高中数学例题:利用平面向量基本定理证明三点共线问题
向量中的共线问题
共线问题1、[例4] 如图,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP :PM 的值.[解析] 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=2e 1+e 2∵A 、P 、M 和B 、P 、N 分别共线,∴存在实数λ、μ使AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2,故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2.而BA →=BC →+CA →=2e 1+3e 2由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=23λ+μ=3,解得⎩⎨⎧λ=45μ=35,故AP →=45AM →,故AP PM =4 1.2、13.如图,E 是平行四边形ABCD 的边AD 上一点,且AE →=14AD →,F 为BE 与AC 的交点.设AB →=a ,BC →=b ,若BF →=kBE →,AF →=hAC →,则k =________,h =________.[答案] 45 15[解析] ∵AC →=AB →+BC →=a +b ,∴AF →=hAC →=h a +h b ,BF →=BA →+AF →=-a +h a +h b =(h -1)a +h b , 又BF →=kBE →=k (BA →+AE →)=k (-a +14b )=-k a +k 4b ,显然a 与b 不共线,∴⎩⎪⎨⎪⎧h -1=-k h =k4,解得⎩⎨⎧k =45h =15.3、15.在▱ABCD 中,设边AB 、BC 、CD 的中点分别为E 、F 、G ,设DF 与AG 、EG 的交点分别为H 、K ,设AB →=a ,BC →=b ,试用a 、b 表示GK →、AH →.[解析] 如图所示,GF →=CF →-CG →=-12b +12a ,因为K 为DF 的中点,所以GK →=12(GD →+GF →)=12⎝⎛⎭⎫-12a -12b +12a =-14b .DF →=CF →-CD →=-12b +a . 因为A 、H 、G 三点共线,所以存在实数m ,使AH →=mAG →=m ⎝⎛⎭⎫b +12a ; 又D 、H 、F 三点共线,所以存在实数n ,使DH →=nDF →=n ⎝⎛⎭⎫a -12b 因为AD →+DH →=AH →,所以⎝⎛⎭⎫1-n 2b +n a =m b +m 2a 因为a 、b 不共线,所以⎩⎨⎧1-n2=mn =m2,解得m =45,即AH →=45⎝⎛⎭⎫b +12a =25(a +2b ).4、16.如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB ,DC 与OA 交于点E ,设OA →=a ,OB →=b ,用a ,b 表示向量OC →,DC →.[分析] 将待求向量用已知向量、或与已知向量共线的向量、或能用已知向量表示的向量线性表示,逐步化去过渡的中间向量.如待求OC →,已知OA →、OB →,即知BA →,因为BC →可用BA →线性表示,故可用OB →和BC →来表示OC →. [解析] 因为A 是BC 的中点,所以OA →=12(OB →+OC →),即OC →=2OA →-OB →=2a -b .DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .5、18.在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,以a 、b 为基底表示OM →.[分析] 显然a 、b 不共线,故可设OM →=m a +n b ,由A 、M 、D 三点共线及B 、M 、C 三点共线利用向量共线条件求解.[解析] 设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b , AD →=OD →-OA →=12b -a 因为A 、M 、D 三点共线,所以m -1-1=n 12,即m +2n =1又CM →=OM →-OC →=⎝⎛⎭⎫m -14a +n b ,CB →=OB →-OC →=-14a +b , 因为C 、M 、B 三点共线,所以m -14-14=n1,即4m +n =1,由⎩⎪⎨⎪⎧m +2n =14m +n =1,解得⎩⎨⎧m =17n =37,所以OM →=17a +37b .6、19.(本题满分12分)在▱ABCD 中,点M 在AB 上,且AM =3MB ,点N 在BD 上,且BN →=λBD →,C 、M 、N 三点共线,求λ的值.[解析] 设AB →=e 1,AD →=e 2,则BD →=e 2-e 1, BN →=λBD →=λ(e 2-e 1),MB →=14AB →=14e 1,BC →=AD →=e 2,∴MC →=MB →+BC →=14e 1+e 2,MN →=MB →+BN →=14e 1+λ(e 2-e 1)=λe 2+⎝⎛⎭⎫14-λe 1, ∵M 、N 、C 共线,∴MN →与MC →共线,∵e 1与e 2不共线,∴14-λ14=λ1,∴λ=15.(2010·合肥市)如图,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝⎛⎭⎫12,12B.⎝⎛⎭⎫23,23C.⎝⎛⎭⎫13,13 D.⎝⎛⎭⎫23,12[答案] C[解析] 设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点,∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎫12λ-1a +(1-λ)b ,∵BE →与BF →共线,∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎫12a -b =13a +13b ,故x =13,y =13. 7、8.已知P 是△ABC 所在平面内的一点,若CB →=λP A →+PB →,其中λ∈R ,则点P 一定在( ) A .△ABC 的内部 B .AC 边所在直线上 C .AB 边所在直线上 D .BC 边所在直线上 [答案] B[解析] 由CB →=λP A →+PB →得CB →-PB →=λP A →,∴CP →=λP A →.则CP →与P A →为共线向量,又CP →与P A →有一个公共点P ,∴C 、P 、A 三点共线,即点P 在直线AC 上.故选B.8、9.G 为△ABC 内一点,且满足GA →+GB →+GC →=0,则G 为△ABC 的( ) A .外心 B .内心 C .垂心 D .重心[答案] D[解析] 由于GA →+GB →+GC →=0,所以GA →=-(GB →+GC →),即GA →是与GB →+GC →方向相反,长度相等的向量.如图,以GB →,GC →为相邻的两边作▱BGCD ,则GD →=GB →+GC →,所以GD →=-GA →,在▱BGCD 中,设BC 与GD 交于点E ,则BE →=EC →,GE →=ED →,故AE 是△ABC 中BC 边上的中线且|GA →|=2|GE →|.从而点G 是△ABC 的重心.选D.9、10.(2010·河北唐山)已知P 、A 、B 、C 是平面内四个不同的点,且P A →+PB →+PC →=AC →,则( ) A .A 、B 、C 三点共线 B .A 、B 、P 三点共线 C .A 、C 、P 三点共线 D .B 、C 、P 三点共线 [答案] B[解析] ∵AC →=PC →-P A →,∴原条件式变形为:PB →=-2P A →,∴PB →∥P A →,∴A 、B 、P 三点共线. 10、4.(2010·湖南长沙)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( )A .外心B .垂心C .内心D .重心[答案] D[解析] 设AB →+AC →=AD →,则可知四边形BACD 是平行四边形,而AP →=λAD →表明A 、P 、D 三点共线.又D 在BC 的中线所在直线上,于是点P 的轨迹一定通过△ABC 的重心.11、5.P 是△ABC 所在平面上一点,若P A →·PB →=PB →·PC →=PC →·P A →,则P 是△ABC 的( ) A .外心 B .内心 C .重心 D .垂心[答案] D[解析] 由P A →·PB →=PB →·PC →得PB →·(P A →-PC →)=0,即PB →·CA →=0,∴PB ⊥CA . 同理P A ⊥BC ,PC ⊥AB ,∴P 为△ABC 的垂心.12、6.已知△ABC 中,若AB 2→=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 [答案] C[解析] 由AB 2→-AB →·AC →=BA →·BC →+CA →·CB →,得AB →·(AB →-AC →)=BC →·(BA →-CA →),即AB →·CB →=BC →·BC →,∴AB →·BC →+BC →·BC →=0,∴BC →·(AB →+BC →)=0,则BC →·AC →=0,即BC →⊥AC →, 所以△ABC 是直角三角形,故选C.13、7.若O 为△ABC 所在平面内一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形 D .A 、B 、C 均不是[答案] C[解析] 由(OB →-OC →)·(OB →+OC →-2OA →)=0,得CB →·(AB →+AC →)=0,又∵CB →=AB →-AC →,∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|2-|AC →|2=0. ∴|AB →|=|AC →|.∴△ABC 为等腰三角形.[点评] 若设BC 中点为D ,则有AB →+AC →=2AD →,故由CB →·(AB →+AC →)=0得CB →·AD →=0, ∴CB ⊥AD ,∴AC =BC .14、5.点O 是△ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( ) A .三个内角的角平分线的交点 B .三条边的垂直平分线的交点 C .三条中线的交点 D .三条高线的交点 [答案] D[解析] 由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,∴OB →·(OA →-OC →)=0,即OB →·CA →=0.∴OB →⊥CA →.同理可证OA →⊥CB →,OC →⊥AB →. ∴OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的三条高线的交点.15、1.(2013·烟台模拟)若M 为△ABC 所在平面内一点,且满足(MB →-MC →)·(MB →+MC →-2MA →)=0,则△ABC 为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形[答案] B[解析] 由(MB →-MC →)·(MB →+MC →-2MA →)=0,可知CB →·(AB →+AC →)=0, 设BC 的中点为D ,则AB →+AC →=2AD →,故CB →·AD →=0,所以CB →⊥AD →. 又D 为BC 中点,故△ABC 为等腰三角形.1.(2013·济南一模)已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛12OA →+12OB →+⎭⎫2OC →,则点P 一定为三角形ABC 的( ). A .AB 边中线的中点 B .AB 边中线的三等分点(非重心) C .重心 D .AB 边的中点解析 设AB 的中点为M ,则12OA →+12OB →=OM →,∴OP →=13(OM →+2OC →)=13OM →+23OC →,即3OP →=OM →+2OC →,也就是MP →=2PC →,∴P ,M ,C 三点共线,且P 是CM 上靠近C 点的一个三等分点.答案 B2.在△ABC 中,点O 在线段BC 的延长线上,且与点C 不重合,若AO →=x AB →+(1-x )AC →,则实数x 的取值范围是( ).A .(-∞,0)B .(0,+∞)C .(-1,0)D .(0,1)解析 设BO →=λ BC →(λ>1),则AO →=AB →+BO →=AB →+λ BC →=(1-λ)AB →+λ AC →,又AO →=x AB →+(1-x )AC →,所以x AB →+(1-x )AC →=(1-λ)AB →+λ AC →.所以λ=1-x >1,得x <0.答案 A3.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________. 解析 OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|. 故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形.答案 直角三角形4.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.解 AG →=AB →+BG →=AB →+λBE →=AB →+λ2(BA →+BC →)=⎝⎛⎭⎫1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB →+λ2AC →=(1-λ)a +λ2b .又AG →=AC →+CG →=AC →+m CF →=AC →+m 2(CA →+CB →)=(1-m )AC →+m 2AB →=m2a +(1-m )b ,∴⎩⎨⎧1-λ=m 2,1-m =λ2,解得λ=m =23,∴AG →=13a +13b .。
(完整版)平面向量中“三点共线定理”妙用
平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
数学竞赛中的“三点共线定理”_
