高中数学 竞赛定理九点圆(扫描版)

合集下载

田开斌——2005年中国集训队一道几何题的九点圆证明

田开斌——2005年中国集训队一道几何题的九点圆证明

田开斌——2005年中国集训队一道几何题的九点圆证明这是田开斌的新浪博客“杏林孔门2014”的第一篇博文。

田开斌,奥数高手,著名的“文武光华”掌门人之一,特长是十八般兵器样样精通。

征得田老师本人同意,本公众号将陆续刊出田老师的精彩解题文章,以飨读者。

——责任编辑田开斌专集2020-11-17 2020年爱尖子“CMO赛前冲刺”训练营一道题目的一般化2020-11-03 第三届刘徽杯数学竞赛第一天第2题解答2020-10-28 涉及高斯函数的一道数论题的两种解法2020-06-23 一道三元不等式的加强2020-06-11 许康华问题的推广证明2020-06-04 竞赛生每日一题(276):一道新编几何题2020-04-03 一道IMO预选组合题的解答2020-03-30 竞赛生每日一题(210):一道新编几何题2020-03-28 2019巴西数学奥林匹克(第一天)第1题解答的更正2018-03-31 田开斌简解2017哈萨克斯坦zhautykov国际数学竞赛第一题2018-01-05 田开斌简解一道复数题2017-09-27 田开斌主讲之《平面几何问题综合(七)、(八)》讲义2017-09-23 田开斌主讲之《平面几何问题综合(五)、(六)》讲义2017-09-21 田开斌主讲之《平面几何问题综合(二)、(三)、(四)》讲义2017-09-20 田开斌主讲之《平面几何问题综合(一)》讲义2017-09-09 田开斌解答一道精彩数论题2017-08-18 田开斌解答2017女子奥林匹克数学竞赛几何题2017-07-21 田开斌命题之2013年“华约”自主招生数学模拟试题2017-07-19 田开斌最新解答几何难题2017-07-16 田开斌老师近期解答的几道数学难题2017-07-10 田开斌巧解金磊一道平面几何题2017-07-05 田开斌解答几道数学难题2017-06-28 田开斌另解棋盘中填数2017-05-25 田开斌老师对一道最值问题的推广2017-02-16 王永喜和田开斌另解一道IMO 预选题2017-01-06 田开斌老师对王仕奎计数征解问题的另一解答。

高中数学竞赛平面几何定理

高中数学竞赛平面几何定理

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一角都小于120°时,在三角形必存在一点,它对三条边所的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,切圆半径为r ,外心与心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 心:三角形的三条角分线的交点—接圆圆心,即心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 心性质:(1)设I 为△ABC 的心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一角平分线与其外接圆的交点到另两顶点的距离与到心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的心;(4)设I 为△ABC 的心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其切圆与外接圆半径之和. 27. 旁心:一角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论); (4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为切圆半径,)(21c b a p ++=. 29. 三角形中切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与切圆和旁切圆相切.65. 莫利定理:将三角形的三个角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 尔刚(Gergonne )点:△ABC 的切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——拿破仑三角形⊙、⊙、⊙三圆共点,拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

