2011年山东高考数学知识点与分值分布表
2011年山东省高考数学试卷(文科)详解及考点剖析
2011年山东省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1、(2011•山东)设集合M={x|(x+3)(x﹣2)<0},N={x|1≤x≤3},则M∩N=()A、[1,2)B、[1,2]C、(2,3]D、[2,3]考点:交集及其运算。
专题:计算题。
分析:根据已知条件我们分别计算出集合M,N,并写出其区间表示的形式,然后根据交集运算的定义易得到A∩B的值.解答:解:∵M={x|(x+3)(x﹣2)<0}=(﹣3,2)N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A点评:本题考查的知识点是交集及其运算,其中根据已知条件求出集合M,N,并用区间表示是解答本题的关键.2、(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A、第一象限B、第二象限C、第三象限D、第四象限考点:复数代数形式的乘除运算;复数的基本概念。
专题:数形结合。
分析:把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.解答:解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D点评:判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.3、(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A、0B、C、1D、考点:指数函数的图像与性质。
专题:计算题。
分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.4、(2011•山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A、﹣9B、﹣3C、9D、15考点:利用导数研究曲线上某点切线方程。
近年全国高考数学考试(课标Ⅰ卷)考查内容、题量、分值分布及试题
近年全国高考数学考试(课标Ⅰ卷)考查内容、题量、分值分布及试题1.各题考查的知识内容与分值
(1)理科数学考查内容与考查分值
(2)文科数学考查内容与考查分值
2014,2013年都未考积分2.各知识内容考查的题量和分值(3)理科内容、题量与考分统计
注:不等式:*1小,即不等式内容渗透(综合)在另一个主体内容中考查。
线性规划归入不等式。
人教A版中无空间向量,B版中有。
总的讲,B版较A版稍难。
(4)文科内容、题量与考分统计
注:*1大*2小4分,即内容无主体的试题考查,仅为综合进去的内容,含在1个大题和2个小题之中。
3.近5年全国高考新课标数学Ⅰ卷考查特点、题量、分值分布等情况分析。
2011山东高考数学理科word版[1]
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回. 参考公式:柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高. 圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长.球的体积公式V=34R 3π, 其中R 是球的半径.球的表面积公式:S=4πR 2,其中R 是球的半径.用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni ii ni i x y nx ybay bx x nx==-⋅==--∑∑. 如果事件A B 、互斥,那么()()()P A B P A P B +=+.第I 卷(共60分)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}(3)(2)0M x x x =+-,{}13N x x =≤≤,则M N =( )(A )[1,2) (B )[1,2] (C )(2,3] (D )[2,3] (2) 复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为:( ) (A )0 (B )33(C )1 (D )3(4)不等式|x-5|+|x+3|≥10的解集是( ) (A )[-5,7] (B)[-4,6](C)(-∞,-5]∪[7,+∞) (D )(-∞,-4]∪[6,+∞) (5)对于函数y=f (x ),x ∈R ,“y=|f(x)|的图像关于y 轴”是“y=f (x )是奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(6)若函数()sin f x x ω=(ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) (A )3 (B )2(C )32 (D )23(7)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( )(A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元(8)已知双曲线22221x y a b-=(a>0,b>0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )(A )22154x y -= (B )22145x y -=(C )221x y 36-= (D )221x y 63-= (9)函数2sin 2xy x =-的图象大致是( )(10)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y=f (x )的图像在区间[0,6]上与x 轴的交点个数为( ) (A )6 (B )7 (C )8 (D )9(11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( ) (A )3 (B )2 (C )1 (D )0(12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O)(c ,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( ) (A )C 可能是线段AB 的中点 (B )D 可能是线段AB 的中点 (C )C ,D 可能同时在线段AB 上(D )C ,D 不可能同时在线段AB 的延长线上二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,输入2l =,m=3,n=5,则输出的y 的值是__________.(14)若62a x x ⎛-⎝⎭展开式的常数项为60,则常数a 的值为__________. (15)设函数()2xf x x =+(x >0),观察: ()()12x f x f x x ==+ f 2(x)=f(f 1(x ))=34xx +f 3(x)=f(f 2(x ))=78xx +f 4(x)=f(f 3(x ))=1516xx +……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f m (x )=f (f m-1(x ))=__________.(16)已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则__________.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (Ⅰ)求sin sin CA的值; (Ⅱ)若cosB=14,b=2,求△ABC 的面积S.(18)(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
全国卷高考数学各知识点分值分布(2012-2018)
1 )
选修方4-程5 不
等式选讲
24
24
24
24
24
23
23
5 5分
10+12 10分
8+19(1) 8分 9 5分
27分
17分 15 5分 27分
32分
30分
16 5分 (18%) 12 5分 (11.3%) 12 5分 (18%) 12+21 17分 (21.3%) 12+21 17分
导 极值(最值) 20(2) 7分 数 几何意义 13 5分
20(1) 5分
分布类别