竞赛强基2023年5月上半月㊀㊀㊀数学竞赛中的 三点共线定理◉北京市第一七一中学㊀王桢宇㊀㊀摘要:从课本例题出发,深入探究了平面向量 三点共线定理 ,运用该定理求解了两道北京市中学生数学竞赛题,并推广了三角形面积比例的一类问题.关键词:平面向量基本定理;数学竞赛;面积比例㊀㊀向量是数学中重要的工具性知识,是数形结合的桥梁,其中平面向量基本定理说明平面中的向量都可以用两个不共线的向量进行线性表示,这种形式体现了数学的严谨性和逻辑性,是向量知识模块中的核心内容,其考查方式多以图形运算呈现.为了帮助学生更好地理解定理,做好向量图形运算题,笔者本着循序渐进的思想,开启了一场从课本到考题的探究之旅.1问道教材例1㊀如图1,O A ң,O B ң不共线,且A P ң=t A B ң(t ɪR ),用O A ң,O B ң表示O P ң.图1解:因为A P ң=t A B ң,所以㊀㊀㊀O P ң=O A ң+A Pң=O A ң+t A Bң=O A ң+t (O B ң-O Aң)=O A ң+t O B ң-t O A ң=(1-t )O A ң+t O B ң.(观察O P ң=(1-t )O A ң+t O B ң,你有什么发现?)本题是学习了平面向量基本定理后的第一个例题,通过该题,学生进一步理解了平面向量基本定理,熟悉了图形运算,也发现了定理的重要推论,记作 三点共线定理 ,表述如下:如果O A ң,O Bң是同一平面内的两个不共线向量,那么对于这个平面内的任一向量O P ң,有且只有一对实数x ,y ,使O P ң=xO A ң+y O B ң.若点P ,A ,B 共线,则x +y =1.特别地,其逆定理也成立,不再赘述.对学生而言,更为实用的是通过该定理认识下面的结论.图2中,P 分别位于线段A B 的中点㊁三等分点和四等分点靠近点A 的位置,写出O P ң=xO A ң+y O B ң的表达式分别为:图2O P ң=12O A ң+12O Bң,O P ң=23O A ң+13O Bң,O P ң=34O A ң+14O B ң.利用这个规律,我们可以巧解一些竞赛难题.2解题应用图3例2㊀(2019年北京市中学生数学竞赛8)如图3,在әA B C 的边A B ,B C 上分别取点K ,M ,使得A K K B =14,B M M C =45;在线段KM 上取点O ,使得K O O M=3.N 为射线B O 与A C 的交点,A C =a ,由点O 到边A C 的距离O D =d ,则әKMN 的面积为.2.1参考答案[1]图4如图4,过点M 作B N 的平行线,与N C 交于点Mᶄ;过点K 作B N 的平行线,与A N 交于点Kᶄ,联结O Mᶄ,O Kᶄ,则S әN O M =S әO NM ᶄ,S әN O K =S әO NK ᶄ.两式相加,得S әKMN =S әO M ᶄK ᶄ.注意到,NM ᶄM ᶄC =B M M C =45.设NM ᶄ=4u ,M ᶄC =5u .由K ᶄN NM ᶄ=K O O M =3,得K ᶄN =12u .由A K ᶄK ᶄN =A K K B =14,得A K ᶄ=3u .于是,K ᶄM ᶄ=12u +4u =16u ,A C =3u +12u +4u +5u =24u .所以K ᶄM ᶄA C =16u 24u =23,则K ᶄM ᶄ=23A C =23a .因此,S әKMN =S әO M ᶄK ᶄ=12K ᶄM ᶄ O D =1247Copyright ©博看网. All Rights Reserved.2023年5月上半月㊀竞赛强基㊀㊀㊀㊀23a d =a d 3.2.2试题新解解答中辅助线的运用十分巧妙,需要学生对平面几何问题有着较深的认识,下面给出应用 三点共线定理 解答的方法.因为K O O M =3,所以B O ң=14B K ң+34B M ң.设B N ң=uB O ң,则B N ң=14uB K ң+34uB M ң=14u 45B A ң+34u49B C ң=u 3B C ң+u 5B A ң.因为N ,C ,A 三点共线,所以13u +15u =1,则u =158.故B N B O =158,B N ң=58B C ң+38B A ң,于是N C A C =38.设әA B C 的高为B H ,由B N B O =158,可知dB H=715,则B H =157d .所以S әA B C =12a B H =1514a d .故S әKMN =S әK O N +S әM O N=715S әK B N +715S әM B N=715 45S әA B N +715 49S әC B N=715 45 58S әA B C +715 49 38S әA B C=13a d .3方法应用下面再通过一个例题来熟悉 三点共线定理 .例3㊀证明:三角形的外心㊁重心㊁垂心共线(欧拉线).2005年全国卷Ⅰ理科数学第15题考查了如下问题:若әA B C 的外接圆的圆心为O ,两条边上的高的交点为H ,且O H ң=m (O A ң+O B ң+O C ң),则实数m =.该题答案是1,为了叙述方便,将其改编为如下引理:әA B C 的外心为O ,且O H ң=O A ң+O B ң+O C ң,则H 为әA B C 的垂心.证明引理:因为O B ң+O C ң=O H ң-O A ң,所以AH ң=O B ң+O C ң.又B C ң=O C ң-O B ң,所以A H ң B C ң=O C ң2-O B ң2=0.即AH ңʅB C ң,同理B H ңʅA C ң.故H 为әA B C 的垂心.证明欧拉线:设G 为әA B C 的重心,P 为B C 边中点,则A G ң=23A P ң=23(O P ң-O A ң)=23(OB ң+OC ң2-O Aң)=13O B ң+13O C ң-23O A ң=13AH ң+23A O ң.所以G ,H ,O 三点共线,即三角形的外心㊁重心㊁垂心共线.4定理推广已知点O 在әA B C 内部,通过 三点共线定理 ,可以很容易得到一个常用的面积比例性质,本文暂称 面积比定理 ,内容如下:若xO A ң+y O B ң+zO C ң=0,则S әO B C ʒS әO A C ʒS әO A B =x ʒy ʒz .图5证明:如图5,延长A O 交B C 于点H ,设A O ң=t O H ң.因为x O A ң+y O B ң+z O C ң=0,所以xA O ң=y O B ң+zO C ң,则A O ң=y x OB ң+z xO C ң.故t O H ң=y x O B ң+z x O C ң.于是O H ң=y x t O B ң+z x tO C ң.因为B ,C ,H 三点共线,所以y x t +z x t =1,则y +zx=t .因为S әO B C ʒS әA B C =O H ʒA H ,又A H ң=(t +1)O H ң,所以O HAH =x x +y +z .于是S әO B C S әA B C =xx +y +z ,同理可得S әO A C S әA B C =y x +y +z ,S әO A B S әA B C =z x +y +z.故S әO B C ʒS әO A C ʒS әO A B =x ʒy ʒz .5新知应用例4㊀(2020年北京市中学生数学竞赛4)已知点O 在әA B C 内部,且2021A B ң+2020B C ң+2019C A ң=3A O ң,记әA B C 的面积为S 1,әO B C 的面积为S 2,则S 1S 2=.解:因为2021A B ң+2020B C ң+2019C A ң=3A Oң,所以2021(O B ң-O A ң)+2020(O C ң-O B ң)+2019(O A ң-O C ң)=3A O ң,则O A ң+O B ң+O C ң=0.由面积比定理,可知S әO B C ʒS әO A C ʒS әO A B =1ʒ1ʒ1.故S 1S 2=31=3.特别地,本题中O 是әA B C 的重心,O A ң+O B ң+O C ң=0也是常见的三角形重心的向量表示.57Copyright ©博看网. All Rights Reserved.竞赛强基2023年5月上半月㊀㊀㊀图6例5㊀(2013年北京市中学生数学竞赛4)如图6,正方形A B C D被分成面积相等的8个三角形,若A G=50,则正方形A B C D的面积S=.解:设正方形A B C D边长为a则SәD I C=18a2,得I C=a4.又因为SәD F A=14a2,所以点F到D A距离为a2,即以F为D I中点.因为SәG A F=SәG A H=SәG H F,由面积比定理可知G Aң+G Bң+G Cң=0,所以G为әF AH的重心,则F G必过AH中点.所以F GʊA D.因为SәF G A=18a2,所以F G=a2.由G Aң+G Hң+G Fң=0,得G Aң+G Aң+A Bң+B Hң+G Fң=0,即2G Aң+A Bң+14A Dң+12A Dң=0.所以2A Gң=A Bң+34A Dң.两边平方,可得200=a2+916a2,故a2=128.6四心推广通过 面积比定理 ,可以推导一组三角形四心的向量表达式.6.1重心设G是әA B C的重心,证明:G Aң+G Bң+G Cң=0.图7证明:如图7,因为G是әA B C的重心,即G是三条中线的交点,所以点M,N,T分别为B C,A C,A B的中点,则SәA B M=SәA C M,且SәG B M=SәG C M.所以SәA B G=SәA C G.同理SәA B G=SәB C G.所以SәA B G=SәA C G=SәB C G.故G Aң+G Bң+G Cң=0.6.2外心设O是әA B C的外心,证明:s i n2A O Aң+s i n2B O Bң+s i n2C O Cң=0.证明:如图8,O是әA B C的外心,即O是三条中垂线的交点.设әA B C外接圆半径为R,又øB O C=2øB A C,所以SәO B C=12R2s i nøB O C=12R2s i n2A,图8SәO A C=12R2s i nøA O C=12R2s i n2B,SәO A B=12R2s i nøA O B=12R2s i n2C.故SәO B CʒSәO A CʒSәO A B=s i n2Aʒs i n2Bʒs i n2C.所以s i n2A O Aң+s i n2B O Bң+s i n2C O Cң=0.6.3内心设I是әA B C的内心,证明:aI Aң+bI Bң+c I Cң=0.图9证明:如图9,由I是әA B C的内心,可知I是三条角平分线的交点.设әA B C内切圆半径为r,三边分别为a,b,c,则SәI B C=12a r,SәI A C=12b r,SәI A B=12c r.所以SәI B CʒSәI A CʒSәI A B=aʒbʒc.故a I Aң+b I Bң+c I Cң=0.6.4垂心设H是әA B C的垂心,证明:t a n AH Aң+t a n BH Bң+t a n CH Cң=0.图10证明:如图10,由H是әA B C的垂心,可知H是三条角高线的交点.所以SәH B CSәA B C=HMAM=B M t a nøH B MB M t a nøB.又因为在әB N C中,t a nøH B M=1t a nøC,SәH B CSәA B C=HMAM=1t a nøB t a nøC.同理SәH A CSәA B C=1t a nøA t a nøC,SәH A BSәA B C=1t a nøA t a nøB.所以SәH B CʒSәH A CʒSәH A B=t a n Aʒt a n Bʒt a n C.故t a n A HAң+t a n B H Bң+t a n CH Cң=0.参考文献:[1]李延林.2019年北京市中学生数学竞赛预赛(高一)[J].中等数学,2019(8):24G27.Z67Copyright©博看网. All Rights Reserved.。
高中数学 第二章 平面向量 2.2 向量的分解与向量的坐标 2.2.1 平面向量基本定理示范教案 新人教B版必修4
2.2.1 平面向量基本定理示范教案整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.教科书中,先用实例归纳出基本定理,然后做形式化的证明.教学时要注意,形式化证明可以省略,特别是唯一性证明,可能多数学生难以理解,但一定要对“唯一性”加以说明,以便应用唯一性解题.建议引导学生推导直线的向量表达式和中点公式.特别强调直线的向量表达式和中点公式应让学生记忆.三维目标1.通过探究活动,推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达,并通过例题的探究,掌握直线的向量表达式和中点公式.重点难点教学重点:平面向量基本定理和直线的向量表达式.教学难点:平面向量基本定理的灵活运用.课时安排1课时教学过程导入新课思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,用课件给出图象演示和讲解.通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题(1)给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?(2)如图1(1),设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,你能通过作图探究a与e1、e2之间的关系吗?(1) (2)图1活动:如图1(2),在平面内任取一点O ,作OA →=e 1,OB →=e 2,OC →=a .过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM →=λ1e 1,ON →=λ2e 2.由于OC →=OM →+ON →,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.或先让学生计算特例,从感性猜想入手.如图2,e 1,e 2是两个不平行的向量,容易看出AB →=2e 1+3e 2,CD →=-e 1+4e 2, EF →=4e 1-4e 2,GH →=-2e 1+5e 2.图2由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.由此可得:平面向量基本定理:如果e 1和e 2是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2,使a =a 1e 1+a 2e 2.教师强调:①我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底,记为{e 1,e 2},a 1e 1+a 2e 2叫做向量a 关于基底{e 1,e 2}的分解式;②基底不唯一,关键是不共线;③由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解; ④基底给定时,分解形式唯一.接下来教师可引导学对该定理给出证明.证明:在平面内任取一点O(如图3),作OE 1→=e 1,OE 2→=e 2,OA →=a .图3由于e 1与e 2不平行,可以进行如下作图:过点A 作OE 2的平行(或重合)直线,交直线OE 1于点M ,过点A 作OE 1的平行(或重合)直线,交直线OE 2于点N ,于是依据平面向量基本定理,存在两个唯一的实数a 1,a 2,分别有OM →=a 1e 1,ON →=a 2e 2,所以a =OA →=OM →+ON →=a 1e 1+a 2e 2.证明表示的唯一性:如果存在另一对实数x ,y 使OA →=x e 1+y e 2,则a 1e 1+a 2e 2=x e 1+y e 2,即(x -a 1)e 1+(y -a 2)e 2=0.由于e 1与e 2不平行,如果x -a 1,y -a 2中有一个不等于0,不妨设y -a 2≠0,则e 2=-x -a 1y -a 2e 1,由平面向量基本定理,得e 1与e 2平行.