第七章九点圆定理及应用

第七章九点圆定理及应用

第七章九点圆定理及应用【基础知识】九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.BVO CRF P E NMHQLD图7-1A证法1连PQ ,QL ,LM ,MP ,则知12LM BA QP ∥∥,即知LMPQ 为平行四边形.又LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个 圆的直径.由90PDL QEM RFN ∠=∠=∠=︒,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,12AO 为半径作V ,如图71-.由12VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上.由12OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点,则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知OLV HPV △△≌,从而1=2VL VP OA =,且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上.由L ,V ,P 共线知LP 为V 的一条直径. 又90LDP ∠=︒, 90MEQ ∠=︒,90NFR ∠=︒,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BABF BD=.注意到L 、N 分别为BC 、BA 的中点, 则BL BNBF BD=,即BL BD BF BN ⋅=⋅,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.由戴维斯定理,即知L 、D 、E 、M 、F 、N 六点共圆于Γ.又Rt Rt CHD CBF △∽△,有CH CB CD CF =,注意R 、L 分别为CH 、CB 中点,则CR CLCD CF=,知R 、F 、L 、D 共圆,即点R 在圆Γ上.同理,点P 、Q 也在圆Γ上,故九点均在圆Γ上. 注戴维斯定理指的是:三角形每边所在直线有一对点(可以重合),若每两对点同在一个圆上,则三对点(六点)均在同一圆上.事实上,若所说三个圆不重合.则由根轴共点或平行推得三条边共点或平行,这是不可能的,所以三个圆非重合不可,特别地,三角形内切圆是其特殊情形. 由上述定理及其证明,我们可得如下一系列推论:推论1ABC △九点圆的圆心是其外心与垂心所连线段的中点,九点圆的半径是ABC △的外接圆半径的12. 注意到PQR △与ABC △是以垂心H 为外位似中心的位似形,位似比是12HP HA =∶∶,因此,可得 推论2三角形的九点圆与其外接圆是以三角形的垂心为外位似中心,位似比是12∶的位似形;垂心与三角形外接圆上任一点的连接线段被九点圆截成相等的两部分. 注意到欧拉定理(欧拉线),又可得推论3ABC △的外心O ,重心G ,九点圆圆心V ,垂心H ,这四点(心)共线,且12OG GH =∶∶,13GV VH =∶∶,或O 和V 对于G 和H 是调和共轭的,即OG OHGV HV=. 推论4ABC △的九点圆与ABC △的外接圆又是以ABC △的重心G 为内位似中心,位似比为12∶的位似形.事实上,因G 为两相似三角形LMN △与ABC △的相似中心,而LMN △的外接圆即ABC △的九点圆. 推论5一重心组的四个三角形有一个公共的九点圆;已知圆以已知点为垂心的所有内接三角形有共同的九点圆.【典型例题与基本方法】例1如图72-,设H 为ABC △的垂心,L 为BC 边的中点,P 为AH 的中点.过L 作PL 的垂线交AB 于G ,交AC 的延长线于K .求证:G ,B ,K ,C 四点共圆.A证明设ABC △的外心为O ,连OH ,取OH 的中点V , 则V 为ABC △九点圆的圆心. 连AO ,则AO PV ∥,从而AO GK ⊥.设N 为AB 的中点,连ON ,则ON AG ⊥,由此知AON AGL ∠=∠. 又ACL AON ∠=∠,则ACL AGL ∠=∠.从而BGL BGK KCL KCB ∠=∠=∠=∠.故B ,K ,C ,G 四点共圆. 例2试证:ABC △的垂心H 与其外接圆上的点的连线被其九点圆平分.证明如图73-,过垂心H 作ABC △外接圆的两条弦DE ,FG ,连DF ,EG .E图7-3STG DAM HCN F B设M ,N ,S ,T 分别为HD ,HE ,HF ,HG 的中点,则 FDH SMH ∠=∠,EGH NTH ∠=∠. 又FDH EGH ∠=∠,则SMH NTH ∠=∠. 故M ,S ,T ,N 四点共圆, 由DE ,FG 的任意性,得H 与ABC △外接圆上任意点连线的中点在同一圆上,由于这个圆过HA ,HB ,HC 的中点,故这个圆就是ABC △的九点圆,从而命题获证.例3如图74-,ABC △中,O 为外心,三条高AD ,BE ,CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. (2001年全国高中联赛题)AN证明(1)设ABC △的外接圆半径为R ,由相交弦定理,有 22R OF AF FB -=⋅,22R OD BD DC -=⋅, 从而22OF OD BD DC AF FB -=⋅-⋅.由A ,F ,D ,C 四点共圆,有BD BC BF BA ⋅=⋅,即()()BD BD DC BF BF FA ⋅+=+,亦即2222BF BD BD DC AF FB OF OD -=⋅-⋅=-,故OB DF ⊥.同理,OC DE ⊥.(2)由九点圆定理的推论1,知OH 的中点V 为DEF △的外心.又由D ,E ,A ,B 及D ,F ,A ,C 分别四点共圆,有M D M E M B M A ⋅=⋅,ND NF NC NA ⋅=⋅.由此,即知M ,N 对ABC △的外接圆与DEF △的外接圆的幂相等,从而M ,N 在这两个外接圆的根轴上,即有MN OV ⊥,故MN OH =. 【解题思维策略分析】1.注意题中九点圆的显现形式例4如图75-,ABC △中,O 为外心,H 是垂心,作CHB △,CHA △和AHB △的外接圆,依次记它们的圆心为1A ,1B ,1C ,求证:111ABC A B C △△≌,且这两个三角形的九点圆重合.(IMO 31-预选题)图7-51证明由于()18090(90)180CHB B C B C A ∠=︒-︒-∠-︒-∠=∠+∠=︒-∠,知CHB △外接圆的半径和CAB △外接圆的半径相等,从而,有1A 是O 关于BC 的对称点.设M 是BC 中点,则知2AH OM =,即1AH OA =.又1AH OA ∥,则连1AA 与OH 的交点K 为平行四边形1AHAO 的中心,即1AA 与OH 互相平分于K . 同理,1BB ,1CC 也经过K 且被它平分,从而111A B C △与ABC △关于K 中心对称,故111A B C ABC △△≌. 显然,K 是ABC △九点圆的圆心.因此,这个圆关于K 作中心对称时不变,它也是111A B C △的九点圆. 例5如图76-,在ABC △中,AD 是BC 边上的高,M ,N 分别是CA ,AB 两边的中点,设直线l 通过A 点,且BC 在l 上的射影为B C '',连B N '与C M '交于点P .求证:B ',C ',D ,P 四点共圆,且其圆心O 与P 点均在ABC △的九点圆上.P O NMDBAC '21l 图7-6B'C证明BB ',CC ',ND ,MD .在Rt AB B '△中,N 为斜边AB 的中点,令1BAB '∠=∠,则1NB A '∠=∠. 同理, NAD NDA ∠=∠, MAD MDA ∠=∠.令2CAC '∠=∠,则2MC A '∠=∠. 于是, 12NB A MC A ''∠+∠=∠+∠180A =︒-∠, 故()180MPN NB A MC A ''∠=︒-∠+∠180(180)A A =︒-︒-∠=∠NAD DAM NDA ADM MDN =∠+∠=∠+∠=∠. 由此,知D ,M ,N ,P 四点共圆.而MND △的外接圆即为ABC △的九点圆,即点P 在ABC △的九点圆上. 由A ,B ',B ,D 四点共圆,连B D ',则知901B DA B BA ''∠=∠=︒-∠. 同理, 902C DA C CA ''∠=∠=︒-∠. 于是, 18012B DC B DA C DA A MPN B PC ''''''∠=∠+∠=︒-∠-∠-∠=∠=∠, 故B ',C ',D ,P 四点共圆.由题设,B C DP ''的圆心为O ,连DO ,PO ,则2DOP DB P '∠=∠. 由于A ,B ',B ,D 四点共圆且以N 为其圆心,则知NB ND '=. 于是,有2DNP DB P '∠=∠,DOP DNP ∴∠=∠,D ∴,O ,P ,N 四点共圆.O ∴在DPN 上,即O 在ABC △的九点圆上,故命题获证. 2.注意题中九点圆的隐含形式例6如图77-,锐角ABC △中,角A 的等分线与三角形的外接圆交于另一点1A ,点1B ,1C 与此类似.直线1AA 与B ,C 两角的外角等分线交于0A ,点0B ,0C 与此类似.求证:A 0A 1IC 0B 1C 1B 0图7-7C AB(1)000A B C △的面积是六边形111AC BACB 面积的二倍;(2)000A B C △的面积至少是ABC △面积的四倍. (IMO 30-试题)证明(1)令ABC △的内心为I 000()I AA BB CC =∩∩.则I 又是000A B C △的垂心(内、外角平分线互相垂直).显然,ABC △的外接圆是000A B C △的九点圆,即知1A ,1B ,1C 分别为0A I ,0B I ,0C I 的中点,于是得012A BI A BI S S =△△,012A CI A CI S S =△, 从而012A BIC A BIC S S =四边形四边形.同理,012B CIA B CIA S S =四边形四边形,012C AIB C AIB S S =四边形四边形, 故0001112A B C AC BA CB S S =六边形.(2)由(1),有()1110002=2A BC B CA C ABA B C ABCABCS S S S S S +++△△△△△△故只要证1111A BC B CA C ABABCS S S k S ++=△△△△≥.记2BAC α∠=,2ABC β∠=, 2BCA γ∠=,则 ()12111sin 1802sin sin sin 2sin 21sin 2sin 2sin sin 2sin 2sin 22A BC ABCA B AC S S AB AC αααααγβαβγα⋅⋅︒-⋅⋅===⋅⋅⋅⋅⋅△△ 同理,12sin sin 2sin 2B CA ABCS S βαγ=⋅△△,1sin sin 2sin 2C AB ABC S S γαβ2=⋅△△. 于是,2222sin sin sin sin 2sin 2sin 2sin sin 2sin 2k αβγβγαγαβ=++⋅⋅⋅()233cos cos cos 4αβγ-⋅⋅≥ 223cos cos cos 3cos 14343αβγαβγ--++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭≥≥. 例7如图78-,123A A A △是一非等腰三角形,它的边长分别为以1a ,2a ,3a ,其中i a 是i A 的对边(123i =,,),i M 是边i a 的中点,123A A A △的内切圆I 切边i a 于i T 点,i S 是i T 关于i A ∠角平分线的对称点(123)i =,,.求证:11M S ,22M S ,33M S 三线共点.(IMO 23-试题)311图7-8证明由题设,知1221M M A A ∥,下面证1121S S A A ∥, 由1T 和1S ,2T 和3T 分别关于直线1A I 对称,有1231T T T S =. 同理,1232T T T S =.故有3132T S T S =,即3T 是等腰312T S S △的顶点,有312T I S S ⊥,从而1221S S A A ∥. 同理,2332S S A A ∥,3113S S A A ∥.又1221M M A A ∥,2332M M A A ∥,3113M M A A ∥,于是123M M M △和123S S S △的对应边两两平行,故这两个三角形或全等或位似.由于123S S S △内接于ABC △的内切圆,而123M M M △内接于ABC △的九点圆,且123A A A △不为正三角形,故其内切圆与九点圆不重合,所以123S S S △与123M M M △位似,这就证明了11M S ,22M S ,32M S 共点(于位似中心).例8过锐角ABC △的顶点A ,B ,C 的三条高线分别交其对边于点D ,E ,F ,过点D 平行于EF 的直线分别交AC ,AB 于点Q 和R ,EF 交BC 于点P .证明:PQR △的外接圆过BC 的中点.(IMO 38-预选题)证明由题设,点P 的存在意味着AB AC ≠.由对称性,可设AB AC >,则P 在射线BC 上,如图79-.PQLR DCFA EB图7-9取BC 的中点L ,我们证明Q ,P ,R ,L 四点共圆⇔DR DQ DP DL ⋅=⋅①因BE AC ⊥于E ,CF AB ⊥于F ,则B ,C ,E ,F 共圆,于是知CEP ABC ∠=∠. 又EF QR ∥,有CEP CQD ∠=∠,则知B ,Q ,C ,R 四点共圆,从而DR DQ DB DC ⋅=⋅ 设BL CL a ==,CP c =,DL b =,则证①式等价于证明DB DC DP DL ⋅=⋅,即()()()a b a b a c b b +⋅-=+-⋅,亦即()2a b a c =+.由九点圆定理,知D ,E ,F ,L 四点共圆,有PE PF PD PL ⋅=⋅.注意到B ,C ,E ,F 四点共圆,有PE PF PC PB ⋅=⋅,故得PC PB PD PL ⋅=⋅,即 ()()()2c a c a c b b a +=+-⋅+,亦即()2a b a c =+.故有DB DC DP DL ⋅=⋅,亦有DR DQ DP DL ⋅=⋅.亦即Q ,P ,R ,L 四点共圆,即PQR △的外接圆过BC 的中点.注 由例8可演变得如下第8届台湾数学奥林匹克试题:己知过锐角ABC △的顶点A ,B ,C 的垂线分别交对边于D ,E ,F ,AB AC >,直线EF 交直线BC 于P ,过点D 且平行于EF 的直线分别交直线AC ,AB 于Q ,R ,N 是BC 上的一点,且180NQP NRP ∠+∠<︒.求证:BN CN >.事实上,同例8,取BC 的中点L ,关键是证明Q ,P ,R ,L 四点共圆,又等价地证明DR DQ DP DL ⋅=⋅.而当Q ,P ,R ,L 四点共圆时,180LQP LRP ∠+∠=︒,参见图79-,若180NQP NRP ∠+∠<︒,则N 点在QPRL 的内部,又因N 是BC 上的一点,则N 在点L 的右侧,于是BN CN >. 【模拟实战】习题A1.试证:圆的直径两端点对ABC △的西姆松线垂直相交,且相交于此三角形的九点圆上. 2.设G 为ABC △的重心,P 为ABC △外接圆上任一点,连PG 并延长至点Q ,使12PQ PG =.求证:点Q 在ABC △的九点圆上.3.试证:ABC △的九点圆与它的内切圆及三个旁切圆相切.4.给定非退化的ABC △,设外心为O ,垂心为H ,外接圆的半径为R .求证:3OH R .(1994年亚太地区奥林匹克题)5.试证:三角形的三个切圆(内切或旁切)的圆心构成一个三角形,此新三角形的外心对于已知三角形的外心为另外一个切圆圆心的对称点.习题B 1.设A I ,B I ,C I 分别为ABC △的切BC ,CA ,AB 边的旁切圆的圆心.试证:(1)A B C I I I △的九点圆为ABC △的外接圆;(2)过点A I ,B I ,C I 分别作BC ,CA ,AB 边的垂线,则这三条垂线共点. 2.试证:圆周上任意四点,过其中任意三点作三角形,则这四个三角形的九点圆的圆心共圆.。