全国新课标1卷2012~2018年文科数学各考点分值分布表
2012
2013
2014
2015
2016
2017
题号 分值 占比 题号 分值 总分 题号 分值 总分 题号 分值 总分 题号 分值 总分 题号 分值 总分
2018 题号 分值 总分
函数性质
函数图像 函 数 函数零点
函数运算
综合应用
11 5分
)
5分 15分 7 5分 15分
(10%)
(10%)
8
5分 17分 (11.3%)
6
数 解三角形 17 12分
10 5分
16 5分
17 12分
4
5分 5分 5分 5分 15分 5分
9 8
21(2)
14 21(1)
7 15 11
5分 5分
13
5分
27分
27分
6分
12+21(2) 11分
5分
6分 5分
6分
13 5分
13
5分
7
2009-2012四年山东省高考数学试题分析
2009-2012四年山东省高考数学试题分析一、近四年高考试题分析从2007年山东省率先进入新课标高考至今,已有六年时间,在这六年中,我们山东数学试题从试卷的结构和试卷的难度上逐渐趋于平稳,稳中有新,形成了自己的风格。
以下是近三年高考数学试题知识点分布及分值分布统计表。
表一:表二:表三:表四:从近四年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。
具体来说几个方面:1.整体稳定,覆盖面广山东高考数学卷全面考查了山东省考试说明中各部分的内容,可以说教材中各章的内容都有所涉及,如复数、旋转体、简易逻辑、概率等教学课时较少的内容,在试卷中也都有所考查。
有些内容这几年轮换考查,如统计图、线性回归、直线与圆、线性规划,理科的计数原理、二项式定理、正态分布、条件概率等。
2.重视基础,难度适中试题以考查高中基础知识为主线,在基础中考查能力。
理科前8道选择题都是考查基本概念和公式的题型,相当于课本习题的变式题型。
填空题前三题的难度相对较低,均属常规题型。
解答题的前三道题分别考查解三角形,分布列、数学期望,空间线面位置关系等基础知识,利用空间直角坐标系求二面角,属中低档难度题。
3.突出重点知识重点考查特别注重考查高中数学的基础知识,但并不刻意追求知识的覆盖率,着重考查了支撑学科知识体系的知识主干,以重点知识为主线组织全卷的内容,如函数与导数,2009年文理科分别占30分,2010年文科37分、理科29分,2011年文科26分、理科22分。
还有三角函数、如定积分、函数的零点、三视图、算法框图、直方图与茎叶图、条件概率、几何概型、全称命题与特称命题等。
5.突出通性通法、理性思维和思想方法的考查数学思想方法是对数学知识的最高层次的概括与提炼,是适用于中学数学全部内容的通法,是高考考查的核心。
山东省高考数学试卷文科详解及考点剖析
2011年山东省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1、(2011•山东)设集合 M={x|(x+3)(x﹣2)<0},N={x|1≤x≤3},则M∩N=()A、[1,2)B、[1,2]C、(2,3]D、[2,3]考点:交集及其运算。
专题:计算题。
分析:根据已知条件我们分别计算出集合M,N,并写出其区间表示的形式,然后根据交集运算的定义易得到A∩B的值.解答:解:∵M={x|(x+3)(x﹣2)<0}=(﹣3,2)N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A点评:本题考查的知识点是交集及其运算,其中根据已知条件求出集合M,N,并用区间表示是解答本题的关键.2、(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A、第一象限B、第二象限C、第三象限D、第四象限考点:复数代数形式的乘除运算;复数的基本概念。
专题:数形结合。
分析:把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.解答:解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D点评:判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.3、(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A、0B、C、1D、考点:指数函数的图像与性质。
专题:计算题。
分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.4、(2011•山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A、﹣9B、﹣3C、9D、15考点:利用导数研究曲线上某点切线方程。
2011年高考数学考试重点及大纲
2011年高考数学考试重点及大纲一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即”.5.判断命题的真假关键是“抓住关联字词”;注意:“不…或‟即…且‟,不…且‟即…或‟”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“…逆‟者…交换‟也”、“…否‟者…否定‟也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.. 注意:命题的否定是“命题的非命题,也就是…条件不变,仅否定结论‟所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”8.充要条件二、函数1.指数式、对数式,,,,,,,,,,.2.(1)映射是“…全部射出‟加…一箭一雕‟”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:.(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。
2011年普通高等学校招生全国统一考试山东卷考试说明理科数学1)
2011年普通高等学校招生全国统一考试山东卷考试说明数学(理工农医类)Ⅰ.命题指导思想一、命题依据中华人民共和国教育部2003年颁布的《普通高中数学课程标准(实验)》、依据《2011年普通高等学校招生全国统一考试大纲(文科·课程标准实验版)》和《2011年普通高等学校招生全国统一考试(课程标准实验版)山东卷考试说明》为依据,不拘泥于某一版本的教材.二、命题结合我省普通高中数学教学实际,体现数学学科的性质和特点,注重考查考生的对数学基础知识、基本技能、数学思想和方法的考查,注重考查对考生数学素养和分析、解决问题能力的考查.全面考查考生的数学素养,鼓励考生多角度、创造性地思考和解决问题.三、命题保持相对稳定,体现新课程理念.四、命题力求科学、准确、公平、规范,试卷应有较高的信度、效度、必要的区分度和适当的难度.(本人注:红色为2011年比2010年增加的内容,蓝色为2011年比2010年减去的内容。
)Ⅱ.考试内容及要求一、知识要求各部分知识的整体要求及其定位参照《普通高中数学课程标准(实验)》相应模块的有关说明.对知识的要求由低到高分为三个层次:了解、理解和掌握.1.了解:要求对所列知识的含义有初步的、感性的认识,知道其内容是什么,并能在有关的问题中识别、模仿.2.理解:要求对所列知识内容有较为深刻的理性认识,清楚知识间的逻辑关系,能够用数学语言对它们作正确的描述、说明,能够利用所学的知识内容对有关的问题进行比较、判别、讨论、推测,具备解决简单问题的能力,并能初步应用数学知识解决一些现实问题.3.掌握:要求能够对所列知识进行准确的刻画或解释、推导或证明、分类或归纳;系统地把握知识间的内在联系,能够灵活运用所学知识,分析和解决较为复杂的数学问题以及一些现实问题.二、能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以及应用意识和创新意识.1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素及其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.三、考试范围考试范围是《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2的内容以及选修系列4-5的部分内容,即数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数).数学2:立体几何初步、平面解析几何初步.