这与假设矛盾,因此x -a 1=0,y -a 2=0,即x =a 1,y =a 2.讨论结果:(1)(2)略. 应用示例思路1例 1如图4,ABCD 中,AB →=a ,AD →=b ,H 、M 分别是AD 、DC 的中点,F 使BF =13BC ,以a ,b 为基底分解向量AM →与HF →.图4解:由H 、M 、F 所在位置,有AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a .HF →=AF →-AH →=AB →+BF →-AH →=AB →+13BC →-12AD →=AB →+13AD →-12AD →=a -16b .点评:以a 、b 为基底分解向量AM →与HF →,实为用a 与b 表示向量AM →与HF →.变式训练已知ABCD 的两条对角线相交于点M ,设AB →=a ,AD →=b .试用基底{a ,b }表示MA →,MB →,MC →和MD →(图5)图5解:因为AC →=AB →+AD →=a +b , DB →=AB →-AD →=a -b ,MA →=-12AC →=-12(a +b )=-12a -12b ,MB →=12DB →=12(a -b )=12a -12b ,MC →=12AC →=12a +12b ,MD →=-12DB →=-12a +12b .例 2 如图6,质量为10 kg 的物体A 沿倾斜角为θ=30°的斜面匀速下滑,求物体受到的滑动摩擦力和支持力.(g =10 m/s 2)图6解:物体受到三个力:重力AG →,斜面支持力AN →,滑动摩擦力AM →.把重力AG →分解为平行于斜面的分力AF →和垂直于斜面的分力AE →.因为物体做匀速运动,所以AN →=-AE →,AM →=-AF →.因为|AG →|=10(kg)×10(m/s 2)=100(N), |AF →|=|AG →|·sin30°=100×12=50(N),|AE →|=|AG →|·cos30°=100×32=503(N),所以|AM →|=|AF →|=50(N),|AN →|=|AE →|=503(N).答:物体所受滑动摩擦力大小为50 N ,方向沿斜面平行向上;所受斜面支持力大小为50 3 N ,方向与斜面垂直向上.例 3下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A .①② B.②③ C .①③ D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解析:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B图7.a>0,b<0 .a<0,b<0 思路2例 1如图8,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →.图8活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a=a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎩⎪⎨⎪⎧a 1=b 1,a 2=b 2.解:∵AM →=AN →+NM →,BM →=BN →+NM →,∴由AM →+2BM →+3CM →=0,得(AN →+NM →)+2(BN →+NM →)+3CM →=0.∴AN →+3NM →+2BN →+3CM →=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线, 设AN →=λBN →,CM →=μNM →,∴λBN →+3NM →+2BN →+3μNM →=0.∴(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴⎩⎪⎨⎪⎧λ=-2,μ=-1.∴CM →=-NM →=MN →. ∴CN →=CM →+MN →=2CM →=2a .点评:这里选取BN →,NM →作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形例 2如图9,△ABC 中,AD 为△ABC 边上的中线且AE =2EC ,求AG GD 及BGGE的值.图9活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化后,结合向量的相等进行求解.解:设AG GD =λ,BGGE =μ.∵BD →=DC →,即AD →-AB →=AC →-AD →, ∴AD →=12(AB →+AC →).又∵AG →=λGD →=λ(AD →-AG →), ∴AG →=λ1+λAD →=λ21+λAB →+λ21+λAC →.①又∵BG →=μGE →,即AG →-AB →=μ(AE →-AG →), ∴(1+μ)AG →=AB →+μAE →,AG →=11+μAB →+μ1+μAE →.又AE →=23AC →,∴AG →=11+μAB →+2μ31+μAC →.②比较①②,∵AB →、AC →不共线,∴⎩⎪⎨⎪⎧λ21+λ=11+μ,λ21+λ=2μ31+μ.解之,得⎩⎪⎨⎪⎧λ=4,μ=32.∴AG GD =4,BG GE =32. 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.3已知A ,B 是直线l 上任意两点,O 是l 外一点(如图10),求证:对直线l 上任意一点P ,存在实数t ,使OP →关于基底{OA →,OB →}的分解式为OP →=(1-t)OA →+tOB →. ① 并且,满足①式的点P 一定在l 上.证明:设点P 在直线l 上,则由平面向量基本定理知,存在实数t ,使AP →=tAB →=t(OB →-OA →).图10所以OP →=OA →+AP →=OA →+tOB →-tOA →.所以点P 满足等式OP →=(1-t)OA →+tOB →,即有AP →=tAB →,即P 在l 上.点评:由本例可知,对直线l 上任意一点P ,一定存在唯一的实数t 满足向量等式①;反之,对每一个实数t ,在直线l 上都有唯一的一个点P 与之对应.向量等式①叫做直线l 的向量参数方程式,其中实数t 叫做参变数,简称参数.在①中,令t =12,点M 是AB 的中点,则OM →=12(OA →+OB →).课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,回忆我们是如何探究发现定理的?并通过思路2例3的证明又探究得到了线段AB 中点的向量表达式.教师点拨学生,在今后的学习中,要继续发扬这种勇于探索、勇于发现的科学精神.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图等,并把本节所学纳入知识体系中.作业课本本节练习B 组 2,3.设计感想1.本节课内容是在上节向量学习的基础上探究到的一个新定理——平面向量基本定理.教科书首先通过特例验证:对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题目.3.应充分借助多媒体进行教学,整节课的教学主线应以学生探究为主,教师给予引导和点拨.充分让学生经历分析、探究问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决问题的方法就越恰当而简捷.备课资料 一、三角形中三条中线共点的证明如图11所示,已知在△ABC 中,D 、E 、L 分别是BC 、CA 、AB 的中点,设中线AD 、BE 相交于点P.图11求证:AD 、BE 、CL 三线共点.分析:欲证三条中线共点,只需证明C 、P 、L 三点共线.证明:设AC →=a ,AB →=b ,则AL →=12b ,CL →=AL →-AC →=-a +12b .设AP →=mAD →,则AC →+CP →=m(AC →+CD →),CP →=(-1+m)AC →+mCD →=(-1+m)a +m[12(b -a )]=(-1+12m)a +12m b .①又设EP →=nEB →,则CP →-CE →=n(EC →+CB →),∴CP →=(1-n)CE →+nCB →=-12(1-n)a +n(b -a )=(-12-12n)a +n b .②由①②,得⎩⎪⎨⎪⎧-1+12m =-12-12n ,12m =n.解之,得⎩⎪⎨⎪⎧m =23,n =13.∴CP →=-23a +13b =23(-a +12b )=23CL →.∴C、P 、L 三点共线.∴AD、BE 、CL 三线共点.二、备用习题1.如图12所示,已知AP →=43AB →,AQ →=13AB →,用OA →、OB →表示OP →,则OP →等于( )图12A.13OA →+43OB → B .-13OA →+43OB →C .-13OA →-43OB → D.13OA →-43OB →2.已知e 1,e 2是两非零向量,且|e 1|=m ,|e 2|=n ,若c =λ1e 1+λ2e 2(λ1,λ2∈R ),则|c |的最大值为( )A .λ1m +λ2nB .λ1n +λ2mC .|λ1|m +|λ2|nD .|λ1|n +|λ2|m3.已知G 1、G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且A 1A 2→=e 1,B 1B 2→=e 2,C 1C 2→=e 3,则G 1G 2→等于( )A.12(e 1+e 2+e 3)B.13(e 1+e 2+e 3) C.23(e 1+e 2+e 3) D .-13(e 1+e 2+e 3) 4.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心5.已知向量a 、b 且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A 、B 、D B .A 、B 、C C .C 、B 、D D .A 、C 、D6.如图13,平面内有三个向量OA →、OB →、OC →,其中与OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.图13参考答案:1.B 2.C 3.B 4.B 5.A 6.611。
共线定理以及三点共线
共线定理以及三点共线一、向量共线定理平面向量共线定理:对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=例1.设与是两个不共线的向量,且向量与共线,则A. 0B.C.D.【解答】 解:因为向量与共线,所以存在实数x 有,则,解得故选D .例2.已知向量,,且与共线,,则 A.B.C.或D.或【解答】 解:与共线,,, , 或.故选:D .例3.若、是不共线向量,,,且,则k等于A. 8B. 3C.D.【解析】解:,是不共线向量,,,且,存在实数使得..,解得.故选D.例4.向量,,若与共线且方向相反,则______.【解答】解:,,解得,又与方向相反,.故答案为.例5.已知点P在线段AB上,且,设,则实数______.【解析】解:如图所示,点P在线段AB上,且,;又,.故答案为:.例6.已知向量______.【解析】解:,,则有,解得,故答案为.例7.已知是平面内两个不共线向量,,若A,B,D三点共线,则k的值为A. 2B.C.D. 3【解答】解:,,、B、D三点共线,与共线,存在唯一的实数,使得即解得.故选A.例8.已知、是两个不共线向量,设,,,若A,B,C三点共线,则实数的值等于A. 1B. 2C.D.【解答】解:,,,,,,B,C三点共线,不妨设,,,解得.故选C.例9.设,是两个不共线的向量,已知,,,若三点A,B,D共线,则k的值为A. B. 8 C. 6 D.【解答】解:,因为三点A,B,D共线,所以与共线,则存在实数,使得,即,由向量相等的条件得,所以.故选A.例10.设,是不共线向量,与共线,则实数k为______ .【解答】解:与共线,且,是不共线向量,存在实数满足:,且,.故答案为.例11.设向量,不平行,向量与平行,则实数________.【解答】解:向量,不平行,向量与平行,,,解得实数.故答案为.二、三点共线定理在平面中A、B、P三点共线的充要条件是:对于该平面内任意一点的O,存在唯一的一对实数x,y使得:OP xOA yOB=+且1x y+=。
高中数学第六章平面向量及其应用6.3.1平面向量基本定理同步练习含解析第二册
课时素养评价六平面向量基本定理(15分钟30分)1。
设{e1,e2}是平面内一组基底,则下面四组向量中,能作为基底的是() A。
e1-e2与e2—e1B。
2e1+3e2与—4e1—6e2C.e1+2e2与2e1—e2D.—e1+e2与e1-e2【解析】选C。
因为只有不共线的两个向量才能作为基底,选项A、B、D中的两个向量都是共线的,不可以作为基底.选项C中的两个向量不共线,可作为基底.2.(2020·湖州高一检测)在△OAB中,P为线段AB上的一点,=x+y,且=2,则() A.x=,y= B.x=,y=C。
x=,y=D。
x=,y=【解析】选A。
因为=2,所以+=2+2,即3=2+,所以=+,即x=,y=。
3.(2020·长沙高一检测)如图,在正方形ABCD中,点E是DC的中点,点F满足=2,那么= ()A.-B。
+C.—D.+【解析】选C。
=+=+=-。
【补偿训练】如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则= ()A.+B.+C。
+ D.+【解析】选D.根据题意得:=(+),又=+,=,所以==+.4。
如图所示,在6×4的方格中,每个小正方形的边长为1,点O,A,B,C均为格点(格点是指每个小正方形的顶点),则·=.【解析】设水平向右和竖直向上的单位向量为e1和e2,则|e1|=|e2|=1,e1·e2=0,由题图可知,=3e1+2e2,=6e1-3e2,·=(3e1+2e2)·(6e1-3e2)答案:125.已知e1,e2不共线,且a=k e1-e2,b=e2—e1,若a,b不能作为基底,则实数k等于.【解析】因为a,b不能作为基底,所以a,b共线,可设a=λb,λ∈R,则k e 1—e2=λ,即k e1-e2=λe2-λe1,因为e1,e2不共线,所以所以k=1.答案:1【补偿训练】已知e1,e2不共线,a=e1+2e2,b=2e1+λe2,要使{a,b}能作为平面内的一个基底,则实数λ的取值范围为。
2019_2020学年新教材高中数学第6章平面向量初步 共线向量基本定理练习(含解析)新人教B版必修第二册