高中数学竞赛平面几何基本定理

高中数学竞赛平面几何基本定理

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a −+=. 4. 垂线定理:2222BD BC AD ACCD AB −=−⇔⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===−−−=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=−+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222−+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE −==−==−==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠−︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠−︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr −−−==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF −=∆∆.。

高中数学竞赛平面几何定理

高中数学竞赛平面几何定理

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 与其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11.弦切角定理:弦切角等于夹弧所对的圆周角. 12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB 于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC 的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以与垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22.锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. 23.重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则;(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3);(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2);(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,.29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C B A R r C B A R r C B A R r C B A R r c b a ====.1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 .(逆定理也成立)31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA =1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,与该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R 关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC 的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC 的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点与M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点与M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L 两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点与M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C 和F,则这三线共点.67.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和F A的(或延长线的)交点共线.68.阿波罗尼斯(Apollonius)定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69.库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70.密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F 六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点.71.葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.72.欧拉关于垂足三角形的面积公式:O是三角形的外心,M是三角形中的任意一点,过M向三边作垂线,三个垂足形成的三角形的面积,其公式:.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃与的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日与拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD 三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形与其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

2018数竞平面几何(四点共圆)讲义教师版资料

2018数竞平面几何(四点共圆)讲义教师版资料

平面几何(四点共圆)冲刺讲义________班 _______ 号姓名 ________________一、知识准备以下简单介绍讲义可能涉及的一些简单的知识:1. 欧拉线:的垂心,重心,外心三点共线.此线称为欧拉线,且有关系:2.九点圆定理:三角形的三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,共九点共圆。

此圆称为三角形的九点圆,或称欧拉圆.①的九点圆的圆心是其外心与垂心所连线段的中点②九点圆的半径是的外接圆半径的.3. 三角形内心与旁心的性质:的内心为,而边外的旁心分别为;分别是三条内角平分线,交三角形外接圆于,交于,则:①三角形过同一顶点的内、外角平分线互相垂直;②,;③(角平分线定理);④(“鸡爪”定理).二、例题分析例1.是的外接圆的直径,过作圆的切线交于,连接并延长分别交、于、,求证:.证明:过作取中点而是的平行线分别交、于、,连接、、、.,四点共圆,而由,有,四点共圆 .,而,的中点,是的中点,.,则..,.. .例 2. 等腰梯形的一点,中,,∥ ,,的外接圆交分别是的延长线于,.的内心,是直线上证明:.证明:,故共圆,则,因此,而,所以,,由此,.例是3.在关于点中,的对称点,,内心为是关于点,内切圆在的对称点.,边上的切点分别为,,设求证:四点共圆.证明:设直线交的外接圆于点,易知是的中点,记的中点为,则.设点在直线上的射影为,由于则半周长,于是,又所以∽,且相似比为,熟知:。