数学3:算法初步、统计、概率.数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换.数学5:解三角形、数列、不等式.选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入.选修2-3:计数原理、统计案例、概率.选修4-5:不等式的基本性质和证明的基本方法.四、具体考试内容及其要求1.集合(1)集合的含义与表示①了解集合的含义,元素与集合的“属于”关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合的关系及运算.2. 函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1)函数① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.② 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③ 了解简单的分段函数,并能简单应用.④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤ 会运用函数图象理解和研究函数的性质.(2)指数函数① 了解指数函数模型的实际背景.② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③ 理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. ④ 知道指数函数是一类重要的函数模型.(3)对数函数① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.② 理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. ③ 知道对数函数是一类重要的函数模型.④ 了解指数函数xa y =与对数函数()1,0log ≠>=a a x y a 且互为反函数. (4)幂函数① 了解幂函数的概念.② 结合函数2132,1,,,x y x y x y x y x y =====的图象,了解它们的变化情况. (5)函数与方程① 结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.② 根据具体函数的图象,能够用二分法求相应方程的近似解.(6)函数模型及其应用① 了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义.② 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3. 立体几何初步(1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画出某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两条相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想.②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体①了解分布的意义和作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.8.基本初等函数II(三角函数)(1)任意角的概念、弧度制① 了解任意角的概念.② 了解弧度制概念,能进行弧度与角度的互化.(2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义.② 能利用单位圆中的三角函数线推导出απαπ±±,2 的正弦、余弦、正切的诱导公式,能画出x y x y x y tan ,cos ,sin === 的图象,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间 []π2,0上的性质(如单调性、最大值和最小值以及与 轴的交点等),理解正切函数在区间⎪⎭⎫ ⎝⎛-2,2ππ内的单调性. ④ 理解同角三角函数的基本关系式:.tan cos sin ,1cos sin 22x xx x x ==+ .⑤ 了解函数()ϕω+=x A y sin 的物理意义;能画出 ()ϕω+=x A y sin 的图象,了解参数ϕω,,A 对函数图象变化的影响.⑥ 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.9. 平面向量(1)平面向量的实际背景及基本概念① 了解向量的实际背景.② 理解平面向量的概念,理解两个向量相等的含义.③ 理解向量的几何表示.(2)向量的线性运算① 掌握向量加法、减法的运算,并理解其几何意义.② 掌握向量数乘的运算及其意义,理解两个向量共线的含义.③ 了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示① 了解平面向量的基本定理及其意义.② 掌握平面向量的正交分解及其坐标表示.③ 会用坐标表示平面向量的加法、减法与数乘运算.④ 理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积① 理解平面向量数量积的含义及其物理意义.② 了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决某些简单的力学问题及其他一些实际问题.10.三角恒等变换(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式推导出两角差的正弦、正切公式.③能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).11.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:()0,2≥≥+baabba①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.14.常用逻辑用语(1)命题及其关系①理解命题的概念.②了解“若,则”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.③理解必要条件、充分条件与充要条件的意义.(2)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.(3)全称量词与存在量词①理解全称量词与存在量词的意义.②能正确地对含有一个量词的命题进行否定.15.圆锥曲线与方程(1)圆锥曲线①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.④了解圆锥曲线的简单应用.⑤理解数形结合的思想.(2)曲线与方程了解方程的曲线与曲线的方程的对应关系.16.空间向量与立体几何(1)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(2)空间向量的应用①理解直线的方向向量与平面的法向量.②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).④ 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.17.导数及其应用(1)导数概念及其几何意义① 了解导数概念的实际背景.② 理解导数的几何意义.(2)导数的运算① 能根据导数定义,求函数()为常数C C y =,x y x y x y 1,,2===,x y =的导数. ② 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()b ax f +的复合函数)的导数.·常见基本初等函数的导数公式:()为常数C C 0)('=,()()+-∈=N n nx x n n 1' ()();sin cos ,cos sin ''x x x -==()()()();1ln ;1,0ln ;'''xx a a a a a e e x x x x =≠>==且 ()()1,0log 1log '≠>=a a e xx a a 且 常用的导数运算法则:法则1:()()[]()();'''x v x u x v x u ±=± 法则2:()()[]()()()();'''x v x u x v x u x v x u += 法则3:()()()()()()()()()02'''≠-=⎥⎦⎤⎢⎣⎡x v x v x v x u x v x u x v x u (3)导数在研究函数中的应用① 了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).