课时30 共线向量基本定理知识点一 共线向量基本定理1.已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( ) ①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0; ③x a +y b =0(其中实数x ,y 满足x +y =0); ④已知梯形ABCD ,其中AB →=a ,CD →=b . A .①② B .①③ C .② D .③④ 答案 A解析 由2a -3b =-2(a +2b )得到b =-4a ,故①可以;∵λa -μb =0,∴λa =μb ,故②可以;当x =y =0时,有x a +y b =0,但b 与a 不一定共线,故③不可以;梯形ABCD 中,没有说明哪组对边平行,故④不可以.2.已知e 1,e 2不共线,若a =3e 1-4e 2,b =6e 1+k e 2,且a ∥b ,则k 的值为( ) A .8 B .-8 C .3 D .-3 答案 B解析 ∵a ∥b ,∴存在实数m ,使得a =m b ,即3e 1-4e 2=6m e 1+mk e 2,∴⎩⎪⎨⎪⎧3=6m ,-4=mk ,即⎩⎪⎨⎪⎧m =12,k =-8.3. 如图所示,已知OA ′ →=3OA →,A ′B ′ →=3AB →,则向量OB →与OB ′ →的关系为( )A .共线B .同向C .共线且同向D .共线、同向,且OB ′ →的长度是O B →的3倍 答案 D解析 由题意,知OB →=OA →+AB →,OB ′→=OA ′→+A ′B ′→=3OA →+3AB →=3OB →,故选D.知识点二 共线向量基本定理的应用4.已知点P 是△ABC 所在平面内的一点,且3PA →+5PB →+2PC →=0,设△ABC 的面积为S ,则△PAC 的面积为( )A.34SB.23SC.12SD.25S 答案 C解析 如图,由于3PA →+5PB →+2PC →=0,则3(PA →+PB →)=-2(PB →+PC →), 3(PA →+PB →)2=-2(PB →+PC →)2. 设AB ,BC 的中点分别为M ,N ,则PM →=12(PA →+PB →),PN →=12(PB →+PC →),即3PM →=-2PN →,则点P 在中位线MN 上,则△PAC 的面积是△ABC 的面积的一半.5.设AB →=22(a +5b ),BC →=-2a +8b ,CD →=3(a -b ),则共线的三点是________.答案 A ,B ,D解析 BD →=BC →+CD →=a +5b ,AB →=22BD →,即A ,B ,D 三点共线.6.已知e 1,e 2是两个不共线的向量,a =k 2e 1+⎝ ⎛⎭⎪⎫1-52k e 2与b =2e 1+3e 2是两个平行的向量,则k =________.答案 13或-2解析 ∵a ∥b ,∴存在实数m ,使得a =m b ,∴k 2e 1+⎝ ⎛⎭⎪⎫1-52k e 2=m (2e 1+3e 2),∴⎩⎪⎨⎪⎧k 2=2m ,1-52k =3m ,即3k 2+5k -2=0,∴k =13或-2.7.设O 为△ABC 内任一点,且满足OA →+2OB →+3OC →=0,且D ,E 分别是BC ,CA 的中点,则△ABC 与△AOC 的面积之比为________.答案 3∶1解析 如图,OB →+OC →=2OD →,OA →+OC →=2OE →,∴OA →+2OB →+3OC →=(OA →+OC →)+2(OB →+OC →)=2(2OD →+OE →)=0,即2OD →+OE →=0, ∴DO →与OE →共线,即D ,E ,O 共线, ∴2|OD →|=|OE →|,∴S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,即S △ABCS △AOC=3.8.已知梯形ABCD ,AB ∥DC ,E ,F 分别是AD ,BC 的中点.用向量法证明:EF ∥AB ,EF =12(AB +DC ).证明 如图,延长EF 到点M ,使FM =EF ,连接CM ,BM ,EC ,EB ,得平行四边形ECMB ,由平行四边形法则得EF →=12E M →=12( EB →+EC →).由于AB ∥DC ,所以AB →, DC →共线且同向,根据向量共线定理,存在正实数λ,使AB →=λDC →.由三角形法则得EB →=EA →+AB →, EC →=ED →+DC →且ED →+EA →=0,∴EF →=12(E B →+EC →)=12(E A →+AB →+ED →+DC →)=12(AB →+DC →)=1+λ2D C →, ∴EF →∥DC →.由于E ,D 不共点,∴EF ∥DC ∥AB ,又|EF →|=⎪⎪⎪⎪⎪⎪12( AB →+DC →)=12(|AB →|+|D C →|),∴EF =12(AB +DC ),所以结论得证.易错点 对共线向量基本定理理解不透致误9.如果向量a =(-k ,-1)与b =(4,k )共线且方向相反,则k =________.易错分析 出错的根本原因是对共线向量基本定理b =λa 理解不透,误认为向量反向时,参数k 的值应该为负值,实质应是λ的值为负值.答案 2正解 因为向量a =(-k ,-1)与b =(4,k )共线, 所以k 2-4=0,解得k =±2,当k =-2时,b =2a ,此时a 与b 方向相同,不符合题意,应舍去,因此k =2.一、选择题1.已知向量a =e 1+2e 2,b =2e 1-e 2,其中e 1,e 2不共线,则a +b 与c =6e 1+2e 2的关系是( )A .不共线B .共线C .相等D .不确定 答案 B解析 a +b =3e 1+e 2,∴c =6e 1+2e 2=2(a +b ). ∴c 与a +b 共线.2.下面向量a ,b 共线的有( ) ①a =2e 1,b =-2e 2;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2(e 1,e 2不共线). A .②③ B .②③④ C .①③④ D .①②③④答案 A解析 对于①,e 1与e 2不一定共线,故a 与b 不一定共线;对于②,a =-12b ,∴a ,b 共线;对于③,a =4b ,∴a ,b 共线;对于④,若a ,b 共线,则存在一实数λ,使得b =λa ,即2e 1-2e 2=λ(e 1+e 2),得(2-λ)e 1=(λ+2)e 2,当λ=2时,得e 2=0,e 1,e 2共线,矛盾,当λ≠2时,e 1=λ+22-λe 2,则e 1,e 2共线,矛盾.故a 与b 不共线.综上,选A. 3.若M 是△ABC 的重心,则下列各向量中与AB →共线的是( ) A .AB →+BC →+AC →B . AM →+MB →+BC → C . AM →+BM →+CM →D .3A M →+AC →答案 C解析 设D ,E ,F 分别为BC ,AC ,AB 的中点,根据点M 是△ABC 的重心, AM →+BM →+CM →=23( AD →+BE →+CF →)=23(AB →+B D →+BC →+CE →+CA →+AF →)=0,而零向量与任何向量共线,所以与AB →共线.4.点P 是△ABC 所在平面内一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上答案 B解析 ∵CB →=λPA →+PB →,∴CB →-PB →=λPA →,即CP →=λPA →.∴点P ,A ,C 共线.∴点P 一定在AC 边所在的直线上. 二、填空题5.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 同向,则实数λ的值为________.答案 1解析 由于c 与d 同向,所以可设c =k d (k >0),于是λa +b =k [a +(2λ-1)b ], 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,所以λ=1或λ=-12.又k >0,所以λ>0,故λ=1.6.在△ABC 中,点D 在BC 边上,且CD →=4DB →,CD →=rAB →+sAC →,则3r +s 的值为________. 答案 85解析 ∵AB →+BC →=AC →,CD →=4DB →,∴CD →=45CB →,即CD →=45AB →-45AC →,∴r =45,s =-45,∴3r +s =85.7.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足PA →+PB →+P C →=A B →,则点P 在边AC 的________等分点处.答案 三解析 由PA →+PB →+PC →=AB →,得PA →+PC →=AB →-PB →=AP →,所以PC →=2AP →,从而点P 在边AC 的三等分点处.三、解答题8.已知非零向量e 1,e 2不共线,(1)如果AB →=e 1+e 2, BC →=2e 1+8e 2, CD →=3(e 1-e 2),求证:A ,B ,D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解 (1)证明:∵AB →=e 1+e 2,B D →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →. ∴AB →与BD →共线,且AB 与BD 有公共点B , ∴A ,B ,D 三点共线.(2)∵k e 1+e 2与e 1+k e 2共线,且此两向量均为非零向量, ∴存在λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线, 只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.9.如图,平行四边形OACB 中,BD =13BC ,OD 与BA 相交于E .求证:BE =14BA .证明 如图,设E ′是线段BA 上的一点,且BE ′=14BA ,只要证E ,E ′重合即可.设OA →=a , OB →=b ,则BD →=13a , OD →=b +13a .∵BE ′ →=OE ′ →-b ,E ′A →=a -OE ′ →,3BE ′ →=E ′A →, ∴3(OE ′ →-b )=a -OE ′ →, ∴OE ′ →=14(a +3b )=34⎝ ⎛⎭⎪⎫b +13a ,即OE ′ →=34O D →,∴O ,E ′,D 三点共线,∴E 与E ′重合.∴BE =14BA .10.已知OA →,OB →是不共线的两个向量,设OM →=λOA →+μOB →,且λ+μ=1,λ,μ∈R .求证:M ,A ,B 三点共线. 证明 ∵λ+μ=1,∴μ=1-λ. ∴OM →=λOA →+(1-λ)OB →=λOA →+OB →-λOB →. ∴OM →-OB →=λ(OA →-OB →),即BM →=λBA →(λ∈R ),∴BM →,BA →共线. 又∵BM ,BA 有公共点B , ∴M ,B ,A 三点共线.11.如图所示,点P 在直线AB 上,O 为直线外任意一点,且OP →=λOA →+μOB →(λ,μ∈R ),求证:λ+μ=1.证明 OP →=λOA →+μOB →=λ(OP →+PA →)+μ(OP →+PB →) =(λ+μ)OP →+λPA →+μPB →, 又点P 在直线AB 上,不妨设PA →=kPB →, 则(λ+μ-1)OP →+(λk +μ)PB →=0又OP →与PB →不共线,故⎩⎪⎨⎪⎧λ+μ-1=0,λk +μ=0,得λ+μ=1.12.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,且AE →=23AD →,AB →=a ,AC →=b .(1)用a ,b 表示向量AD →,AE →,AF →,BE →; (2)求证:B ,E ,F 三点共线. 解 (1)AD →=AB →+BD →=a +12BC →=a +12AC →-12AB →=12b +12a ,AE →=23AD →=13b +13a , AF →=12AC →=12b ,BE →=AE →-AB →=13b +13a -a=13b -23a . (2)证明:BF →=AF →-AB →=12AC →-AB →=12b -a ,BE →=13b -23a ,∴23BF →=BE →,故BF →∥BE →, 又BF 与BE 有公共点B ,∴B ,E ,F 三点共线.。
高中数学平面向量基本定理
解得λ =±1.
1 N在线段BD上,且有BN= BD,求证:M、N、C三点共线。 3
如图,在平行四边形ABCD中,点M是AB中点,点
D
C
N A M B
1.如果两个向量的基线互相垂直,则称这两
个向量互相垂直 ; 2. 如果两个基向量e1、e2互相垂直,则称
{e1,e2} 为正交基底 3. 若向量e1、e2为单位正交基底,且a xe1 ye2 则称(x,y)为向量a的坐标.N来自Ae2 O e1
M
我们把不共线向量e1,e2叫做这一平面内 所有向量的一组基底,记为{e1,e2}, a1e1+a2e2叫做向量a关于基底{e1,e2}的
分解式。
例1
ABCD中,E、F分别是DC和AB
的中点,试判断AE,CF是否平行?
D E C
A
F
B
例2、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别是DC,AB 的中点. 请大家动手, D 在图中确定一组 基底,将其他向 量用这组基底表 A 示出来。
问题:(1)向量a是否可以用含有e1、e2的式
子来表示呢?怎样表示? (2)若向量a能够用e1、e2表示,这种表示
是否唯一?请说明理由.
平面向量基本定理
如果e1、e2是平面内的两个不共线向量,那 么对于这一平面内的任一向量a,有且只有一 对实数a1、a2,使 a a1e1 a2e2 说明:① e1、e2是两个不共线的向量; ② a是平面内的任一向量; ③ a1,a2实数,唯一确定.
2.2.1平面向量基本定理
如图,设e1、e2是同一平面内两个不共线的向量,
试用e1、e2表示向量
AB, CD, EF , GH
平面向量中“三点共线定理”妙用
平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。
特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
高中数学例题:利用平面向量基本定理证明三点共线问题
第 1 页共 2 页高中数学例题:利用平面向量基本定理证明三点共线问题例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数
m 、n 使m+n=1且OP mOA nOB .
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线
m+n=1,且OP mOA nOB 成立;(2)上述条件成立
A 、
B 、P 三点共线.【证明】(1)由三点共线m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数使AP AB ,即()OP OA
OB OA ,∴(1)OP OA OB .令1m ,n=,则OP mOA nOB 且m+n=1.
(2)由m 、n 满足m+n=1
A 、
B 、P 三点共线.若OP mOA nOB 且m+n=1,则(1)OP mOA m OB .
则()OP OB m OA OB ,即BP mBA .
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e ,12BC e e ,1269CD e e ,求证:A ,C ,D 三点共线.