又∽,所以,即是的中点进而,所以都在以为圆心的同一个圆周上.例 4. 设 A、B 为圆上两点,X为在A和B处切线的交点,在圆上选取两点C、 D 使得 C、D 、X 依次位于同一直线上,且CA⊥BD ,再设 F 、 G 分别为CA 和 BD 、 CD 和 AB 的交点, H为 GX 的中垂线与 BD 的交点.证明: X、 F、 G、 H 四点共圆.证明:设 O 为圆心, AB∩XO = M.∵△XOA∽△XAM,∴OX·XM = XA 2 = XC·XD .∴O、M、 C、D 四点共圆.∴∠XMO = ∠OCD = ∠ODC = ∠OMC .∴∠CMG = ∠GMD .在 CM 上选取一点 E 使 MX∥DE,则 MD = ME..在 GX 上取点 X ,使∠GFD = ∠DFX ,在 X F 上取 W 使 CF∥GW.由得 CG·X D = X C·GD.由上面两式得= ,故 X = X .∴∠GFD = ∠XFD.又∵= < 1 和∠XPB = ∠CDF < 1.∴H 和 B 在 CX 的同一侧.设 H 为直线 BF 与△GFX 外接圆的交点,则∠H XG=∠H FG=∠H FX=∠H GX.∴H G=H X,∴H =H.∴X、 F、 G、 H 四点共圆,得证.注:上述证法比较麻烦,本题实质如下:易知为调和点列,又,可得为的平分线,设外接圆交于点,由“鸡爪”定理知,从而在的中垂线上,本题得证 .例 5. △ABC 中, E、 F 分别为 AB、 AC 中点, CM 、 BN 为高, EF 交 MN 于 P, O、H 分别为三角形的外心与垂心.求证:AP⊥OH.证明:由∠BMC = ∠BNC = 90 知 B、 C、 N、M 四点共圆.∴AM·AB = AN·AC.又 AE = AB, AF = AC,∴AM ·AE = AN·AF,即 E、 F、 N、 M 共圆.注意到由∠AMH = ∠ANH = ∠AEO = ∠AFO = 90 知AH 、 AO 分别为△AMN 、△AEF 外接圆的直径.过 AH 中点 H 与 AO 中点 O 分别为△AMN 与△AEF 的外心,且易知O H ∥OH.∴只需证 AP ⊥O H ,只需证A、 O 为△AMN 、△AEF 外接圆的等幂点即可.注意到 A 为两圆公共点,而由E、F 、 N、 M 共圆知PM·PN = PE·PF .故 P 也为等幂点.综上所述,原命题成立.例 6. 设△ABC 内接于圆O,过 A 作切线 PD, D 在射线 BC 上, P 在射线 DA 上,过 P 作圆 O 的割线PU,U在BD上, PU交圆O 于Q、T且交AB、 AC于R、 S.证明:若QR = ST,则PQ = UT .证明:过 O 作 OK⊥PU = K, OF⊥BU = F,连结 AK 延长交⊙O 于另一点E,过 C 作 CH∥PU 交 AE 于 G,交 AB 于 H,连 GF、 OP、 OU 、 OA、 OE.由垂径定理知BF = FC, QK = KT,且 QR = ST.∴RK = KS 即 K 是 RS 的中点,且 CH∥PU.∴====1HG = GC.由中位线定理知FG ∥BH .∴∠FGE = ∠BAE = ∠BCE F、 G、C、 E 共圆.∴∠EFC = ∠EGC = ∠AGH = ∠UKG .∴∠EFO + ∠OKE = ∠OFC + ∠CFE + ∠OKE=90 + ∠UKG + ∠OKE=90 +90 =180 .∴K 、O、 F、 E 四点共圆①又∵∠OKU + ∠OFU = 2 ×90 = 180 ,∴K 、O、 F、 U 四点共圆②结合①②知 K 、O、F、 E、 U 五点共圆,∴∠KUO = ∠KEO.又∵PA 为⊙O 切线OA⊥PA,且 OK ⊥PU∠KEO =∠KAO.∴∠KPO = ∠KUO OP = OU .又∵OK⊥PU,∴PK = UK .而 QK = TU,∴PQ = UT,得证.例 7. AB 、AC 为⊙O 切线, ADE 为一条割线, M 为 DE 中点, P 为一动点,满足M、 O、 P 三点共线,⊙P 为以 P 点为圆心、 PD 为半径的圆.证明: C 点在△BMP 外接圆与⊙P 的根轴上.证明:作 PR⊥AC,其延长线交BC 延长线于S.∵∠OMA = ∠OBA = ∠OCA = 90 ,∴A、 C、 O、 M、 B 五点共圆.∴∠BMP = ∠BMA + 90 = ∠BCA + 90= 180 -∠RSC.∴B、 M、P、 S四点共圆.∴C 对△BMP 外接圆的幂为-CB·CS =-2CA·CR.而 C 对⊙P 的幂为CP 2-PD 2 = CP 2- AP 2- AD·AE = CP 2-AP 2 + AC 2=CR2+ RP2-PR2-AR2+ AC 2=CR2- CR+CA 2+CA2=- 2RC·CA.∴C 点对⊙P 的幂等于 C 点到△BMP 外接圆的幂.∴C 点在上述两圆根轴上,得证.例 8. 设 H 为△ABC 的垂心, D 、E、 F 为△ABC 的外接圆上三点,使AD∥BE∥CF ,S、 T、 U 分别为D 、E、 F 关于边 BC、 CA、 AB 的对称点.求证:S、 T、 U、 H 四点共圆.证明:先证引理: ABC 外接圆⊙O 与它的九点圆引理的证明:设AH 、BH、 CH 分别交边⊙V 关于△ABC 的垂心 H 位似,且位似比为.BC、CA、AB 于 O、E、F,交⊙O 于 D 、E 、 F .易知HD =HD ,HE=HE ,HF =HF .∴△D E F 与△DEF 关于 H 位似,位似比为.∴△D E F 外接圆与△DEF 外接圆关于H 位似,即⊙O 与⊙V 关于 H 位似,位似比为.回到原题:设BC、 CA 、AB 中点分别为X、 Y、Z,过 D 作 DP ∥BC,交⊙O 于 P,设 PH 中点为 W.易知 SD⊥BC,设 PS 交 BC 于 X ,则由 SD 关于 BC 对称知 SX = X D .∴X 为 BC 中点,即X 与 X 重合,即P与 S关于 X 对称.同理 P 与 U、T 分别关于 Z、Y 对称.∴四边形 USHT 与四边形 ZYWX 对称.由引理知Z、 X、 Y、 W 四点共圆.∴U 、T、 H、 S 四点共圆,得证.例 9. 给定锐角△ABC ,过 A 作 BC 的垂线,垂足为 D ,记△ABC 的垂心为H,在△ABC 的外接圆上任取一动点P,延长 PH 交△APD 的外接圆于Q.求 Q 点的轨迹.解: Q 点轨迹为△ABC 的九点圆.如图,取AH、 BH 、 PH 的中点 M、 N、K ,延长 AD 交△ABC 外接圆于G.则熟知 HD = DG,连接 KN、MN、KD 、PB、PG.因为各取中点有∠NKD = ∠BPG, ∠NMD = ∠BAG.∴K 、N、 M、D 四点共圆.又 Q 在△APD 的外接圆上,∴PH·HQ = AH·HD ,即2KH ·HQ = 2MH ·HD .∴KH ·HQ = MH ·HD.于是有 K、 D、 Q、 M、 N 五点共圆.又△DMN 外接圆为九点圆,所以Q 在九点圆上.反之,在如上所述九点圆上任取一点Q ,设 Q H 延长线交△ABC外接圆于P ,取P H中点R,同上可证R在九点圆上.故 2RH·HQ = 2 MH ·HD ,即 P H·HQ = AH·HD .因此 Q 在△AP D 外接圆上.得证.。

竞赛数学常用定理

竞赛数学常用定理

1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

高中数学竞赛平面几何基本定理(非常全面)

高中数学竞赛平面几何基本定理(非常全面)

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论); (4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT 交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

第7章 九点圆定理及应用(含答案)

第7章  九点圆定理及应用(含答案)