② 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求在闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(4)生活中的优化问题会利用导数解决某些实际问题.(5)定积分与微积分基本定理① 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.② 了解微积分基本定理的含义.18. 推理与证明(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.(3)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.19.数系的扩充与复数的引入(1)复数的概念①理解复数的基本概念.②理解复数相等的充要条件.③了解复数的代数表示法及其几何意义.(2)复数的四则运算①会进行复数代数形式的四则运算.②了解复数代数形式的加、减运算的几何意义.20.计数原理(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分步乘法计数原理.②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.21.概率与统计(1)概率①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.②理解超几何分布及其导出过程,并能进行简单的应用.③了解条件概率和两个事件相互独立的概念,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.④理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.⑤ 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.(2)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.① 独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.② 回归分析了解回归的基本思想、方法及其简单应用.22.不等式的基本性质和证明的基本方法(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: ① b a b a +≤+② b c c a b a -+-≤-(2)会利用绝对值的几何意义求解以下类型的不等式:c b x a x c b ax c b ax ≥-+-≥+≤+;;(3)了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.Ⅲ.考试形式与试卷结构考试形式:采用闭卷、笔试形式.考试限定时间为120分钟.试卷结构:试卷分为第Ⅰ卷和第Ⅱ卷,满分150分.第Ⅰ卷为单项选择题,共12题,每题5分,共60分.第Ⅱ卷为填空题和解答题,填空题共4题,每题4分,共16分,填空题要求只填写结果,不必写出计算过程或推证过程.解答题包括计算题、证明题和应用题,共6题,共72分.解答应写出文字说明、演算步骤或推证过程。
2011年山东高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试数学(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.设集合 {}|(3)(2)0M x x x =+-<,{}|13,N x x=剟 则M N =I ( )A.[1,2)B.[1,2]C.( 2,3]D.[2,3] 【测量目标】集合间的交集运算.【考查方式】集合的表达(描述法),化解,求集合的交集. 【参考答案】A【试题解析】因为{}{}|32,|12M x x M N x x =-<<∴=<I …,故选A. 2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数的四则运算及复平面.【考查方式】给出复数的除法形式,考查复数的代数四则运算与复数的几何意义. 【参考答案】D【试题解析】因为22i (2i)34i2i 55z ---===+,故复数z 对应点在第四象限,选D. 3.若点(a ,9)在函数3xy =的图象上,则πtan6a 的值为 ( )A.0B.3C. 1D. 【测量目标】特殊的三角函数值.【考查方式】给出点在函数图象上,求解未知数,通过代入三角函数求解. 【参考答案】D【试题解析】由题意知:93a=,解得a =2,所以π2πtantan 66a ==,故选D. 4.曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是 ( ) A.-9 B.-3 C.9 D.15 【测量目标】导数的几何意义.【考查方式】给出函数式与其上一点,用求导的方式求该点的切线与y 轴的焦点纵坐标. 【参考答案】C【试题解析】因为23y x '=,切点为P (1,12),所以切线的斜率为3,故切线方程为390,x y -+=令0,9x y ==5.已知,,a b c ∈R ,命题“若3,a b c ++=则22233,a b c a b c ++++=…”的否命题是( )A.若3,a b c ++≠则2223a b c ++< B.若3,a b c ++=则2223a b c ++<C.若3,a b c ++≠则2223a b c ++… D.若3,a b c ++…则3a b c ++<【测量目标】命题的基本关系.【考查方式】考查命题的基本关系,主要考查否命题. 【参考答案】A【试题解析】命题“若p ,则q ”的否命题是“若,p ⌝则q ⌝”,故选A.6.若函数()sin (0)f x x ωω=>在区间π03⎡⎤⎢⎥⎣⎦,上单调递增,在区间ππ32⎡⎤⎢⎥⎣⎦,上单调递减,则ω= ( ) A.23 B.32C. 2D.3 【测量目标】三角函数,函数的单调性.【考查方式】给出函数在某段区间上的单调性,求未知数ω. 【参考答案】B【试题解析】由题意知,函数在π3x =处取得最大值1,所以π1sin 3ω=,故选B.7.设变量,x y 满足约束条件250200x y x y x +-⎧⎪--⎨⎪⎩„„…,则目标函数231z x y =++的最大值为 ( )A.11B.10C.9D.8.5 【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性目标函数的最大值. 【参考答案】B【试题解析】画出平面区域表示的可行域如图所示,当直线231z x y =++平移至点(3,1)A 时, 目标函数231z x y =++取得最大值为10,故选B. 8.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 ( ) A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 【测量目标】回归方程,函数在生活的应用.【考查方式】给出方程的数据,及ˆb,求出回归方程,代入x 求解.【试题解析】由表可计算4235749263954,42424x y ++++++==== ,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得ˆ9.1a =,故回归方程为ˆ9.49.1yx =+, 令6x =,得ˆ65.5y =,选B. 9.设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 ( )A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)【测量目标】抛物线的简单几何性质,圆锥曲线中的范围问题,两点之间的距离公式. 【考查方式】给出抛物线方程与椭圆的位置关系,求出圆方程,根据准线相交,限定0y 范围.