【解析】因为121212
1(4)()233AC AB BC e e e e e e CD ,所以AC 与CD 共线.。
平面向量的应用—三点共线专题课件
巩固练习1
不同的三点A, B, C在同一直线l上,O为直线l
外一点,若pOA qOB rOC 0 ( p, q, r R),
则p q r
。
巩固练习2
如图所示,M是 ABC内一点,且满足条件
AM 2BM 3CM 0,延长CM交AB于N,
若CN CM,则
。
C
M
A
N
B
平面向量的应用 ——三点共线
复习旧知:
非零向量a与b平行
存在唯一非零实数,使b a;
问题重现:
如图,已知OA,OB是不平行的两个向量, 且AP k AB ( k R ),用OA,OB表示OP。
P B A
O
结论:
若平面向量OA,OB,OC满足
OC OA OB ( , R ),且
点O不在直线AB上,则A, B, C三点
共线的充要条件是 1。
定理热身:
三角形的重心:三条中线的交点。
三角形重心的性质:重心到顶点的距离 与其到对边中点距离之比为2:1。
结论:GA GB GC 0
例题讲解1:
例1. 过 OAB的重心G的直线与边OA,OB
分别交于P,Q,设OP h OA,OQ k OB,
求证:1 1 3。
O
hk
P A
Q
G
M
B
例题讲解2:
如图,在 OAB中,OC 1 OA,OD 1 OB,
4OB
表示OM。
B
DM
O
C
A
例题讲解3:
已知O是 ABC的外心,AB 2,AC 3, 若AO x AB y AC ( 其中x, y均不为零), 且x 2 y 1,求cos BAC。
向量中有关三点共线的一个结论的简单应用
2021年第07期总第500期数理化解题研究向量中有关三点共线的一个结论的简单应用孙红(浙江省青田中学;2;900)摘 要:向量具有几何和代数的双重属性,它是沟通几何与代数的桥梁,注重运用向量解决数学问题,体现了几何与代数的融合,有利于培养学生的数学思维能力,有利于提升数学学科核心素养.本文结合具体的实例,探讨了向量中三点共线的一个结论的简单应用•关键词:向量;三点共线;应用中图分类号:G632 文献标识码:A 文章编号:;008 -0333(202;)07 -0049 -03向量是近代数学中重要和基本的数学概念之一,是 解决解析几何的有力工具,有着丰富的实际背景和深刻 的几何背景.向量来源于物理,并且兼有”数”和”形”的特点,坐标表示使平面内的向量和坐标建立了一一对应的 关系,将“数”与“形”紧密结合起来’从而将图形的基本性 质转化为向量的运算体系•在平面向量的解题中涉及到三点共线时经常用到下面的结论,我们一起来探讨一下•结论 已知0,A ,B ,C 四点共面,若0C 二入°4 + “ OB(入,“ e R ),则A ,B ,C 三点在同一条直线上的充要条件是 入 + “ - 1.证明 (先证必要性) 若A ,B , C 三点在同一条直 线上,则存在t e R ,使得A C - t AB.所以O B - 04 -t ( O B - B ).即 B - (1 - t )04 + t 0B -入 B + /zO B .则r -;-t ,此时入+“-1.z 二t ,(再证充分性)若入+ z - 1,则0C -入04 + z 0B - (1 -z )0B + z 0B .所以0B - 0B -z (0B - 0B ).即A C -/zA B .所以A ,B ,C 三点在同一条直线上.综上所述,A ,B , C 三点在同一条直线上的充要条件 是入+ z — ; •点评平面向量三点共线结论中三个向量04,0B , 0B 必须是同起点,其中蕴含了一个几何特征,即三点共线 和一个代数结论入+ z -1 •上述结论中包含了两个方面:(;)若A ,B ,C 三点在同一条直线上,则入+ z -1; (2)若入+ z -;,则A , B , C 三点在同一条直线上•在向量解题中 要注意灵活应用,即结论的正用和逆用,下面一起来看一 下结论的简单应用.题1在A ABC 中,D ,E 分别是线段BC 上(除端点外)的两个动点,B + B -% A b + yA c ,求丄+ 4的最小值.%y分析因为B ,D ,C 三点共线,所以存在m E R ,使得A 力-mA B + (1 - m )A C . ①同理,由B , E , C 三点共线,则存在n e R ,使得A B -nA B + (1 - n )AC.②所以AD + AE - (m + n )A B + (2 - m - n )AC - % A B +% - m + n , “ …y AC ,即{解得 % + y -2•y - 2 - m - n ,又分别是线段BC 上的两个动点,所以0 < m <1,0 < n < 1.2% - 3、时等号成立.4y -;所以 0 <%,y <2.所以丄+ -y -I I 1 +%y 2 V %/5+2 弹・4% ]-9,V %y 丿2,'% + y -2,当且仅当y 4%即V %y ,:0( %+y )-2 f 5 + % +4;所以丄+ ~~的最小值为刍.% y 2点评 本题条件不多,解题时要充分利用已知条件找到%,y 满足的关系式•上述解题过程中利用了平面向量 三点共线的一个结论’根据B ,D ,C 三点共线和B ,E ,C 三点共线可得到等式①和②,结合已知条件可得% + y -2,因此 本题就转化为在% + y -2和0<%,y <2的条件下,求丄+ 土%y收稿日期:2020 -12 -05作者简介:孙红(1979 -),女,安徽省宿县人,中学高级教师,从事高中数学教学研究.— 49—数理化解题研究2021年第07期总第500期的最小值问题,利用1的代换容易求出最小值题2 已知0为△ 4BC 所在平面内的一点,0》—4 0》,0力—1 0》,4D 与BC 交于点M ,设0》—a , 0》—b .用a ,b 表示0》.分析这是学生作业本上的一道习题,学生拿到这道题可能会感觉无从下手,题目中涉及的向量比较多,事 实上,根据题目条件4,M ,D 三点共线,存在m e R ,使得而—m 0》+ (1 - m )0》—m a +辽%①同理B ,M ,C 三点共线,存在n e R ,使得》—n0》+ (1 - n )0》—a + (1 - n )b .②一n m 二才,由等式①和②可得,解得<1 - m v4n — .1 ;所以0M — 7 a + 7 b .当然本题也可以利用平面图形的几何性质来解决. 过点》作04交BC 于点N ,根据题意容易得到,DN—1 0C — 1 C4.所以》M — 1 M4,—1》》—2 6 6 77 (0》-0》)—7 卜-1 bj— ; a -[[b .所以0》—0》+—;a + 7 b .题3 已知0为△ 4BC 外接圆的圆心,4B —6,4C —15,40 — % 4》+ y 4》,2% +3y — 1,求 cosZ B4C 的值.分析 40 — % 4》+ y 4C — 2% x 2 4》 + 3 y x ; 4》,令4》丁 — 1 4》,4C ; — 1 4》,贝V 40 —2% 4》;+ 3y 4C ;.因为 2%+ 3y — 1,所以0,B',C '三点共线•又0为厶4BC 外接圆的圆心,B ;是线段4B 的中点,所以B'C ;是线段4B 的中垂 线•在 RtA 4B'C ;中,有 4B ; — 1 4B —3,4C ; — ; 4C — 5,4B ;cos/B'4C ‘ — 4》3—5 •即 cosZ B4C35点评 上述解题过程利用了平面向量中三点共线的 结论,因为题目条件中给出等式2% +3y — 1,有时我们会 想能否利用三点共线的结论,而要利用结论必须要出现 系数2%和3y ,因此需要对已知等式进行恒等变形,即40—%4》+ y4》—2% x 2 4》+ 3y x ; 4》,这时只需令4》—1 4》,4》—;4》,贝V 4》—2% 4》+3y4》.又 2% +3y — 1, 容易得到0,B ;,C ;三点共线,这是三点共线结论的逆用, 通过对已知等式进行恒等变形,结合已知条件构造三点共线进行解题,这种解题思路在向量解题中经常运用.题4给定两个长度为1的平面向量0》和0》,它们的夹角为120°,点C 在以0为圆心的圆弧4B 上变动,若0C — % 0》+ y 0》(% ,y e R ),求% + y 的最大值•分析 连接4B 交0C 于点》,因为4,B ,》三点共线,则存在 m , n e R ,使得0》—m 0》+ n 0》,m + n — 1(m ,n e R ).又0,》,C 三点共线,所以存在t e R ,使得0》 -t0》 — tm 0》 + tn 0》—% 0》+ y 0》.即{,解得 % + y — t ( m + n ) — t.y — tn.又t俑—嵩,当0》丄4B 时」轨占此时t唤—2,即% + y 的最大值为2 •点评 上述解题过程中利用了 4,B ,》三点共线,存 在m ,n e R ,使得0》—m 0》+ n 0》,m + n — 1,以及0, D , C 三点共线,存在t e R ,使得0》—t 0》,从而得到等式% +y — t.又t — 0》— J ,因此要求% + y 的最大值,即求|0》 |0》0》的最小值,结合图形容易求得答案•事实上,假若%+ y — 1,则4,B ,C 三点共线,但是因为点C 在圆弧4B 上运动,因此只需将直线4B 平移至4'B ‘,使得直线4'B ;与圆 弧4B 有交点,即为点C.根据等和线定理容易得到,% + y —-p0》l — 10》|•又'0》e [t ,1 ],所以%+ y 的最大值为2 ,此时直线4'B ‘与圆弧4B 相切,切点为点C.思路1根据平面向量分解定理,按照向量加法的几何意义及平行四边形法则,等式0》—%0》+ y 0》表明了 将0》向0》和0》方向上进行分解,在0》和0》方向上的投影分别是%,y ,因此我们可以利用余弦定理得到等式%2 + y 2- %y — 1,然后再结合基本不等式知识或△法求解% + y 的最大值.思路2引入变量Z C0B — a ,利用正弦定理将% + y的最大值问题转化为关于a 的三角函数的最值问题.思路3建立平面直角坐标系,将本题转化为向量的代数运算.比如以0》所在直线为%轴,以点0为坐标原点建立平面直角坐标系,容易得到4 (1,0),B设C (cos 0,sin 0)〔0三0三;n )根据0C — % 0》+ y 0》.将 % + y 的最大值问题转化为关于0的三角函数的最值问题.变式 若本题的其他条件不变,求2% + y 的最大值. 上述几种方法同样适用,若用到等和线定理,则需将—50—2021年第07期总第500期数理化解题研究已知等式进行恒等变形•事实上’OC-%04+y O B-2%X ;04+y O B,令O M-;04,即M为线段OA的中点,则OC-2%O M+y O B.连接MB交OC于点N,假设2%+y -1,则C,M,B三点共线,但是因为点C在圆弧AB上运动,根据等和线定理,只需将直线MB平移至M'B,,使得直线M‘B,与圆弧相切’切点为点C,此时(2%+y)喰-临-侖,根据图形可得OC丄M'B',MB〃MW.所以OC丄MB,即ON丄MB,在△ABM中利用面积法可求得O/V•题5(2019年浙江高考卷)已知点F(1,0)为抛物线y2-2p%(p>0)的焦点,过点F的直线交抛物线于A,B 两点,点C在抛物线上,使得A ABC的重心G在%轴上,直线AC交%轴于点Q,且点Q在点F的右侧,记A AFG,△CQG的面积分别是S;,S2•(1)求卩的值及抛物线的准线方程;S(2)求S;的最小值及此时点G的坐标.S2分析解析几何是高考重点考查的内容之一,本题考查的是抛物线的标准方程以及直线与抛物线的位置关系,同时考查了学生的转化与化归能力、数形结合能力、运算求解能力,以及运用所学知识分析问题和解决问题的能力,考查逻辑推理、直观想象、数学运算等核心素养•(;)抛物线的标准方程为y2-4%;(2)思路1设点法•设点A(t2,21),写出直线AF的方程,联立抛物线方程可求得点B的坐标(用t表示),结S合已知条件从而求得点C,G,Q的坐标,进而得到S;的表S2达式,可写成关于变量t的函数,最后利用换元法以及基本不等式等知识求得函数的最小值.思路2设出直线AB的方程,如Z AB:%-my+ 1,将直线AB的方程与抛物线方程联立,设A(%;,y;),B(%2,y2),利用韦达定理,结合题目条件容易求得点C,G,Q的坐标, S从而得到S;的表达式,因此问题就转化为求函数的最小S2值问题•这两种方法都比较好,但解题中计算量非常大,很难将解题进行到底,解决此题需要一定的综合解题的能力.思路3有些同学是利用向量知识进行求解,相比较而言计算量较小,在解题过程中利用了平面向量中三点共线的一个结论,及三角形中的重心的性质等知识,最终S将S;最大值问题转化为求函数的最大值问题•下面是利S2用向量法求解本题的部分解析•因为点G是A ABC的重心,则S△agb-S△agc.令A F-入A V,AQ-/zAC(0<入,“<1),贝卩S;-S“G-^S△ABG,S2-S△CQG-(1-z)S△AGC.所以-;—延长AG 交BC于点M,则A M-;(A F+A C),AG-;A M-;(A B+A C).又F,G,Q三点共线,所以存在t e R,使A F -tAF+(1-t)AQ-入tAB+z(;-t)A C-;(AB+AC).即{入t-V,解得入二2"[•门、13"-;z(;-1)二亍又0<入,z<;,所以2<z<;•A A所以S;二入__S21-z(3z-;)(;-仏)-3^z2+4z-;■3--1+孚——;、三3z+^丿+4-23+4当且仅当{”-丄,z;;;C T+7-3,即{\3+3入二6时等号成立.73“-;所以的最小值为;+£•(点G的坐标求解略)解析几何中有关面积最值或范围问题是高考的热点和难点之一,一般来讲有两种常见的解题思路:(1)构造关于所求量的函数,将有关面积的最值或范围问题转化为函数的最值或范围问题;(2)构造关于所求量的不等式来求解最值或范围.解题过程中经常将直线方程与圆锥曲线方程联立,利用韦达定理、弦长公式、点到直线的距离、基本不等式等知识•解析几何作为高考解答题之一,常作为压轴题,解答题重视数学思想、数学方法的理解、掌握与灵活运用,综合性强,难度较大,体现了对学生数学素养的考查.对于本题相比较前面涉及到的三种解题方法中,利用向量法求解本题计算量较少,容易求解.参考文献:[1]何振华.例谈高中数学一题多解的“套路”[J].福建中学数学,2018(12):38-40.[责任编辑:李璟]—51—。
2023年高考数学----平面向量基本定理及其应用规律方法与典型例题讲解
2023年高考数学----平面向量基本定理及其应用规律方法与典型例题讲解【规律方法】1、应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2、用基底表示某个向量的基本方法:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【典型例题】例1.(2022·全国·模拟预测)如图,在ABC 中,点D 是边AB 上一点且2BD AD =,E 是边BC 的中点,直线AE 和直线CD 交于点F ,若BF 是ABC ∠的平分线,则BCBA =( )A .4B .3C .2D .12 【答案】C【解析】因为BF 是ABC ∠的平分线,所以存在一个实数λ使得BA BC BF BA BC λ⎛⎫ ⎪=+ ⎪⎝⎭,(根据角平分线的条件,选择合适的基底)因为E 是边BC 的中点,所以2BA BE BF BA BC λ⎛⎫ ⎪ ⎪⎝⎭=+,又点A ,E ,F 共线,所以21BA BC λλ+=①.(三点共线的应用:OA OB OC λμ=+(λ,μ为实数),若A ,B ,C 三点共线,则1λμ+=) 因为2BD AD =,所以32BD BC BF BABC λ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭,又点C ,F ,D 共线,所以312BA BC λλ+=②,联立①②,得112BA BC =,则2BC BA =,即2BC BA =.故选:C . 例2.(2022·全国·模拟预测)如图,在平行四边形ABCD 中,点E 在线段BD 上,且EB mDE =(m R ∈),若AC AE AD λμ=+(λ,μ∈R )且20λμ+=,则m =( )A .13B .3C .14D .4【答案】B 【解析】方法1:在平行四边形ABCD 中,因为EB =mDE ,所以()AB AE m AE AD −=−,所以11AE AB m =++1m AD m +, 又∵AB DC AC AD ==−,∴()111m AE AC AD AD m m =−+++, ∴()()11AC m AE m AD =++−,又∵AC AE AD λμ=+,∴1m λ=+,1m μ=−,(平面向量基本定理的应用)又∵20λμ+=,∴()1210m m ++−=,解得3m =,故选:B.