弹性力学问题解法有两种。

一是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件.并由此解出位移分量,然后再求出形变分量和应力分量,这种解法称为位移法;二是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和相应的边界条件,并由此解出应力分量,然后再求出形变分量和位移分量,这种解法称为应力法。

弹性力学简明教程(第四版)_课后习题解答(完整资料).doc

弹性力学简明教程(第四版)_课后习题解答(完整资料).doc

【最新整理,下载后即可编辑】弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学简答题答案

弹性力学简答题答案

1、简述弹性力学的基本假设,并说说建立弹性力学基本方程时分别用到哪些假设?a、连续性2、完全弹性3、均匀性4、各向同性 5、小变形假设即形变和位移均是微小的平衡微分方程和几何方程:物体的连续性、均匀性、小变形物理方程:全部用到2、简述弹性力学应力、应变、体力和面力的符号规定(可用文字说明)。

正的切应力对应正的切应变吗?应力:截面的外法线沿坐标轴正向,则此截面为正面,正面上的应力沿坐标轴正向为正、负向为负。

相反,负面上的应力沿坐标轴负向为正、正向为负。

应变:线应变以伸长时为正、缩短时为负;切应变以直角变小时为正、变大时为负。

体力:沿坐标轴正方向为正、沿坐标轴负方向为负。

面力:沿坐标轴正方向为正、沿坐标轴负方向为负。

正的切应力对应正的切应变。

(图)τxy与τyx均为正的切应力,它们的作用是使DA与DB 间的夹角有减小的趋势,而根据切应变定义,此时应变为正。

3、简述平面问题的几何方程是如何得到的?a、先求出一点沿坐标轴x、y的线应变ξx、ξy。

b、求出两线段PA、PB之间直角的改变(γxy)ξx=&U\&X ξy=&V\&Y γxy=&U\&Y +&V\&X4、如果某一应力边界问题中有m个主要边界和n个次要边界,试问在主要、次要边界上各应满足什么类型的应力边界条件,各有几个条件?答:在m个主要的边界上,每个边界应有两个精确的应力边界条件,在n个次要边界上,每边的应力条件若不能满足,可以用三个等效的积分应力边界条件来确定。

5、如果某一应力边界问题中,除了一个次要边界外,所有的方程和边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,因而可以不必核实。

答:区域内的每一个微小单元体均已满足平衡条件,其余边界上的应力边界条件也已满足,那么在最后的次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。

6、试分析简支梁受均布载荷时,平面界面假设是否成立?答:弹性力学解答和材料力学解答的差别,是由于各自解法不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档