【参考答案】C【试题解析】设圆的半径为r ,因为F (0,2)是圆心, 抛物线C 的准线方程为2y =-,由圆与准线相切知4r -,因为点00(,)M x y 为抛物线2:8C x y =上一点,所以有2008x y =,又点00(,)M x y 在圆222(2)x y r +-=,所以22200(2)16x y r +-=>,所以2008(2)16y y +->,即有2004120y y +->,解得02y >或06y <-, 又因为00y …, 所以02y >, 选C.10.函数2sin 2xy x =-的图象大致是 ( )【测量目标】函数图象的判断.【考查方式】给出函数式,给定四张图象,选出正确图象.【试题解析】因为12cos 2y x '=-,所以令12cos 02y x '=->,得1cos 4x <,此时原函数是增函数;令12cos 02y x '=-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是第11题图A.3B.2C.1D.0 【测量目标】三视图,命题的概念.【考查方式】给出主视图俯视图,给出三个命题,判断真假. 【参考答案】A【试题解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R u u u u r u u u u r,141211(),2,A A A A μμλμ=∈+=R u u u u r u u u u r 则称34,A A 调和分割12,A A ,已知点(,0),C c(,0)D d (,)c d ∈R 调和分割点(0,0),(1,0)A B ,则下面说法正确的是 ( )A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.,C D 可能同时在线段AB 上D.,C D 不可能同时在线段AB 的延长线上 【测量目标】平面向量的线性运算及向量的坐标运算. 【考查方式】给出向量满足的数量关系,求向量的位置关系. 【参考答案】D【试题解析】由13121412(),()A A A A A A A A λλμμ=∈=∈R R u u u u r u u u u r u u u u r u u u u r知:四点1234,,,A A A A 在同一条直线上(步骤1)因为,C D 调和分割点,A B ,所以,,,A B C D 四点在同一直线上,且112c d+=, 故选D.(步骤2)第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题按比例求解. 【参考答案】16【试题解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为8401620⨯=. 14.执行右图所示的程序框图,输入12,=3,5m n ==,则输出的y 的值是 .【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环y 的值. 【参考答案】68【试题解析】由输入12,3,5m n ===,计算得出278y =,第一次得新的173y =;第二次得新的68105y =<,输出y .15.已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 . 【测量目标】双曲线的简单几何性质、椭圆的简单几何性质.【考查方式】给出椭圆方程,及双曲线的离心率与椭圆的离心率的数量关系,求双曲线方程.【参考答案】22143x y -=【试题解析】由题意知双曲线的焦点为(即c =(步骤1)又因为双曲线的离心率为c a =所以2,a =故23b =,(步骤2) 双曲线的方程为22143x y -=(步骤3) 16.已知函数()log (0,1)a f x x x b a a =+->≠且当234a b <<<<时,函数()f x 的零点*0(,1),,x n n n ∈+∈N 则n = .【测量目标】函数的零点,对数函数的图象与性质.【考查方式】给出函数式,限定函数式里的未知数,求零点位于的区间. 【参考答案】5【试题解析】方程log (0,1)=0a x x b a a +->≠且的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n ∈+∈N (步骤1)结合图象,因为当(24)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;(步骤2)当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,(步骤3)故所求的5n =.(步骤4)三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=. (I)求sin sin CA的值; (II)若1cos ,4B ABC =△的周长为5,求b 的长.【测量目标】余弦定理正弦定理,利用正余弦定理解决有关长度问题.【考查方式】给出三角形三边与三角满足的关系式,求解两角正弦值的比值;给出三角形的周长,求边长.【试题解析】(1)由正弦定理得2sin ,2sin ,2sin ,a R A b R B c R C ===所以cos 2cos 22sin sin ,cos sin A C c a C AB b B---==(步骤1)即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-, 即有sin()2sin()A B B C +=+,即sin sin 2sin ,2sin CC A A==所以.(步骤2) (2)由(1)知sin 2sin C A =,所以有2ca=,即2c a =,(步骤3) 又因为ABC △的周长为5,所以53,b a =-(步骤4) 由余弦定理得:222222212cos ,(53)(2)44b c a ac B a a a a =+--=+-⨯,解得1a =,所以2b =.(步骤5)18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【测量目标】随机事件与概率,古典概型.【考查方式】给出每个学校的人员具体情况,求从中选出一定人员的概率.【试题解析】(1) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;(步骤1)选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女1, 乙女1)、(甲女1, 乙女2),共4种,所以选出的2名教师性别相同的概率为49.(步骤2) (2)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共15种;(步骤3)选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种,所以选出的2名教师来自同一学校的概率为62155=.(步骤4) 19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11,60AD A B BAD =∠=o .(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:1CC P 平面1A BD .【测量目标】线面平行的判断,平行与垂直关系的综合问题.【考查方式】利用余弦定理求直线数量关系,线面垂直推出线线垂直;线线平行推出线面平行【试题解析】(Ⅰ)证明:因为2AB AD =,所以设AD a =,则2AB a =(步骤1) 又因为60BAD ∠=o,所以在ABD △中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=o,所以3BD a =(步骤2)所以222AD BD AB +=,故BD AD ⊥,(步骤3) 又因为1D D ⊥平面ABCD ,所以1D D BD ⊥,(步骤4)又因为1AD D D D =I , 所以11BD ADD A ⊥平面,故1AA BD ⊥.(步骤5)(2)连结,AC 设AC BD O =I , 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点(步骤6)由四棱台1111ABCD A B C D -知:平面ABCD P 平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为11,AC A C ,故11AC A C P (步骤7)又因为2,AB a BC a ==, 120ABC ∠=o,所以可由余弦定理计算得7AC a =(步骤8)又因为11113,2A B a B C a ==, 111120A B C ∠=o ,所以可由余弦定理计算得1172A C a =(步骤9)所以11A C OC P 且11A C OC =,故四边形11OCC A 是平行四边形,所以11CC A O P (步骤10)又1CC Ü平面11,A BD AO ⊂平面1A BD . 