第七章九点圆定理及应用【基础知识】九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.BVO CRF P E NMHQLD图7-1A证法1连PQ ,QL ,LM ,MP ,则知12LM BA QP ∥∥,即知LMPQ 为平行四边形.又LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个 圆的直径.由90PDL QEM RFN ∠=∠=∠=︒,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,12AO 为半径作V ,如图71-.由12VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上.由12OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点,则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知OLV HPV △△≌,从而1=2VL VP OA =,且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上.由L ,V ,P 共线知LP 为V 的一条直径. 又90LDP ∠=︒, 90MEQ ∠=︒,90NFR ∠=︒,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BABF BD=.注意到L 、N 分别为BC 、BA 的中点, 则BL BNBF BD=,即BL BD BF BN ⋅=⋅,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.由戴维斯定理,即知L 、D 、E 、M 、F 、N 六点共圆于Γ.又Rt Rt CHD CBF △∽△,有CH CB CD CF =,注意R 、L 分别为CH 、CB 中点,则CR CLCD CF=,知R 、F 、L 、D 共圆,即点R 在圆Γ上.同理,点P 、Q 也在圆Γ上,故九点均在圆Γ上. 注戴维斯定理指的是:三角形每边所在直线有一对点(可以重合),若每两对点同在一个圆上,则三对点(六点)均在同一圆上.事实上,若所说三个圆不重合.则由根轴共点或平行推得三条边共点或平行,这是不可能的,所以三个圆非重合不可,特别地,三角形内切圆是其特殊情形. 由上述定理及其证明,我们可得如下一系列推论:推论1ABC △九点圆的圆心是其外心与垂心所连线段的中点,九点圆的半径是ABC △的外接圆半径的12. 注意到PQR △与ABC △是以垂心H 为外位似中心的位似形,位似比是12HP HA =∶∶,因此,可得 推论2三角形的九点圆与其外接圆是以三角形的垂心为外位似中心,位似比是12∶的位似形;垂心与三角形外接圆上任一点的连接线段被九点圆截成相等的两部分. 注意到欧拉定理(欧拉线),又可得推论3ABC △的外心O ,重心G ,九点圆圆心V ,垂心H ,这四点(心)共线,且12OG GH =∶∶,13GV VH =∶∶,或O 和V 对于G 和H 是调和共轭的,即OG OHGV HV=. 推论4ABC △的九点圆与ABC △的外接圆又是以ABC △的重心G 为内位似中心,位似比为12∶的位似形.事实上,因G 为两相似三角形LMN △与ABC △的相似中心,而LMN △的外接圆即ABC △的九点圆. 推论5一重心组的四个三角形有一个公共的九点圆;已知圆以已知点为垂心的所有内接三角形有共同的九点圆.【典型例题与基本方法】例1如图72-,设H 为ABC △的垂心,L 为BC 边的中点,P 为AH 的中点.过L 作PL 的垂线交AB 于G ,交AC 的延长线于K .求证:G ,B ,K ,C 四点共圆.A证明设ABC △的外心为O ,连OH ,取OH 的中点V , 则V 为ABC △九点圆的圆心. 连AO ,则AO PV ∥,从而AO GK ⊥.设N 为AB 的中点,连ON ,则ON AG ⊥,由此知AON AGL ∠=∠. 又ACL AON ∠=∠,则ACL AGL ∠=∠.从而BGL BGK KCL KCB ∠=∠=∠=∠.故B ,K ,C ,G 四点共圆. 例2试证:ABC △的垂心H 与其外接圆上的点的连线被其九点圆平分.证明如图73-,过垂心H 作ABC △外接圆的两条弦DE ,FG ,连DF ,EG .E图7-3STG DAM HCN F B设M ,N ,S ,T 分别为HD ,HE ,HF ,HG 的中点,则 FDH SMH ∠=∠,EGH NTH ∠=∠. 又FDH EGH ∠=∠,则SMH NTH ∠=∠. 故M ,S ,T ,N 四点共圆, 由DE ,FG 的任意性,得H 与ABC △外接圆上任意点连线的中点在同一圆上,由于这个圆过HA ,HB ,HC 的中点,故这个圆就是ABC △的九点圆,从而命题获证.例3如图74-,ABC △中,O 为外心,三条高AD ,BE ,CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. (2001年全国高中联赛题)A证明(1)设ABC △的外接圆半径为R ,由相交弦定理,有 22R OF AF FB -=⋅,22R OD BD DC -=⋅, 从而22OF OD BD DC AF FB -=⋅-⋅.由A ,F ,D ,C 四点共圆,有BD BC BF BA ⋅=⋅,即()()BD BD DC BF BF FA ⋅+=+,亦即2222BF BD BD DC AF FB OF OD -=⋅-⋅=-,故OB DF ⊥.同理,OC DE ⊥.(2)由九点圆定理的推论1,知OH 的中点V 为DEF △的外心.又由D ,E ,A ,B 及D ,F ,A ,C 分别四点共圆,有M D M E M B M A ⋅=⋅,ND NF NC NA ⋅=⋅.由此,即知M ,N 对ABC △的外接圆与DEF △的外接圆的幂相等,从而M ,N 在这两个外接圆的根轴上,即有MN OV ⊥,故MN OH =. 【解题思维策略分析】1.注意题中九点圆的显现形式例4如图75-,ABC △中,O 为外心,H 是垂心,作CHB △,CHA △和AHB △的外接圆,依次记它们的圆心为1A ,1B ,1C ,求证:111ABC A B C △△≌,且这两个三角形的九点圆重合.(IMO 31-预选题)图7-51证明由于()18090(90)180CHB B C B C A ∠=︒-︒-∠-︒-∠=∠+∠=︒-∠,知CHB △外接圆的半径和CAB △外接圆的半径相等,从而,有1A 是O 关于BC 的对称点.设M 是BC 中点,则知2AH OM =,即1AH OA =.又1AH OA ∥,则连1AA 与OH 的交点K 为平行四边形1AHAO 的中心,即1AA 与OH 互相平分于K . 同理,1BB ,1CC 也经过K 且被它平分,从而111A B C △与ABC △关于K 中心对称,故111A B C ABC △△≌. 显然,K 是ABC △九点圆的圆心.因此,这个圆关于K 作中心对称时不变,它也是111A B C △的九点圆. 例5如图76-,在ABC △中,AD 是BC 边上的高,M ,N 分别是CA ,AB 两边的中点,设直线l 通过A 点,且BC 在l 上的射影为B C '',连B N '与C M '交于点P .求证:B ',C ',D ,P 四点共圆,且其圆心O 与P 点均在ABC △的九点圆上.P O NMDBAC '21l 图7-6B'C证明BB ',CC ',ND ,MD .在Rt AB B '△中,N 为斜边AB 的中点,令1BAB '∠=∠,则1NB A '∠=∠. 同理, NAD NDA ∠=∠, MAD MDA ∠=∠.令2CAC '∠=∠,则2MC A '∠=∠. 于是, 12NB A MC A ''∠+∠=∠+∠180A =︒-∠, 故()180MPN NB A MC A ''∠=︒-∠+∠180(180)A A =︒-︒-∠=∠NAD DAM NDA ADM MDN =∠+∠=∠+∠=∠. 由此,知D ,M ,N ,P 四点共圆.而MND △的外接圆即为ABC △的九点圆,即点P 在ABC △的九点圆上. 由A ,B ',B ,D 四点共圆,连B D ',则知901B DA B BA ''∠=∠=︒-∠. 同理, 902C DA C CA ''∠=∠=︒-∠. 于是, 18012B DC B DA C DA A MPN B PC ''''''∠=∠+∠=︒-∠-∠-∠=∠=∠, 故B ',C ',D ,P 四点共圆.由题设,B C DP ''的圆心为O ,连DO ,PO ,则2DOP DB P '∠=∠. 由于A ,B ',B ,D 四点共圆且以N 为其圆心,则知NB ND '=. 于是,有2DNP DB P '∠=∠,DOP DNP ∴∠=∠,D ∴,O ,P ,N 四点共圆.O ∴在DPN 上,即O 在ABC △的九点圆上,故命题获证. 2.注意题中九点圆的隐含形式例6如图77-,锐角ABC △中,角A 的等分线与三角形的外接圆交于另一点1A ,点1B ,1C 与此类似.直线1AA 与B ,C 两角的外角等分线交于0A ,点0B ,0C 与此类似.求证:A 0A 1IC 0B 1C 1B 0图7-7C AB(1)000A B C △的面积是六边形111AC BACB 面积的二倍;(2)000A B C △的面积至少是ABC △面积的四倍. (IMO 30-试题)证明(1)令ABC △的内心为I 000()I AA BB CC =∩∩.则I 又是000A B C △的垂心(内、外角平分线互相垂直).显然,ABC △的外接圆是000A B C △的九点圆,即知1A ,1B ,1C 分别为0A I ,0B I ,0C I 的中点,于是得012A BI A BI S S =△△,012A CI A CI S S =△, 从而012A BIC A BIC S S =四边形四边形.同理,012B CIA B CIA S S =四边形四边形,012C AIB C AIB S S =四边形四边形, 故0001112A B C AC BA CB S S =六边形.