方法2:如图,以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则()0,0A ,设(),0B a ,(),D b c ,∵AB DC = 则 (),C a b c +,又∵EB mDE =,设(),E x y ,则()()11mb a x a x m x b m y m y c mc y m ⎧+⎧=⎪⎪−=−⎪⎪+⇒⎨⎨−=−⎪⎪=⎪⎪+⎩⎩即:,11mb a mc E m m +⎛⎫ ⎪++⎝⎭∴,11mb a mc AE m m +⎛⎫= ⎪++⎝⎭,(),AC a b c =+,(),AD b c =, 又∵AC AE AD λμ=+,20λμ+=∴2AC AE AD μμ=−+∴()(),=2,,11mb a mc a b c b c m m μμ+⎛⎫+−+ ⎪++⎝⎭∴2()121a bm a b b m mc c c m μμμμ−+⎧+=+⎪⎪+⎨−⎪=+⎪+⎩①② 由②得1=1m mμ+−,将其代入①得3m =, 故选:B. 例3.(2022·北京·牛栏山一中高三期中)在平行四边形ABCD 中,E 是边CD 的中点,AE 与BD 交于点F .若AB a =,AD b =,则AF =( )A .1344a b +B .2133a b +r rC .3144a b +D .1233a b + 【答案】D【解析】12AE AD DE AD AB =+=+. 设AF AE λ=()01λ<<, 则1122BF AF AB AD AB AB AD AB λλλ⎛⎫⎛⎫=−=+−=+− ⎪ ⎪⎝⎭⎝⎭, 又BD AD AB =−,且,,B F D 三点共线,则,BF BD 共线,即R μ∃∈,使得BF BD μ=,即12AD AB AD AB λλμμ⎛⎫+−=− ⎪⎝⎭, 又,AB AD 不共线,则有12λμλμ=⎧⎪⎨−=−⎪⎩,解得2323λμ⎧=⎪⎪⎨⎪=⎪⎩,所以,22112123323333AF AE AD AB AB AD a b ⎛⎫==+=+=+ ⎪⎝⎭. 故选:D.例4.(2022·广东广州·高三期中)如图,在平行四边形ABCD 中,,M N 分别为,AB AD 上的点,且42,53AM AB AN AD ==,连接,AC MN 交于P 点,若AP AC λ=,则λ的值为( )A .35B .57C .411D .815【答案】C 【解析】设MP kMN = 则45AP AM MP AB kMN =+=+ 显然2435MN AN AM AD AB =−=− 得()42424153535k AP AB k AD AB AD k AB ⎛⎫=+−=+− ⎪⎝⎭ 显然AC AD AB =+因为AP AC λ= 所以有()()24135k AD k AB AD AB λ+−=+ 即()24135k AD k AB AD AB λλ+−=+ 根据向量的性质可知()23415k k λλ⎧=⎪⎪⎨⎪−=⎪⎩ 解得611411k λ⎧=⎪⎪⎨⎪=⎪⎩故选:C例5.(2022·安徽省舒城中学模拟预测(文))已知平面向量OA ,OB 满足2OA OB ==,2OA OB ⋅=−,点D 满足2DA OD =,E 为AOB 的外心,则OB ED ⋅的值为( )A .83− B .83 C .163− D .163 【答案】A 【解析】2OA OB ==uu r uu u r Q ,cos 4c 2os OA O OA OB B AOB AOB ⋅=−∴⋅∠=∠=uu r uu u r uu r uu u r ,1cos 2AOB ∴∠=−,23AOB π∴∠=, 以O 为原点,OA ,垂直于OA 所在直线为x ,y 轴建立平面直角坐标系,如图所示,则()0,0O ,()2,0A ,(B −,设(),0D x 又2DA OD =,知()(),022,0x x =−,解得23x =,2,03D ⎛⎫∴ ⎪⎝⎭ 又E 为AOB 的外心,123AOE AOB π∴∠=∠=,OE EA =3AOE EAO OEA π∴∠=∠=∠=,AOE ∴为等边三角形,(E ,∴1,3ED ⎛=− ⎝,∴83OB ED ⋅=−. 故选:A例6.(多选题)(2022·湖北·华中师大一附中高三期中)如图,ABC 中,13BD BC =,12AE AC =,AD 与BE 交于点F ,则下列说法正确的是( )A .1233AD AB AC =+ B .12BF BE = C .:1:3BFD AFE S S =△△D .20AF BFCF ++=【答案】BCD 【解析】为了判断下面的有关结论,先引入三点共线向量形式的充要条件,设,,A B C 三点共线,O 为线外一点,则()1OB mOC m OA =+−, 即OA 与OC 前系数和为1,证:,,A B C 三点共线,AB mAC ∴=,()OB OA m OC OA ∴−=−, ()1OB mOC m OA ∴=+−.()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+−=+, 故A 错; ,,B F E 三点共线,()()112AF AB AE AB AC λλλλ−∴=+−=+, ,,A F D 三点共线,233AF AD AB AC μμμ∴==+, 23132μλμλ⎧=⎪⎪∴⎨−⎪=⎪⎩, 解得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,1122AF AB AE ∴=+, ∴ F 为BE 的中点, 12BF BE ∴=,故B 对; 111443BFD ABD ABC S S S ==⨯⋅△△△, 111222AFE ABE ABC S S S ==⨯⋅△△△, :1:3BFD AFE S S ∴=△△,故C 对;取AB 中点G ,BC 中点H ,如下图,则,,G F H 三点共线,()()()()2AF BF CF AF BF BF CF FB FB F FA C ⎡⎤∴++=−++++=++⎣⎦ ()()220FG FH EA EC =−+=−+=,故D 对. 故选:BCD .例7.(2022·黑龙江·哈尔滨三中模拟预测)在ABC 中,13A A D B =,34A A E C =,BE 与DC 交于点F ,若AF AB AC λμ=+,则λμ+的值为__________. 【答案】79【解析】由已知可得,13A A D B =,34A A E C =. 因为,,,D F C 三点共线,设DF mDC =uuu r uuu r ,01m <<. 13DC AC AD AC AB =−=−uuu r uuu r uuu r uuu r uu u r ,则111333m AF AD DF AB m AC AB AB mAC −⎛⎫=+=+−=+ ⎪⎝⎭uu u r uuu r uuu r uu u r uuu r uu u r uu u r uuu r . 1233m m BF AF AB AB mAC AB AB mAC −+=−=+−=−+uu u r uu u r uu u r uu u r uuu r uu u r uu u r uuu r , 又34BE AE AB AB AC =−=−+uur uu u r uu u r uu u r uuu r ,因为,,B E F 三点共线,则存在R n ∈,使得BF nBE =uu u r uur ,即233344m n AB mAC n AB AC nAB AC +⎛⎫−+=−+=−+ ⎪⎝⎭uu u r uuu r uu u r uuu r uu u r uuu r , 因为,,AB AC 不共线,所以有2334m n n m +⎧−=−⎪⎪⎨⎪=⎪⎩,解得2389m n ⎧=⎪⎪⎨⎪=⎪⎩, 所以,1293AF AB AC =+uu u r uu u r uuu r ,即19λ=,23μ=,79λμ+=. 故答案为:79.例8.(2022·全国·高三专题练习)根据毕达哥拉斯定理,以直角三角形的三条边为边长作正方形,从斜边上作出的正方形的面积正好等于在两直角边上作出的正方形面积之和.现在对直角三角形CDE 按上述操作作图后,得如图所示的图形,若AF AB AD x y =+,则x y −=____________.【答案】12− 【解析】如图,以A 为原点,分别以,AB AD 为,x y 轴建立平面直角坐标系,设正方形ABCD 的边长为2a ,则正方形DEHI,正方形EFGC 边长为a 可知()0,0A ,()2,0B a ,()0,2D a,)1DF a =则)1cos30F x a =⋅,)1sin 302F y a a =⋅+,即F ⎫⎪⎪⎝⎭ 又AF AB AD x y =+,()()()2,00,22,2x a y a ax ay ⎫∴=+=⎪⎪⎝⎭即22ax ay ⎧=⎪⎪⎨⎪=⎪⎩,即22ax ay −=,化简得12x y −=− 故答案为:12−。
平面向量中三点共线定理的应用
平面向量中三点共线定理的应用知识梳理(一)对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=由该定理可以得到平面内三点共线定理:(二)三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y 使得:OP xO A yOB =+ 且.OP xO A yOB =+ 例题精讲例1设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于()A.OM→B .2OM→C .3OM→D .4OM→例2如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R),则λ+μ=.例3如图所示,在平行四边形ABCD 中,13AE AB = ,14AF AD =,CE 与BF 相交于G 点,记AB a = ,AD b = ,则AG =_______例4在△ABC 中,D 是△ABC 所在平面内一点,且AD →=13AB →+12AC →,延长AD 交BC 于点E ,若AE →=λAB →+μAC →,则λ-μ的值是.练习1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB →=a ,AC →=b ,则AO →=()A.12a +12b B.12a +13b C.14a +12b D.12a +14b 2.(2019·济南调研)在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为()A .-4B .-1C .1D .43.在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为()A .911B .511C .311D .2114.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .45.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=()A .12AC →+13AB→B .12AC →+16AB→C .16AC →+12AB →D .16AC →+32AB→6.(2019·衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R),则52μ-λ=()A .-12B .1C.32D .-37.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.8.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.9.(2019·中原名校联考)如图,在△ABC 中,点M 是BC 的中点,N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,则APPM=________.10.点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值;11.在三角形ABC 中,AM ﹕AB =1﹕3,AN ﹕AC =1﹕4,BN 与CM 相交于点P ,且a AB =,b AC =,试用a 、b表示AP .12.已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,求yx 41+的最小值.PABCMN答案例1答案:D 解析:OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →例2解:因为E 为线段AO 的中点,所以BE →=12BA →+12BO →=12BA →+1221(⨯BD →)=12BA →+14BD →=λBA →+μBD →,所以λ+μ=12+14=34.例3解:,,E G C 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x 使得(1)AG xAE x AC∴=+- , 1133AE AB a == ,AC a b=+ 12(1)()(1)(1)33x AG x a x a b a x b ∴=⨯+-+=-+-…………………①又,,F G B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数λ使得(1)AG AB AFλλ∴=+- 1144AF AD b ==,,1(1)4AG a b λλ∴=+-……………………………②由①②两式可得:213114x x λλ⎧=-⎪⎪⎨-⎪=-⎪⎩6737x λ⎧=⎪⎪∴⎨⎪=⎪⎩3177AG a b ∴=+ 例4解:设AE →=xAD →,因为AD →=13AB →+12AC →,所以AE →=x 3AB →+x2AC →.由于E ,B ,C 三点共线,所以x 3+x 2=1,解得x =65.又AE →=λAB →+μAC →.所以λ=x 3=25,μ=x 2=35,因此λ-μ=-15.练习1、答案:D 解析:因为在三角形ABC 中,BE 是AC 边上的中线,所以AE →=12AC →.因为O 是BE 边的中点,所以AO →=12(AB →+AE →)=12AB →+14AC →=12a +14b .2、答案:B解析:根据题意设BP →=nBN →(n ∈R),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+-(1-n )AB →+n5AC →,又AP →=mAB →+25AC →,n =m ,=25,=2,=-1.3、答案:C 解析:,,B P N 三点共线,又2284111111AP m AB AC m AB AN m AB AN=+=+⨯=+ 8111m ∴+=311m ∴=4、答案:B 解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.5、答案:C 解析:如图,因为EC →=2AE →,所以EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.6、答案:A 解析:AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →,因此E ,M ,F 三点共线.所以2(λ-μ)+(-3μ)=1,则2λ-5μ=1.因此52μ-λ=-12.7、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=12λ+μ→+λ+12μ→,12λ+μ=1,λ+12μ=1,λ=23,μ=23,所以λ+μ=43.8、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=12λ+μ→+λ+12μ→,+μ=1,+12μ=1,=2,=23,所以λ+μ=43.9、答案:4解析:设AB →=a ,AC →=b ,因为A 、P 、M 三点共线,所以存在唯一实数λ,使得AP →=λAM →.又知M 为BC 的中点,所以AP →=12λ(a +b ).因为B 、P 、N 三点共线,所以存在唯一实数μ,使得BP →=μBN →,又AP →=AB →+BP →=AB →+μBN →=AB →+μ(AN →-AB →)=AB →+-(1-μ)a +2μb ,所以12λ(a +b )=(1-μ)a +23μb ,μ=12λ,=12λ,解得λ=45,μ=35.所以AP →=45AM →,PM →=15AM →.所以|AP →|∶|PM →|=4∶1,即APPM=4.10、证明: 因为G 是OAB 的重心,分析:211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OPx=∴=1OQ yOBOB y=∴= 111111()()3333OG OA OB OQ OG OP OQx y x y ∴=+=+∴=+又,,P G Q 三点共线,11133x y∴+=113x y∴+=11x y∴+为定值311、解:,,N P B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x,y 使得,1AP xAB y AN x y =++=,AN ﹕AC=1﹕4,b AC AN 4141==1444y y x AP xAB AC xa xa b -∴=+=+=+……①又,,C P M 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数μ,λ使得,1AP AM AC μλμλ∴=++=∵AM ﹕AB=1﹕3∴a AB AM3131==,,133AP a b a b μλλλ-∴=+=+ ……………………………②由①②两式可得:1314x x λλ-⎧=⎪⎪⎨-⎪=⎪⎩311211x λ⎧=⎪⎪∴⎨⎪=⎪⎩81,11x y y +=∴=321111AP a b∴=+12. 点P 落在ABC 的边BC 上∴B,P,C 三点共线AP xAB y AC=+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y x x y x y x y x y x y x y ∴+=+⨯=+⨯+=++=++ x>0,y>040,0y xx y∴>>由基本不等式可知:44y x x y +≥=,取等号时4y xx y=224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y += 12,33x y ∴==,符合所以yx 41+的最小值为9。