1CC ∴P 平面1A BD (步骤11)20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【测量目标】等比数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【考查方式】将数值放在图象中,求解通项公式;给出n n b a 与的关系,求和. 【试题解析】(Ⅰ)由题意知1232,6,18a a a ===,(步骤1)因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=g .(步骤2) (Ⅱ)因为11(1)ln 23(1)ln 23,n n n n n b a a --=+-=+-gg 所以21n n S b b b =+++=L1212122(13)()(ln ln ln )ln()13n n n n a a a a a a a a a -+++-+++=--L L g gL g =-(1)121231ln(21333)31ln(23)n n n n n n n--=--⨯⨯⨯⨯=--g L g (步骤3)2(21)2222231ln(23)912ln 2(2)ln 3.n n nnn n S n n n -∴=--=----g (步骤4)21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .【测量目标】球的表面积公式,圆柱的体积公式,导数在实际问题中的应用【考查方式】给出图象,将所给关系表达为函数表达式,根据函数式,求出最小值【试题解析】(Ⅰ)因为容器的体积为80π3立方米,所以324π80ππ33r r l +=,解得280433rl r =-,所以圆柱的侧面积为22804160π8π2π2π()3333r r rl r r r =-=-,两端两个半球的表面积之和为24πr ,所以22160π8π4πy r cr r =-+,定义域为(0,)2l. (Ⅱ)因为3228(2)20160π16π8πc r y r cr r r π⎡⎤--⎣⎦'=-+=,所以令0y '>得:3202r c >-; 令3320200,0,22y r r c c '<<<=--, 该容器的建造费用最小. 22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于,A B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD OE =g ,(i )求证:直线l 过定点; (ii )试问点,B G 能否关于x 轴对称?若能,求出此时ABG △的外接圆方程;若不能,请说明理由.【测量目标】直线与椭圆的位置关系,韦达定理,圆的简单几何性质,【考查方式】给出椭圆方程及图象,求俩数据和的最小值;给出向量的数量关系,求直线过定点和外接圆问题.【试题解析】(Ⅰ)由题意:设直线:(0)l y kx n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330,k x knx n +++-=(步骤1) 1122(,),(,)A x y B x y AB 设,的中点00(,)E x y ,则由韦达定理得: 122613knx x k-+=+, 即00022233,131313kn kn nx y kx n k n k k k --==+=⨯+=+++ , 所以中点E 的坐标为223(,)1313kn nE k k-++(步骤2) 因为,,O E D 三点在同一直线上,所以,OE OD k k =即1,33mk -=-解得222211,2m m k k k k=∴+=+…(步骤3)当且仅当1k =时取等号,即22m k +的最小值为2.(步骤4)(Ⅱ)(i )证明:由题意知:0n >,因为直线OD 的方程为,3my x =-所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+5)又因为2,13E D n y y m k==+ ,且2OG OD OE =g ,所以222313m n m m k =++g (步骤6) 又由(Ⅰ)知: 1m k=,所以解得k n =, 所以直线l 的方程为:,l y kx k =+即有:(1)l y k x =+,(步骤7) 令1,x =-得0y =与实数k 无关,所以直线l 过定点(-1,0).(步骤8)(ii )假设点,B G 关于x 轴对称,则有ABG △的外接圆的圆心在x 轴上,又在线段AB 的中垂线上,(步骤9) 由(i)知点G所以点B ,(步骤10)又因为直线l 过定点(-1,0),所以直线l,1k =+,(步骤11)又因为1m k=所以解得21m =或6(步骤12) 又因为230,m ->所以26m =舍去,21m =(步骤13)此时311,1,(,)44k m E ==-,AB 的中垂线为2210x y ++=,圆心坐标为131(,0),(,)222G --,2215().24x y -+=(步骤14) 综上所述, 点,B G 关于x 轴对称,此时ABG △的外接圆的方程为2215().24x y -+=(步骤15)。
2011高考数学考点分布理
面垂直关系 18p39 的判定和性 /42
18p145/ 147
4
20
19
质关系
1.空间向量
及运算
4.3空间向 量与立体几
何
2.空间向量 的应用
20p49/53
20 18
16
3.空间的角 和距离
1.直线的方 5.1直线与 程
方程 2.两直线的 位置关系
1.圆的方程
5.2圆的方
程
2.直线、圆
的位置关系
1.函数及其 表示
2.1函数的 概念、图象 及性质
5p48/p50
2011年高考数学理科考点分布表(六年高考分类全解) 新课标区
广东 江苏 天津 浙江 辽宁 福建 安徽 北京 湖南
非新课标去
大纲 陕西 江西 全国 重庆 湖北 四川
144-148 59-63 64-68 73-77
108112
117-121
18 17 p127/ p136/ p129 p138 ,,
21不 等式
22
3
16
6
17
专题三 三角函 数平 面向量
1.平面向量 的概念及线 性运算
12新概念 p49/51
2.平面向量
3.2平面向 量
基本定理及 坐标运算
3.平面向量 的数量积及 应用
10p38 /41
4.向量的应
用
1.空间几何
体的结构、 6p38/ 三视和直观 40
3.等比数列 6.1数列
21 18轨 迹向 量
4
专题六 数列不
等式
4.数列求和 及综合应用 求和
17p39 /42
20p49/53
20p145/ 13,
2011年山东高考数学(理科)原题试卷含详细解答
2011年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(2011•山东)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=()A.[1,2)B.[1,2] C.(2,3] D.[2,3]考点:交集及其运算。
专题:计算题。
分析:根据已知角一元二次不等式可以求出集合M,将M,N化为区间的形式后,根据集合交集运算的定义,我们即可求出M∩N的结果.解答:解:∵M={x|x2+x﹣6<0}={x|﹣3<x<2}=(﹣3,2),N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A点评:本题考查的知识点是交集及其运算,求出集合M,N并画出区间的形式,是解答本题的关键.2.(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算;复数的基本概念。
专题:数形结合。
分析:把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.解答:解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D点评:判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.3.(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.0 B.C.1 D.考点:指数函数的图像与性质。
专题:计算题。