(2)由(1),有()1110002=2A BC B CA C ABA B C ABCABCS S S S S S +++△△△△△△故只要证1111A BC B CA C ABABCS S S k S ++=△△△△≥.记2BAC α∠=,2ABC β∠=, 2BCA γ∠=,则 ()12111sin 1802sin sin sin 2sin 21sin 2sin 2sin sin 2sin 2sin 22A BC ABCA B AC S S AB AC αααααγβαβγα⋅⋅︒-⋅⋅===⋅⋅⋅⋅⋅△△ 同理,12sin sin 2sin 2B CA ABCS S βαγ=⋅△△,1sin sin 2sin 2C AB ABC S S γαβ2=⋅△△. 于是,2222sin sin sin sin 2sin 2sin 2sin sin 2sin 2k αβγβγαγαβ=++⋅⋅⋅()233cos cos cos 4αβγ-⋅⋅≥ 223cos cos cos 3cos 14343αβγαβγ--++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭≥≥. 例7如图78-,123A A A △是一非等腰三角形,它的边长分别为以1a ,2a ,3a ,其中i a 是i A 的对边(123i =,,),i M 是边i a 的中点,123A A A △的内切圆I 切边i a 于i T 点,i S 是i T 关于i A ∠角平分线的对称点(123)i =,,.求证:11M S ,22M S ,33M S 三线共点.(IMO 23-试题)311图7-8证明由题设,知1221M M A A ∥,下面证1121S S A A ∥, 由1T 和1S ,2T 和3T 分别关于直线1A I 对称,有1231T T T S =. 同理,1232T T T S =.故有3132T S T S =,即3T 是等腰312T S S △的顶点,有312T I S S ⊥,从而1221S S A A ∥. 同理,2332S S A A ∥,3113S S A A ∥.又1221M M A A ∥,2332M M A A ∥,3113M M A A ∥,于是123M M M △和123S S S △的对应边两两平行,故这两个三角形或全等或位似.由于123S S S △内接于ABC △的内切圆,而123M M M △内接于ABC △的九点圆,且123A A A △不为正三角形,故其内切圆与九点圆不重合,所以123S S S △与123M M M △位似,这就证明了11M S ,22M S ,32M S 共点(于位似中心).例8过锐角ABC △的顶点A ,B ,C 的三条高线分别交其对边于点D ,E ,F ,过点D 平行于EF 的直线分别交AC ,AB 于点Q 和R ,EF 交BC 于点P .证明:PQR △的外接圆过BC 的中点.(IMO 38-预选题)证明由题设,点P 的存在意味着AB AC ≠.由对称性,可设AB AC >,则P 在射线BC 上,如图79-.PQLR DCFA EB图7-9取BC 的中点L ,我们证明Q ,P ,R ,L 四点共圆⇔DR DQ DP DL ⋅=⋅①因BE AC ⊥于E ,CF AB ⊥于F ,则B ,C ,E ,F 共圆,于是知CEP ABC ∠=∠. 又EF QR ∥,有CEP CQD ∠=∠,则知B ,Q ,C ,R 四点共圆,从而DR DQ DB DC ⋅=⋅ 设BL CL a ==,CP c =,DL b =,则证①式等价于证明DB DC DP DL ⋅=⋅,即()()()a b a b a c b b +⋅-=+-⋅,亦即()2a b a c =+.由九点圆定理,知D ,E ,F ,L 四点共圆,有PE PF PD PL ⋅=⋅.注意到B ,C ,E ,F 四点共圆,有PE PF PC PB ⋅=⋅,故得PC PB PD PL ⋅=⋅,即 ()()()2c a c a c b b a +=+-⋅+,亦即()2a b a c =+.故有DB DC DP DL ⋅=⋅,亦有DR DQ DP DL ⋅=⋅.亦即Q ,P ,R ,L 四点共圆,即PQR △的外接圆过BC 的中点.注 由例8可演变得如下第8届台湾数学奥林匹克试题:己知过锐角ABC △的顶点A ,B ,C 的垂线分别交对边于D ,E ,F ,AB AC >,直线EF 交直线BC 于P ,过点D 且平行于EF 的直线分别交直线AC ,AB 于Q ,R ,N 是BC 上的一点,且180NQP NRP ∠+∠<︒.求证:BN CN >.事实上,同例8,取BC 的中点L ,关键是证明Q ,P ,R ,L 四点共圆,又等价地证明DR DQ DP DL ⋅=⋅.而当Q ,P ,R ,L 四点共圆时,180LQP LRP ∠+∠=︒,参见图79-,若180NQP NRP ∠+∠<︒,则N 点在QPRL 的内部,又因N 是BC 上的一点,则N 在点L 的右侧,于是BN CN >. 【模拟实战】习题A1.试证:圆的直径两端点对ABC △的西姆松线垂直相交,且相交于此三角形的九点圆上. 2.设G 为ABC △的重心,P 为ABC △外接圆上任一点,连PG 并延长至点Q ,使12PQ PG =.求证:点Q 在ABC △的九点圆上.3.试证:ABC △的九点圆与它的内切圆及三个旁切圆相切.4.给定非退化的ABC △,设外心为O ,垂心为H ,外接圆的半径为R .求证:3OH R <.(1994年亚太地区奥林匹克题)5.试证:三角形的三个切圆(内切或旁切)的圆心构成一个三角形,此新三角形的外心对于已知三角形的外心为另外一个切圆圆心的对称点.习题B 1.设A I ,B I ,C I 分别为ABC △的切BC ,CA ,AB 边的旁切圆的圆心.试证:(1)A B C I I I △的九点圆为ABC △的外接圆;(2)过点A I ,B I ,C I 分别作BC ,CA ,AB 边的垂线,则这三条垂线共点. 2.试证:圆周上任意四点,过其中任意三点作三角形,则这四个三角形的九点圆的圆心共圆.第七章九点圆定理及应用答案习题A1.设POP '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以12PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,P H '的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上.2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的 外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上.3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-.注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有()2222222111242VI VI HI VH R Rr r R r ⎛⎫=+-=-+=- ⎪⎝⎭,即12VI R r =-.故九点圆与内切圆相内切.同理,222AA OI R R ρ=+,得22112A VI R ρ⎛⎫=+ ⎪⎝⎭,即有112VI R ρ=-,故九点圆与此旁切圆相外切.同理,可证九点圆与其他两个旁切圆相外切.4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点 为起点的向量,则33332OA OB OC OH OG OA OB OC ⎛⎫==++=++ ⎪ ⎪⎝⎭.因此3OH OA OB OC R ++=≤,仅当A B C ==时等号成立,这是不可能的.故3OH R <.5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O的I 的对称点.其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称.习题B1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A 平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥. 同理,B A C I B I I ⊥,C A B I C I I ⊥.故ABC △为A B C I I I △的垂足三角形,故ABC △的外接圆即为A B C I I I △ 的九点圆.(2)设O '为A B C I I I △的外心,则()()11180180222B C B C B A C O I I I O I I I I ''∠=︒-∠︒-∠=.由A I ,C I ,A ,C 四点共圆,知B B A C I AC I I I ∠=∠,从而90B C B O I I I AC '∠+<∠=︒,即B I O AC '⊥. 同理,A I O BC '⊥,B I O BA '⊥.故三条垂线共点于O '.2.设11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,是单位圆上任意四点,则()2211234i i x y i +==,,,. 由九点圆圆心是三角形外心与垂心连线的中点,得△ABC ,△ABD ,△BCD ,△ACD 九点圆圆心坐标分别为1231231,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1241242,22x x x y y y O ++++⎛⎫⎪⎝⎭, 2342343,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1341344,22x x x y y y O ++++⎛⎫⎪⎝⎭. 考虑点12341234,22x x x x y y y y G ++++++⎛⎫⎪⎝⎭,则 12221234123123412312222x x x x x x x y y y y y y y O G ⎡⎤++++++++++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=12=. 同理,23412O G O G O G ===故1O ,2O ,3O ,4O 在以G 力圆心,12为半径的圆上.。