平面向量中“三点共线定理”妙用讲解学习
平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
有关平面向量三点共线问题的求解
有关平面向量三点共线问题的求解
三点共线向量公式:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。
三点共线指的是三点在同一条直线上。
可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。
三点共线证明方法:
方法一:挑两点奠定一条直线,排序该直线的.解析式.代入第三点座标看看与否满足用户该解析式(直线与方程)。
方法二:设三点为a、b、c,利用向量证明:λab=ac(其中λ为非零实数)。
方法三:利用点差法求出来ab斜率和ac斜率,成正比即为三点共线。
方法四:用梅涅劳斯定理。
方法五:利用几何中的公理“如果两个不重合的平面存有一个公共点,那么它们存有且只有一条过该点的公共直线”.所述:如果三点同属两个平行的平面则三点共线。
方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法。
第9讲 平面向量共线定理、平面向量基本定理的应用问题
第9讲 平面向量共线定理、平面向量基本定理的应用问题一、共线向量定理1.对空间任意两个向量a ,b (a ≠0),a 与b 共线的充要条件是存在实数λ,使得b =λa .2.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.例1 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →. 例2如图,在△ABC 中,3BAC π∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若△ABC 的面积为AP 的最小值为( )A. C. 3D.43【针对练习 】如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.例3 在△ABC 中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM mAB =,AN nAC =(m >0,n >0),则m +2n 的最小值为( ) A .3 B .4C .83D .103例4 已知数列{a n }为等差数列,且满足32015BA a OB a OC =+,若()AB AC R λλ=∈,点O 为直线BC 外一点,则12017a a += ( ) A. 0 B. 1C. 2D. 4例5 已知圆O 的半径为2,A ,B 是圆上两点且∠AOB 23π=,MN 是一条直径,点C 在圆内且满足(1)(01)OC OA OB λλλ=+-<<,则CM CN ⋅的最小值为( )A .-3B .C .0D .2例6 O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λAB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心【针对练习】 1.已知点G 为ABC △的重心,过点G 作直线与AB ,AC 两边分别交于,M N两点,且,AM xAB = ,AN y AC = ,x y R ∈,则2.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM xAB AN y AC ==,则x y +的最小值为( )A .2BC D3.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c ,0),D (d ,0)(c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上二、平面向量基本定理如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e +λ22e ,平面内选定两个不共线向量为基底,可以表示平面内的任何一个向量.例7 如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,3||2,||,||23OA OB OC ===若(,)OC OA OB λμλμ=+∈R ,则( )A. 4,2λμ==ABCO例8 两个非零向量OA →,OB →不共线,且OP →=mOA →,OQ →=nOB →(m ,n >0),直线PQ 过△OAB 的重心,则m ,n 满足( )A .m +n =32B .m =1,n =12 C.1m +1n=3 D .以上全不对例9 如图,AB 是圆O 的直径,C ,D 是圆O 上的点,60CBA ∠=,45ABD ∠=,CD xOA yBC =+,则x y +的值为( )A .13-B.3- C .23D.【针对练习】 1.在△ABC 中,点D ,E 分别在边BC ,AC 上,且2BD DC =,3CE EA =,若AB a =,AC b =,则DE =( ) A 15a b +B 113a b -C 15a b -D 113a b +2.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB→=λAM →+μAN →,则λ+μ=________.3.已知平面向量,m n 的夹角为3π且1,2m n ==,在△ABC 中,22AB m n =+,26AC m n =-,D 为BC 中点,则AD =( )A. B. C.6 D.12三、利用平面向量基本定理确定参数的值、取值范围问题例10 已知向量,OA OB 满足1OA OB ==,,(,,)OA OB OC OA OB R λμλμ⊥=+∈若M 为AB 的中点,1MC =,则λμ+的最大值是( )A例11 在Rt ABC ∆中,AB AC ⊥,1AB =,2AC =,点P 为△ABC 内(包含边界)的点,且满足AP xAB y AC =+(其中x ,y 为正实数),则当xy 最大时,yx的值是( ) A .12B .1 C.2 D .与∠A 的大小有关例12 △ABC 中,35,5==BC AB ,3π=A ,点P 是ABC ∆内(包括边界)的一动点,且)(5253R AC AB AP ∈-=λλ的最大值为____________例13 如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若动点P 从点A 出发,沿正方形及三角形的边按如下路线运动:A →B →C →D →E →A →D ,其中AP →=λAB →+μAE →.给出下列说法:①当P 为BC 的中点时λ+μ=2; ②满足λ+μ=1的点P 恰有3个;③λ+μ的最大值为3;④若满足λ+μ=k 的点P 有且只有2个,则k ∈(1,3). 其中,说法正确的序号是________.【针对练习】 1.如图所示,A ,B ,C 是圆O 上不同的三点,线段CO 的延长线与线段BA 交于圆外的一点D ,若OC OA OB λμ=+(R λ∈,R μ∈),则λμ+的取值范围是( )A .(0,1)B .(1,)+∞C .(),1-∞-D .()1,0-2.如图,已知,B C 是以原点O 为圆心,半径为1的圆与x 轴的交点,点A 在劣 弧PQ (包含端点)上运动,其中30POx ∠=,OP OQ ⊥,作AH BC ⊥于H .若记AH xAB y AC =+,则xy 的取值范围是( )A. 1(0,]4B. 11[,]164C. 13[,]1616 D. 31[,]164四、平面向量基本定理在解析几何中的应用例14 F ,过点F 与x 轴垂直的直线l 交两渐近线于A ,B 两点,与双曲线的其中一个交点为P ,设坐标原点为O,若OP mOA nOB =+(,)m n R ∈,则该双曲线的渐近线为( )A B C D【针对练习】已知A 是双曲线(0a >,0b >)的左顶点,1F 、2F 分别为左、右焦点,P 为双曲线上一点,G 是12F F ∆P 的重心,若1G F λA =P ,则双曲线的离心率为( ) A .2 B .3 C .4 D .与λ的取值有关【精品练习】1.在△ABC 中,点D 是线段BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC =+λμ,则λμ+= .2.已知平面直角坐标系内的两个向量()3,2a m =-,()1,2b m =-,且平面内的任一向量c 都可以唯一地表示成c a b λμ=+(λ,μ为实数),则实数m 的取值范围是( ) A.(-∞,2)B.6,5⎛⎫+∞ ⎪⎝⎭C.(-∞,-2)∪(-2,+∞)D.66,,55⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭3.如图,在△ABC 中,点D ,E 是线段BC 上两个动点,且AD AE x AB y AC +=+,则14x y+的最小值为( )A . 32B .2C .52D .924.已知3AB =uu u v ,A ,B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+uu u v uu v uu u v,点P 的轨迹方程为( )A.2214x y +=B.2214y x +=C.2219x y +=D.2219y x += 5.如图4-25-1所示,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3DE →,BC →=3BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.6.如图4-25-3,在四边形ABCD 中,AB =BC =CD =1,且∠B =90°,∠BCD =135°,记向量AB →=a ,AC →=b ,则AD →=( )图4-25-3A.2a -1+22b B .-2a +1+22b C .-2a +1-22b D.2a +1-22b7.已知A ,B ,C 是圆x 2+y 2=1上不同的三点,且OA →·OB →=0(O 为坐标原点),若存在实数λ,μ满足OC →=λOA →+μOB →,则实数λ,μ的关系满足( ) A.1λ+1μ=1 B .λ2+μ2=1 C .λμ=1 D .λ+μ=1。
高中数学第六章平面向量及其应用经典大题例题(带答案)
高中数学第六章平面向量及其应用经典大题例题单选题1、在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃗⃗⃗⃗⃗ =m →,CD⃗⃗⃗⃗⃗ =n →,则CB ⃗⃗⃗⃗⃗ =( ) A .3m →−2n →B .−2m →+3n →C .3m →+2n →D .2m →+3n →答案:B分析:根据几何条件以及平面向量的线性运算即可解出.因为点D 在边AB 上,BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ ,即CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =2(CA ⃗⃗⃗⃗⃗ −CD⃗⃗⃗⃗⃗ ), 所以CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗ =−2m →+3n →.故选:B .2、已知单位向量a →,b →,则下列说法正确的是( )A .a →=b →B .a →+b →=0→C .|a →|=|b →|D .a →//b →答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同,A 错误;对于B ,向量a →,b →为单位向量,但向量a →, b →不一定为相反向量,B 错误;对于C ,向量a →,b →为单位向量,则|a →|=|b →|=1,C 正确;对于D ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同或相反,即a →与b →不一定平行,D 错误. 故选:C.3、向量PA ⃗⃗⃗⃗⃗ =(k,12),PB ⃗⃗⃗⃗⃗ =(4,5),PC⃗⃗⃗⃗⃗ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA ⃗⃗⃗⃗⃗ ,,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ =(k,12)−(4,5)=(k −4,7), CA u u u rCA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA⃗⃗⃗⃗⃗ ∥CA ⃗⃗⃗⃗⃗ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11.故选:C.4、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD的中点,与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃗⃗⃗⃗⃗ ==(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ 和BO ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =xAB ⃗⃗⃗⃗⃗ −yAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(AD ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ) =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(2AF ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=(x −y)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ +12yAB ⃗⃗⃗⃗⃗ =(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −xBA ⃗⃗⃗⃗⃗ +y ⋅43BE ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.5、若|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13) AE答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.6、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D7、若点M 是△ABC 所在平面内的一点,且满足3AM ⃗⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→,则△ABM 与△ABC 的面积之比为( ) A .1∶2B .1∶3C .1∶4D .2∶5答案:B分析:由平面向量的加法结合已知可得M 为AD 的三等分点,然后由等高的三角形面积之比等于底边之比可得. 如图,D 为BC 边的中点,则AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 因为3AM⃗⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→ 所以3AM⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , 所以AM ⃗⃗⃗⃗⃗⃗ =23AD⃗⃗⃗⃗⃗ 所以S △ABM =23S △ABD =13S △ABC .故选:B8、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE ⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B 分析:以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC⃗⃗⃗⃗⃗ 故选:B多选题9、在△ABC 中,若(a 2+c 2−b 2)tanB =√3ac ,则角B 的值可以为( )A .