分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.4.(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是()A.[﹣5,7] B.[﹣4,6] C.(﹣∞,﹣5]∪[7,+∞)D.(﹣∞,﹣4]∪[6,+∞)考点:绝对值不等式的解法。
高考数学知识点分值分布表
高考数学知识点分值分布表一、引言高考是每个考生所经历的一次重要考试,而数学作为其中的一门科目,占据了相当重要的地位。
通过了解,考生可以更好地对考试进行备考,并在考试中取得较好的成绩。
本文将详细介绍高考数学各个知识点的分值分布,并探讨其重要性和备考策略。
二、数与代数数与代数是高考数学中的基础知识点,也是解题的基础。
该部分内容包括了数的性质、数的运算、代数式与方程等。
据统计,该部分占据高考数学总分的30%左右。
因此,考生在备考时需要重点关注这部分内容,并且要熟练掌握基本的运算规则和解题方法。
三、函数函数是高考数学中的核心知识点之一,大部分考试题目都与函数相关。
在高考中,函数的分值约占总分的25%左右。
函数的学习包括了函数定义与性质、函数图像、函数的变化规律等内容。
考生需要通过大量的习题练习来加深对函数的理解,并能熟练地运用函数解题的方法。
四、几何几何是高考数学中的另一大模块,与函数具有相同的分值比例。
几何的学习内容包括了二维几何和三维几何,如平面几何、立体几何等。
考生需要掌握相关的几何定理和性质,并通过几何图形的画法和计算来解答题目。
在备考时,考生要注重对几何图形的认识和构造能力的培养。
五、概率统计与数据分析概率统计与数据分析是高考数学中综合能力的体现,也是近年来的热点考察内容。
概率统计与数据分析的学习包括了数据的收集与整理、概率的计算与应用、统计图的分析与解读等。
该部分在高考中所占的分值约为20%左右。
考生需要通过实际问题的分析和解决,提高概率统计与数据分析的能力。
六、解题策略在备考高考数学时,除了掌握各个知识点的内容,解题策略也是非常重要的。
以下是一些备考策略的建议:1.多做真题:通过做历年高考数学真题,考生可以了解考试的题型和难度分布,同时也能将知识点的理论联系到实际。
2.重点突破:根据知识点的分值分布,考生可以确定复习的重点。
将较重要的知识点进行集中复习,更易提高解题效率。
3.强化训练:通过大量的习题训练,考生可以熟练掌握解题方法和技巧,并提高对各种题型的适应能力。
高考数学考点解析及分值分布
高考数学考点解析1.集合与简易逻辑: 10-18分主要章节:必修1第一章集合、第三章函数的应用选修1-1文2-1理常用逻辑用语考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展;简易逻辑多为考查“充分与必要条件”及命题真伪的判别;2.函数与导数: 30分+主要章节:必修1第二章基本初等函数、第三章函数的应用必修4第一章三角函数必修2第三章直线与方程、第四章园与方程选修1-1文2-1理圆锥曲线与方程、导数选修4-4极坐标方程参数方程函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线;以指数函数、对数函数、复合函数为载体,结合图象的变换平移、伸缩、对称变换、四性问题单调性、奇偶性、周期性、对称性、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势;函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键;3.不等式:5-12分主要章节:必修5第三章不等式选修4-5全书一般不会单独命题,会在其他题型中“隐蔽”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式组;证明不等式;比较大小;不等式的应用;不等式的综合性问题;选择题和填空题主要考查不等式性质、解法及均值不等式;解答题会与其它知识的交汇中考查,如含参量不等式的解法确定取值范围、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等;4.数列:20-28分主要章节:必修5第二章数列数列是高中数学的重要内容,是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它知识的综合题;文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主;证明题以考“错位相减法”比较多; 5.三角函数: 18-25分主要章节:必修4第一章三角函数、第三章三角恒等变换必修5第一章解三角形三角函数考题大致为以下几类:1、三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;2、三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;3、三角形中的三角问题;除外,可能会跟极坐标方程和参数方程结合出考题;以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点;6.向量:10-18分主要章节:必修4第二章平面向量选修2-1理第三章空间向量与立体几何向量一般会跟三角函数结合出考题,向量融代数特征和几何特征于一体,能与三角函数、函数、解析几何、立体几何自然交汇、亲密接触;向量作为代数与几何的纽带,解题时注意在向量的位置关系、长度、夹角计算上等分析,联想其坐标运算与动点轨迹、曲线方程等; 另外理科生,需要学习空间向量,一般用于立体几何关系证明和二面角计算;7.立体几何:17-25分主要章节:必修2第一章空间几何体、第二章点线面位置关系选修2-1理第三章空间向量与立体几何选择填空题两小题以基本位置关系的判定与柱、锥、球的角、距离、体积计算为主,一题解答题以证明空间线面的位置关系和有关数量关系计算为主,诸如空间线面平行、垂直的判定与证明,线面角和距离的计算;立体几何考题的更趋向于不规则几何体,但可以建立直角坐标系,8.几何函数综合:20-30分主要知识点:不等式线性规划、直线与方程、圆与方程、圆锥曲线与方程、导数定积分理极坐标方程参数方程、相似三角形判断、直线与圆关系几何函数综合题型是高考常考题型,一般是三个小题一个大题,其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题;解析几何的重点仍然是圆锥曲线的性质,包括:直线的倾斜角、斜率、距离、平行垂直、点对称、直线对称、线性规划有关问题等等;直线和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思想及用韦达定理处理弦长和弦中点为重点;9.排列、组合、二项式定理、概率统计:分值在15-25分主要章节:必修3第二章统计、第三章概率选修1-2文第一章统计案例选修2-3理第一章计数原理、第二章随机分布及变量、第三章统计案例排列组合和二项式定理都属于计数原理,与统计、概率结合,题型着重逻辑思维扩散;一般选择填空题各一个小题,解答题理科以概率统计综合和计数原理应用题为主;文科以求概率的应用题为主,分值都会超过其所占课时的比重;理科考查重点为随机变量的分布列及数学期望;文科以等可能事件、互斥事件、相互独立事件的概率求法为主;10.框图、复数:分值5-17主要章节:必修3第一章算法初步选修1-2文2-2理数系的扩充与复数的引入近年框图和复数高考的占分比值偏低,框图注意词条的解析和条件引用;复数注意复数的四则运算和分母化简;。
2011山东高考考试说明高考大纲[1]
2011山东高考考试说明2011山东高考语文学科考试说明按照高中课程标准规定的必修课程中阅读与鉴赏、表达与交流两个目标的“语文1”至“语文5”五个模块,选修课程中诗歌与散文、小说与戏剧、新闻与传记、语言文字应用、文化论著研读五个系列,组成必考内容和选考内容。
必考和选考均可有难易不同的考查。
必考内容必考内容及相应的能力层级如下:(一)现代文阅读阅读一般论述类文章。
1.理解 B(1)理解文中重要概念的含义(2)理解文中重要句子的含意2.分析综合 C(1)筛选并整合文中的信息(2)分析文章结构,把握文章思路(3)归纳内容要点,概括中心意思(4)分析概括作者在文中的观点态度(二)古代诗文阅读阅读浅易的古代诗文。
1.理解 B(1)理解常见文言实词在文中的含义(2) 理解常见文言虚词在文中的意义和用法常见文言虚词:而、何、乎、乃、其、且、若、所、为、焉、也、以、因、于、与、则、者、之。