高中数学竞赛基础平面几何知识点总结

高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础1、相似三角形的判定及性质相似三角形的判定:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.).直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.常见模型:相似三角形的性质:(1)相似三角形对应角相等(2)相似三角形对应边的比值相等,都等于相似比(3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比(4)相似三角形的周长比等于相似比(5)相似三角形的面积比等于相似比的平方2、内、外角平分线定理及其逆定理内角平分线定理及其逆定理:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

如图所示,若AM平分∠BAC,则该命题有逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线外角平分线定理:三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。

如图所示,AD平分△ABC的外角∠CAE,则其逆定理也成立:若D是△ABC的BC边延长线上的一点,且满足则AD是∠A的外角的平分线内外角平分线定理相结合:如图所示,AD平分∠BAC,AE平分∠BAC的外角∠CAE,则3、射影定理在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:BD2=AD·CDAB2=AC·ADBC2=CD·AC对于一般三角形:在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA4、旋转相似当一对相似三角形有公共定点且其边不重合时,则会产生另一对相似三角形,寻找方法:连接对应点,找对应点连线和一组对应边所成的三角形,可以得到一组角相等和一组对应边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE5、张角定理在△ABC中D为BC边上一点,则sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD6、圆内有关角度的定理圆周角定理及其推论:(1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等(3)直径所对的圆周角是直角,直角所对的弦是直径(4)圆内接四边形对角互补(5)圆内接四边形的外角等于其内对角弦切角定理:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

九点圆

九点圆

九点圆三角形三边的中点,三高的垂足和三个欧拉点(连结三角形各顶点与垂心所得三线段的中点)九点共圆。

通常称这个圆为九点圆(nine-point circle),或欧拉圆、费尔巴哈圆。

九点圆是一个更一般的定理:垂心四面体12点共球(各棱的中点,各棱相对于对棱的垂心)的一个特例。

当一个顶点被压入所对面的时候,12点的共球就退化为9点共圆。

1证明如右图所示,△ABC的BC边垂足为D,BC边中点为L。

证法为以垂心H为位似中心,1/2为位似比作位似变换。

连结HL并延长至L',使LL'=HL;做H关于BC的对称点D'。

显然,∠BHC=∠FHE=180°-∠A,所以∠BD'C=∠BHC=180°-∠A,从而A,B,D',C四点共圆。

又因为BC和HL'互相平分于L,所以四边形BL'CH为平行四边形。

故∠BL'C=∠BHC=180°-∠A,从而A,B,L',C四点共圆。

综上,A,B,C,D',L'五点共圆。

显然,对于另外两边AB,AC边上的F,N,E,M也有同样的结论成立,故A,B,C,D',L',F',N',E',M'九点共圆。

此圆即△ABC的外接圆⊙O。

接下来做位似变换,做法是所有的点(⊙O上的九个点和点O本身)都以H为位似中心进行位似比为1/2的位似变换。

那么,L'变到了L(因为HL'=2HL),D'变到了D(因为D'是H关于BC的对称点),B变到了Q,C变到了R(即垂心与顶点连线的中点)。

其它各点也类似变换。

O点变成了OH中点V。

位似变换将圆仍映射为圆(容易用向量证明),因此原来在⊙O上的九个点变成了在⊙V上的九个点,且⊙V的半径是⊙O的一半。

这就证明了三角形三边的中点,三高的垂足和三个欧拉点都在一个圆上。

2简单证法法1作图如下:△ABC的BC边垂足为D,BC边中点为L,AC边垂足为E,AC边中点为M,AB边垂足为F,AB边中点为N,垂心为H,AH,BH,CH中点分别为P,Q,R(思路:以PL为直径,其它任意某点,去证P某L为90°)证明:(由中位线)PM∥CH,LM∥AB,又CH⊥AB∴PM⊥LM,又PD⊥LD∴PMDL共圆。

九点圆

九点圆

九点圆
1.定义:三角形三边垂线的垂足,三边中点,垂心与三个顶点连线的中点共圆,这个圆叫做九点圆
证明:如图⑴
∵ 为 ,且J 为BM 中点,K 为AM 中点
∴JI JM =,KM KH =
即JIM JMI KMH MKH ∠=∠=∠=∠
∴ ⇒KM MH
MJ MI
=⇒
KM MI MJ MH ∙=∙
由相交弦定理逆定理,得
,,,J I K H 四点共圆
如图⑵
∵MGH MAH MBI BIJ LJI ∠=∠=∠=∠=∠ ,JIL JML GMH ∠=∠=∠
∴ ⇒GM MH
JI IL
=
⇒GM IL JI MH ∙=∙⇒MJ MH ML GM ∙=∙
∴,,,G H L J 四点共圆 ∴,,,,,G H L J I K 六点共圆
如图⑶
∵AEF ABC IMC AMG AHG ∠=∠=∠=∠=∠ GHF π=-∠ ∴,,,G E F H 四点共圆 同理:,,,G E D I 四点共圆
即,,,,G H D E F 五点共圆
即,,,,,,,,G K H F L I D J E 九点共圆,证毕
2.有关性质
性质1:九点圆圆心为该三角形外心、垂心连线的中点 证明:如图 ∵ 为
由圆周角定理逆定理,得,KD 中点V 为九点圆圆心 下面证明引理
引理:如图⑷:MK OD = 证明:如图⑸
图⑵
图⑶
∵AH ∥OF ,且OA OD = ∴
2AH
OF
= 现反映于原图上,则MK OD =,引理得证 ∵OVD KVM ∠=∠,MK OD =,DV VK = ∴ ∴OV VM =
∴V 为OM 中点,证毕
图⑷
图⑸
A。