π6B .π3C .2π3D .5π6答案:BC分析:利用余弦定理边化角可整理得到sinB ,结合B ∈(0,π)可得结果.∵(a 2+c 2−b 2)tanB =√3ac ,∴a 2+c 2−b 22ac ⋅tanB =cosB ⋅sinB cosB =sinB =√32, 又B ∈(0,π),∴B =π3或2π3.故选:BC.10、下列说法中正确的是( )A .平面向量的一个基底{e 1⃗⃗⃗ ,e 2⃗⃗⃗ }中,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量.B .在平面向量基本定理中,若a =0⃗ ,则λ1=λ2=0.C .若单位向量e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的夹角为2π3,则e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量是−12e 2⃗⃗⃗ .D .表示同一平面内所有向量的基底是唯一的.答案:ABC分析:由平面向量基本定理,依次判定即可选项A :作为基底的两个向量一定不共线,零向量与任意向量共线,因此e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量,故A 正确; 选项B :a =0⃗ =0⋅e 1⃗⃗⃗ +0⋅e 2⃗⃗⃗ ,由在同一基底下向量分解的唯一性,有λ1=λ2=0,故B 正确;选项C :e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量为:e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ |e 2⃗⃗⃗⃗ |e 2⃗⃗⃗ =−12e 2⃗⃗⃗ ,故C 正确; 选项D :平面内任何两个不共线的向量都可作为基底,因此基底不是唯一的,故D 错误故选:ABC11、如图,B 是AC 的中点,BE⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ ,P 是平行四边形BCDE 内(含边界)的一点,且OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB⃗⃗⃗⃗⃗ (x,y ∈R ),则下列结论正确的为( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =−12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x −y 的最大值为−1答案:BCD解析:利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP⃗⃗⃗⃗⃗ ,求出x ,y 判断出B 对,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ,然后可判断出D 正确. 当x =0时,OP⃗⃗⃗⃗⃗ =yOB ⃗⃗⃗⃗⃗ ,则P 在线段BE 上,故1≤y ≤3,故A 错 当P 是线段CE 的中点时,OP ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +EP ⃗⃗⃗⃗⃗ =3OB ⃗⃗⃗⃗⃗ +12(EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =3OB ⃗⃗⃗⃗⃗ +12(−2OB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=−12OA ⃗⃗⃗⃗⃗ +52OB ⃗⃗⃗⃗⃗ ,故B 对 x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则:OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ;又OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ;∴x ⩽0,y ⩾1; 由图形看出,当P 与B 重合时:OP ⃗⃗⃗⃗⃗ =0⋅OA ⃗⃗⃗⃗⃗ +1⋅OB⃗⃗⃗⃗⃗ ; 此时x 取最大值0,y 取最小值1;所以x −y 取最大值−1,故D 正确故选:BCD小提示:名师点评若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则A,B,C 三点共线⇔x +y =1. 12、下列说法正确的有( )A .若|a →+b →|=|b →|且b →≠0,则a →=0→B .设a →,b →是非零向量,若|a →+b →|=|a →−b →|,则a →⊥b →C .若a →b →=a →c →且a →≠0,则b →=c →D .设a →,b →是非零向量,若|a →+b →|=|a →|−|b →|,则存在实数λ,使得a →=λb → 答案:BD分析:A. 举反例说明该命题错误;B.若|a →+b →|=|a →−b →|,所以a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 分析得a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.A. 若a →=−2b →≠0→也满足已知,但是a →≠0→,所以该命题错误;B.若|a →+b →|=|a →−b →|,所以a →2+b →2+2a →⋅b →=a →2+b →2−2a →⋅b →,∴a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 若|a →+b →|=|a →|−|b →|,则|a →|2+|b →|2+2a →b →=|a →|2+|b →|2−2|a →||b →|,得a →b →=−|a →||b →|,则a →,b →的夹角的余弦cosθ=−1,则a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.故选:BD13、已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,∠C =45°,c =√2,a =x ,若满足条件的三角形有两个,则x 的值可能为( )A .1B .1.5C .1.8D .2答案:BC分析:利用正弦定理求得sinA =12x ,再根据三角形有两解的条件可得A ∈(45∘,135∘),且A ≠90∘,由此求出x 的范围即可得解.在△ABC 中,由正弦定理得,sinA =asinC c =∘√2=12x , 因满足条件的三角形有两个,则必有A ∈(45∘,135∘),且A ≠90∘,即√22<sinA <1, 于是得√22<12x <1,解得√2<x <2,显然x 可取1.5,1.8. 故选:BC填空题14、给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;③若向量a 与向量b ⃗ 的模相等,则a ,b⃗ 的方向相同或相反; ④在四边形ABCD 中,必有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 其中正确命题的序号是________.答案:①②分析:根据零向量、相等向量、向量和及向量模等概念逐一判断.①正确;②正确,因为AC ⃗⃗⃗⃗⃗ 与A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的大小和方向均相同;③|a|=|b ⃗ |,不能确定其方向,所以a 与b ⃗ 的方向不能确定;④只有当四边形ABCD 是平行四边形时,才有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ .综上可知,正确命题为①②. 故答案为:①②15、如图所示,在矩形ABCD 中,AB =√2,BC =2,点E 在边CD 上,且DE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ BE⃗⃗⃗⃗⃗ 的值是________. 答案:329 sin sin a c A C分析:由于向量的数量积可以进行坐标运算,所以将几何问题转化为代数问题,建立以A 为原点, AB 所在直线为x 轴的平面直角坐标系,分别写出A 、B 、E 的坐标,再通过向量的坐标运算即可求出向量的数量积.解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =√2,BC =2,∴A (0,0),B (√2,0),C (√2,2),D (0,2),∵点E 在边CD 上,且DE⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ , ∴E (2√23,2).∴AE ⃗⃗⃗⃗⃗ =(2√23,2),BE ⃗⃗⃗⃗⃗ =(−√23,2), ∴AE ⃗⃗⃗⃗⃗ BE ⃗⃗⃗⃗⃗ =−49+4=329. 16、设a →,b →为单位向量,且|a →+b →|=1,则|a →−b →|=______________.答案:√3分析:整理已知可得:|a +b ⃗ |=√(a +b ⃗ )2,再利用a ,b ⃗ 为单位向量即可求得2a ⋅b ⃗ =−1,对|a −b⃗ |变形可得:|a −b ⃗ |=√|a |2−2a ⋅b⃗ +|b ⃗ |2,问题得解. 因为a ,b ⃗ 为单位向量,所以|a |=|b⃗ |=1 所以|a +b ⃗ |=√(a +b ⃗ )2=√|a |2+2a ⋅b ⃗ +|b ⃗ |2=√2+2a ⋅b⃗ =1 解得:2a ⋅b⃗ =−1 所以|a −b ⃗ |=√(a −b ⃗ )2=√|a |2−2a ⋅b⃗ +|b ⃗ |2=√3 所以答案是:√3小提示:本题主要考查了向量模的计算公式及转化能力,属于中档题.解答题17、康平滕龙阁,位于康平县中央公园中心,建在有“敖包朝霞”之称的敖包山旧址上,是老百姓心中的祥瑞之地.如图,小明同学为测量滕龙阁的高度,在滕龙阁的正东方向找到一座建筑物AB,高为8米,在地面上的点M(B,M,D三点共线)测得楼顶A,滕龙阁顶部C的仰角分别为15°和60°,在楼顶A处测得阁顶部C的仰角为30°,试替小明求滕龙阁的高度?(精确到0.01米)答案:37.86米分析:在△ACM中,利用正弦定理求得CM,然后在Rt△CDM中,由CD=CMsin60°求解.解:由题意得,在Rt△ABM中,AM=ABsin15°,在△ACM中,∠CAM=30°+15°=45°,∠AMC=180°−15°−60°=105°,所以∠ACM=30°,由正弦定理AMsin∠ACM =CMsin∠CAM,得CM=sin∠CAMsin∠ACM ⋅AM=√2ABsin15°,又sin15°=sin(45°−30°)=√22×√32−√22×12=√6−√24,在Rt△CDM中,CD=CMsin60°=√6AB2sin15°=√62×√6−√24=24+8√3≈37.86.答:滕龙阁的高度约为37.86米.18、如图,在直角梯形OABC中,OA//CB,OA⊥OC,OA=2BC=2OC,M为AB上靠近B的三等分点,OM交AC于D,P为线段BC上的一个动点.(1)用OA ⃗⃗⃗⃗⃗ 和OC⃗⃗⃗⃗⃗ 表示OM ⃗⃗⃗⃗⃗⃗ ; (2)求OD DM ;(3)设OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ ,求λ⋅μ的取值范围. 答案:(1)OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ;(2)3;(3)[0,34]. 分析:(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD⃗⃗⃗⃗⃗⃗ 将由这一组基向量的唯一表示出而得解; (3)由动点P 设出CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12),结合平面向量基本定理,λ⋅μ建立为x 的函数求解. (1)依题意CB ⃗⃗⃗⃗⃗ =12OA ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23(OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ +13OA ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ , ∴OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +(23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ )=23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ; (2)因OM 交AC 于D ,由(1)知OD ⃗⃗⃗⃗⃗⃗ =tOM ⃗⃗⃗⃗⃗⃗ =t(23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ )=OD ⃗⃗⃗⃗⃗⃗ =2t 3OA ⃗⃗⃗⃗⃗ +2t 3OC ⃗⃗⃗⃗⃗ , 由共起点的三向量终点共线的充要条件知,2t 3+2t 3=1,则t =34,OD ⃗⃗⃗⃗⃗⃗ =3DM ⃗⃗⃗⃗⃗⃗ ,|OD ⃗⃗⃗⃗⃗⃗||DM ⃗⃗⃗⃗⃗⃗⃗ |=3; (3)由已知OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12OA ⃗⃗⃗⃗⃗ , 因P 是线段BC 上动点,则令CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12), OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )+μ(OC ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=(λ+μx)OA ⃗⃗⃗⃗⃗ +(μ−λ)OC ⃗⃗⃗⃗⃗ , 又OC ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 不共线,则有{μ−λ=1λ+μx =12⇒{λ=μ−1μ=32+2x, 0≤x ≤12⇒1≤x +1≤32⇒1≤μ≤32, λ⋅μ=μ(μ−1)=(μ−12)2−14在μ∈[1,32]上递增,所以μ=1,(λ⋅μ)min =0,μ=32,(λ⋅μ)max =34,故λ⋅μ的取值范围是[0,34].小提示:由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.。
2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)
高三第一轮复习专题 平面向量表示、三点共线研究 一、平面向量基本定理:设12,e e 是同一平面内两个不共线向量,a 是这一平面内的任一向量。
在平面内任取一点O ,作12,,OA e OB e OC a ===,过C 作OB 的平行线,交直线OA 于M ;过C 作OA 的平行线,交直线OB 于N 。
因OM 与OA 共线,则存在实数1λ,使得:11OM e λ=;因ON 与OB 共线,则存在实数2λ,使得:22ON e λ=; OC OM ON =+1122a e e λλ∴=+也即,任一向量a 都可表示成1122e e λλ+的形式。
平面向量基本定理:若12,e e 是同一平面内的两个不共线向量,则对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使得:1122a e e λλ∴=+。
(也可称为a 用12,e e 表示出来)不共线向量12,e e 称为表示这一平面内所有向量的一组基底,12,e e 称为基向量。
例1。
ABCD 两条对角线交于O ,AB a =,AD b =,用a 、b 表示OA 、OB 、OC 、OD 。
2e2ea解:AC AB AD a b =+=+,DB AB AD a b =-=-O ABCD 为两条对角线的交点()1122OA AC a b ∴=-=-+,()1122OC AC a b ==+()1122OB DB a b ==-, ()1122OD DB a b =-=--。
故在一个图形中,任意两个不共线向量都可以作为一组基底,其余向量都可用这一组基向量表示出来。
在具体问题中,基向量的选择十分重要,它决定了是否容易表示。
二、向量的表示:★★★★★在研究向量间关系时,常先取两个基向量作为一组基底,其余向量用这两个基向量表示出来,这样能够更清晰地找出所研究向量间的关系。
1.,其余向量用这两个基向量表示出来。
例。
在ABC 中,2BD DC =,设,AB a AC b ==,用,a b 表示AD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。