(3)理解与现代汉语不同的句式和用法不同的句式和用法:判断句、被动句、宾语前置、成分省略和词类活用。
(4)理解并翻译文中的句子2.分析综合 C(1)筛选文中的信息(2)归纳内容要点,概括中心意思(3)分析概括作者在文中的观点态度3.鉴赏评价 D(1)鉴赏文学作品的形象、语言和表达技巧(2)评价文章的思想内容和作者的观点态度4.默写常见的名句名篇 A(三)语言文字运用正确、熟练、有效地运用语言文字。
1.识记 A(1)识记现代汉语普通话常用字的字音(2)识记并正确书写现代常用规范汉字2.表达应用 E(1)正确使用标点符号(2)正确使用词语(包括熟语)(3)辨析并修改病句病句类型:语序不当、搭配不当、成分残缺或赘余、结构混乱;表意不明、不合逻辑。
(4)扩展语句,压缩语段(5)选用、仿用、变换句式(6)正确运用常见的修辞方法常见修辞方法:比喻、比拟、借代、夸张、对偶、排比、反复、设问、反问。
(7)语言表达准确、鲜明、生动,简明、连贯、得体(四)写作能写论述类、实用类和文学类文章。
2011年全国高考数学(山东卷)试卷分析
2011年全国高考数学(山东卷)试卷分析一、试卷综述山东省2011年的高考继续推行自主命题形式。
高考试题是对新课程改革的一次真正的检验,是新课程改革的主要指向标,对今后新课程改革和中学数学教学具有较强的指导作用。
命题严格遵守《2011年普通高等学校招生全国统一考试大纲(课程标准实验版)》(以下简称《考试大纲》)和《2011年普通高等学校招生全国统一考试(课程标准实验版)山东卷考试说明》(以下简称《考试说明》),遵循“有利于高等学校选拔新生、有利于中学推进素质教育和课程改革、有利于扩大高校办学自主权、有利于考试科学、公正、安全、规范”的命题原则。
命题根据山东省高中教学的实际情况,不拘泥于某一版本,重点考查高中数学的主体内容,兼顾考查新课标的新增内容,加强了对数学的应用的考查,体现了新课程改革的理念。
试卷在考查基础知识、基本能力的基础上,突出考查了考生数学思维能力、重要的数学方法和数学应用意识。
试卷的知识覆盖面广,题目数量、难度安排适当,题设立意新颖,文、理科试卷区别恰当,两份试卷难、中、易的比例分配恰当。
试卷具有很高的信度、效度和区分度。
达到了考基础、考能力、考素质、考潜能的考试目标。
命题稳中有变,稳中有新,继续保持了我省高考自主命题的风格,具有浓郁的山东特色。
二试卷特点1 试卷的整体结构和知识框架试卷的长度、题目类型比例配置与《考试说明》一致,全卷共22题,其中选择题12个,每题5分,共60分,占总分的40%;填空题4个,每题4分,共16分,约占总分的10.7%;解答题6个,前5个题目每题12分,最后一题14分,共74分,约占总分的49.3%,全卷合计150分。
试题在每个题型中均基本按照由简单到复杂的顺序排列,难度呈梯度增加。
全卷重点考查中学数学主干知识和方法;侧重于对中学数学学科的基础知识和基本能力的考查;侧重于知识交汇点的考查,加强对考生的数学应用意识和创新能力的考查。
2011年山东高考数学试卷全面考查了《考试说明》中要求的内容,在全面考查的前提下,突出考查了高中数学的主干知识如函数、三角函数、不等式、空间几何体、圆锥曲线、概率统计、导数及应用等主要内容,试卷兼顾了新课改新增加的内容如正态分布,回归方程,定积分等,尤其是两份试卷的解答题,涉及内容均是高中数学的主干知识,试卷加强了对数学应用意识的考查,结合中学的主干知识,考查了和函数以及概率统计相关的应用题,突出体现了新课程改革的理念,明确了中学数学的教学方向和考生的学习方向。
2011山东高考数学(理)word版带详解
2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为(A )0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.7.根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb为9.4,所以7ˆ429.42a =⨯+, 解得9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A. 9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上, 因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若6(x 展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616(rr r r T C x -+=⋅⋅,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,1516x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 . 【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以c o s A -2c o s C 2c -a=c o s B b =2sin sin sin C A B-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知:sin sin c C a A ==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011年普通高等学校招全国统一考试(山东卷)数学(精)
2011年普通高等学校招全国统一考试(山东卷)文科数学本卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷与答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米的签字笔将自己的姓名、座号、准考证号、县区和科类填写在自己的答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能打在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求最大的答案无效。
4. 第Ⅱ卷第六题为选做题,考生须从所给(一)(二)两题中任选一题作答,不能全选。
参考公式:柱体的体积公式:=,其中是柱体的底面积,是柱体的高。
圆柱的侧面积公式:=,其中是圆柱的底面周长,是圆柱体的母线长。
球的体积公式:V=π,其中是球的半径。
球的表面积公式:4π,其中是球的半径用最小二乘法求线性回归方程系数公式:如果事件A,B互斥,那么P(A+B=P(A+P(B.第Ι卷(共60分)1、选择题:本大题共12小题,没小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1 设集合,,则(A (B (C (D(2复数(虚数单位)在复平面内对应的点所在象限为(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)若点(a,9在函数y=的图像上,则tan的值为()(A)0 (B (C1 (D(4)曲线y=x3+11在点P(1,12处的切线与y轴交点的纵坐标是(A)-9 (B-3 (C9 (D15(5 a,b,c,命题“a+b+c=3,则a2+b2+c2≥3”的否命题是(A)若a+b+c ≠3,则a2+b2+c2<3 (B若 a+b+c=3,则a2+b2+c2<3 (C 若a+b+c≠3,则a2+b2+c2≥ 3 (D 若a+b+c ≥3,则a2+b2+c2=3(6若函数f(x=sin x(>0在区间[0, ]上单调递增,在区间[, ]上单调递减,则=(A) (B (C 2 (D3(7设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为(A)11 (B10 (C9 (D8.5(8)某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为(A)63.6 万元 (B65.6万元 (C67.7万元 (D72.0万元(9设M(x0,y0为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则 y的取值范围是(A)(0,1 (B [0,2 ] (C( 2,+∞ (D[2,+ ∞(10)函数的图像大致是(11)右图是长和宽分别相等的两个矩形,结合下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图。