第七章九点圆定理及应用答

第七章九点圆定理及应用答

第七章九点圆定理及应用习题A1.设POP '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以12PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,P H '的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上.2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的 外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上.3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-.注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有()2222222111242VI VI HI VH R Rr r R r ⎛⎫=+-=-+=- ⎪⎝⎭,即12VI R r =-.故九点圆与内切圆相内切.同理,222AA OI R R ρ=+,得22112A VI R ρ⎛⎫=+ ⎪⎝⎭,即有112VI R ρ=-,故九点圆与此旁切圆相外切. 同理,可证九点圆与其他两个旁切圆相外切.4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点 为起点的向量,则33332OA OB OC OH OG OA OB OC ⎛⎫==++=++ ⎪ ⎪⎝⎭.因此3OH OA OB OC R ++=≤,仅当A B C ==时等号成立,这是不可能的.故3OH R <.5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O的I 的对称点.其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称.习题B1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A 平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥.同理,B A C I B I I ⊥,C A B I C I I ⊥.故ABC △为A B C I I I △的垂足三角形,故ABC △的外接圆即为A B C I I I △ 的九点圆.(2)设O '为A B C I I I △的外心,则()()11180180222B C B C B A C O I I I O I I I I ''∠=︒-∠︒-∠=.由A I ,C I ,A ,C 四点共圆,知B B A C I AC I I I ∠=∠,从而90B C B O I I I AC '∠+<∠=︒,即B I O AC '⊥. 同理,A I O BC '⊥,B I O BA '⊥.故三条垂线共点于O '.2.设11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,是单位圆上任意四点,则()2211234i i x y i +==,,,. 由九点圆圆心是三角形外心与垂心连线的中点,得△ABC ,△ABD ,△BCD ,△ACD 九点圆圆心坐标分别为1231231,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1241242,22x x x y y y O ++++⎛⎫⎪⎝⎭, 2342343,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1341344,22x x x y y y O ++++⎛⎫ ⎪⎝⎭. 考虑点12341234,22x x x x y y y y G ++++++⎛⎫⎪⎝⎭,则 12221234123123412312222x x x x x x x y y y y y y y O G ⎡⎤++++++++++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=12=. 同理,23412O G O G O G ===故1O ,2O ,3O ,4O 在以G 力圆心,12为半径的圆上.。

九点圆

九点圆

九点圆1.定义:三角形三边垂线的垂足,三边中点,垂心与三个顶点连线的中点共圆,这个圆叫做九点圆证明:如图⑴∵,AMH BIM 为Rt ,且J 为BM 中点,K 为AM 中点∴JI JM =,KM KH =即JIM JMI KMH MKH ∠=∠=∠=∠∴JIM KHM ∽⇒KM MHMJ MI=⇒KM MI MJ MH •=•由相交弦定理逆定理,得,,,J I K H 四点共圆如图⑵∵MGH MAH MBI BIJ LJI ∠=∠=∠=∠=∠ ,JIL JML GMH ∠=∠=∠ ∴JIL GMH ∽⇒GM MHJI IL=⇒GM IL JI MH •=•⇒MJ MH ML GM •=•∴,,,G H L J 四点共圆 ∴,,,,,G H L J I K 六点共圆 如图⑶∵AEF ABC IMC AMG AHG ∠=∠=∠=∠=∠ GHF π=-∠ ∴,,,G E F H 四点共圆 同理:,,,G E D I 四点共圆即,,,,G H D E F 五点共圆即,,,,,,,,G K H F L I D J E 九点共圆,证毕2.有关性质性质1:九点圆圆心为该三角形外心、垂心连线的中点 证明:如图∵KDI 为Rt由圆周角定理逆定理,得,KD 中点V 为九点圆圆心 下面证明引理图⑴图⑵图⑶引理:如图⑷:MK OD = 证明:如图⑸∵AH ∥OF ,且OA OD = ∴2AHOF= 现反映于原图上,则MK OD =,引理得证 ∵OVD KVM ∠=∠,MK OD =,DV VK = ∴OVD KVM ≌ ∴OV VM =∴V 为OM 中点,证毕图⑷图⑸A。

高中的数学竞赛平面几何定理

高中的数学竞赛平面几何定理

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC ABDC BD=;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11.弦切角定理:弦切角等于夹弧所对的圆周角. 12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14.点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22.锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. 23.重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则H C A B C O A B H B O H A C B A O ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R a b c C ab ah S a ABC sin sin sin 24sin 21212====∆)c o t c o t (c o t 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RB AR QA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B 和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点.67.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF-=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

九点共圆的证明

九点共圆的证明

九点共圆的证明什么是九点共圆?九点共圆是指:三角形三边的三个中点,三条高的三个垂足,垂心(三条高的交点)分别与三个顶点的线段的三个中点,这九点在同一个圆上。

简称九点圆。

九点圆是几何学史上的一个著名问题,历史上证明此定理的有多人,如法国数学家彭赛列(1788——1867)、热而工西法(1771——1859)、德国哲学家费尔巴哈(1804——1872)。

其实,欧拉在1756年就证明了“垂三角形和中位三角形有同一外接圆”,即三角形的三条高的三个垂足,三边的三个中点在同一圆上。

所以人们把九点圆也称为“欧拉圆”。

费尔巴哈还证明了九点圆的一些重要性质,故有人又称九点圆为费尔巴哈圆。

下面证明如下:如图,△ABC的三条高AD、BE、CF交于H,AB、BC、AC的中点分别为N、L、M,P、Q、R分别为AH、BH、CH的中点,求证:D、E、F、N、L、M、P、Q、R九点在同一个圆上。

(分析:证D、E、F、N、M、Q、R七点张在PL上的角都等于90o)证明:∵PM为△AHC的中位线,∴PM∥CH,∴PM∥CF;∵ML为△ABC的中位线,∴ML∥AB,∵AB⊥CF∴PM⊥ML,∴∠PML=90o同理,∠PRL=∠PQL=∠PNL=90o(角的两边分别和一边及这边上的高平行)∵∠PDL=90o,∴P、M、R、D、L、Q、N七点在以PL为直径的⊙O上。

∵PF为Rt△AFH斜边上的中线,∴PF=PH,∴∠1=∠2=∠3,∵FL为Rt△BFC斜边上的中线,∴FL=LC,∴∠5=∠4,∵∠3+∠4=90o∴∠1+∠5=90o,∴∠PFL=90o,同理,∠PEL=90o,故F、E也在以PL为直径的⊙O上,综上所述,D、E、F、N、L、M、P、Q、R 九点在同一个圆上。

九点共圆的证明方法较多,以上是笔者的一种证明方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档