六年级奥数专题17:容斥原理

合集下载

六年级数学专题详解 容斥原理

六年级数学专题详解  容斥原理

容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A的元素的个数。

在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成|A∪B|=|A|+|B|–|A∩B|。

我们称这一公式为包含与排除原理,简称为容斥原理。

包含与排除原理|告诉我们,要计算两个集合A、B的并集A∪B的元素个数,可以分一下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来。

即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步“从上面的和中减去交集的元素的个数,即减去|A∩B|(意思是“排除”了重复计算的元素的个数)。

例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少?解:设I={1、2、3、…、19、20},A={I中2的倍数},B={I中3的倍数}。

显然题目中要求计算并集A∪B的元素个数,即求|A∪B|。

我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。

A ∩B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3,根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。

此题可以直观地用图表示如下:例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人?解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生},由题意知|A |=25,|B |=21。

A ∪B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。

A ∩B ={数学、语文都在90分以上的学生},由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |,所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。

六年级奥林匹克数学十七 容斥原理(二)

六年级奥林匹克数学十七 容斥原理(二)

A
B C
7.在一次考试中,
100分的有17人,语文得100分的有13人,两科都得100分的有7人,那么两科中至少有一科得100分的共有 人.全班45人中两科都不得100分的有 人.
8.在1,2,3,?,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有 个.
十七、容斥原理(二)
1.某校有500名学生报名参加学科竞赛,数学竞赛参加者共312名,作文竞赛参加者共353名,其中这两科都参加的有292名,那么这两科都没有参加的人数为 人.
2.某门诊部统计某一天挂号的病人,内科150人,外科92人,其中内、外两科都求诊的18人,这一天共来了 个病人.
3.两个正方形的纸片盖在桌面上,位置与尺寸如图所示,则它们盖住
(平方厘米).
2
4.不超过30的正整数中,是3的倍数或4的倍数的数有 个.
5.在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人.那么甲班共有 人.
9.小于1000的自然数中,是完全平方.在桌面上放置着三个两两重叠的圆纸片(如图),它们的面积都是100(cm)并知A、B
222两圆重叠的面积是20(cm),A、C两圆重叠的面积为45(cm),B、C两圆重叠面积为31(cm),
2三个圆共同重叠的面积为15(cm),求盖住桌子的总面积是 平方厘米.

小学奥数容斥原理

小学奥数容斥原理

容斥原理知识纵横:容斥原理:当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分,这种计数方法叫做容斥原理,也叫包含与排除。

例题求解:【例1】、在1~2003的自然数中,能被2整除或能被5整除的数共有多少个?【例2】、在1~500中,不能被2整除,也不能被3整除,又不能被7整除的数有多少个?【例3】、六年级的160名学生参加期末考试,其中数学得满分的有58名,语文得满分的有53分,英语得满分的有59名,数学、语文都得满分的有17名,数学、英语都得满分的有22名,语文、英语都得满分的有20名,数学、语文、英语都得满分的有10名。

问六年级三科考试都没有得满分的有多少名?【例4】、如图所示,A 、B 、C 分别代表面积为12、28、16的三张不同形状的纸片,它们放在一起盖住的面积为38,且A 与B ,B 与C ,C 与A 公共部分面积为8,7,6,求A 、B 、C 三个图形公共部分的面积。

【例5】、星期日小丰骑自行车去同学A 、B 、C 三家玩,他如果从A 出发经过B 到C ,共行10千米,如果从B 出发经C 达A ,共行13千米,如果从C 出发经过A 到达B ,共行11千米。

问:哪两个同学家之间的距离最短?最短的距离是多少千米?【例5】、如图,在长方形ABCD 中,AD=15厘米,AB=8厘米,四边形OEFG 的面积是9平方厘米,求阴影部分的总面积。

A B C基础夯实1、50以内5的倍数和7的倍数的自然数共有多少个?2、在1至100的全部自然数中,既不是3的倍数也不是5的倍数的数有多少?3、在从1到60的整数中,能被3或4或5整除的数有多少个?4、四(一)班50个学生,每人至少参加了一个兴趣小组,其中37人参加科技组,25人参加美术组,求同时参加两个兴趣小组的人数是多少?5、六(一)班全体同学在期末测试中,语文、数学这两科至少有一门获得优秀,其中有30人语文获得优秀,有32人数学获得优秀,两科都获得优秀的学生有17人。

小学奥数之容斥原理

小学奥数之容斥原理

容斥原理(一)【例题分析】例1。

有长8厘米,宽6厘米的长方形与边长5厘米的正方形。

如图放在桌面上,求这两个图形盖住桌面的面积?分析与解:阴影部分是直角三角形,是两个图形的重叠部分,它的面积是:(平方厘米)方法一:(平方厘米)方法二:(平方厘米)方法三:(平方厘米)答:盖住桌面的面积是67平方厘米。

例2。

六一班参加无线电小组和航模小组的共26人,其中参加无线电小组的有17人,参加航模小组的有14人,两组都参加的有多少人?分析与解:把17人和14人相加,是把两组都参加的人算了两次,所以减去总人数,就是两组都参加的人数(人)。

也可以这样解:(人)或(人)答:两组都参加的有5人。

例3. 六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?分析与解:先求出46人中会骑车或会游泳的有多少人,从中减去会骑车或会游泳的人数,剩下的就是既不会骑车也不会游泳的人数.(人)(人)答:既不会骑车又不会游泳的有9人。

例4。

某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组有5人,同时参加音乐和手工两个小组有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:图中的5、6、7人都是两两重叠的部分,图中的3人是三个重叠的部分,要从三个组的总人数中减去重复多余的部分。

(人)答:这个年级参加课外小组的有60人。

例5。

某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。

短跑投掷跳远跑跳跑投跳投三项19 21 20 9 10 6 3分析与解:根据题意画出如下图要求全班有多少人,先要求出跑、跳、投至少有一项达到优秀的人数,加上三项都未达到优秀的,就是全班人数.(人)(人)答:全班有42人。

小学奥数教程之容斥原理

小学奥数教程之容斥原理

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A 的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

小学奥数容斥原理

小学奥数容斥原理

小学奥数容斥原理
小学奥数中的容斥原理是一种经典的数学方法,它常常用于解决有关组合计数的问题。

容斥原理可以帮助我们计算两个集合的交集、并集以及差集的元素个数。

具体来说,容斥原理告诉我们,要计算两个集合的并集的元素个数,我们可以先计算每个集合的元素个数,然后减去这两个集合的交集的元素个数。

这样可以避免重复计算。

例如,假设我们有两个集合A和B,集合A中有3个元素,集合B中有4个元素。

如果我们想计算这两个集合的并集的元素个数,根据容斥原理,我们应该先计算集合A的元素个数,再计算集合B的元素个数,然后减去集合A和集合B的交集的元素个数。

另外,容斥原理也可以用于计算三个集合的并集、四个集合的并集,以及更多集合的并集,只需要依次计算每个集合的元素个数,并根据公式依次加减交集的元素个数。

需要注意的是,在应用容斥原理时,我们需要确保计算交集和并集时没有重复计算的情况发生。

这需要我们对问题进行仔细分析和思考,以保证计算结果的正确性。

总之,容斥原理是一种解决组合计数问题的有力工具,在小学奥数中有着重要的应用,通过灵活运用容斥原理,我们可以更快、更准确地解决各类问题。

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

奥数训练专题——容斥原理

奥数训练专题——容斥原理

容斥原理1、某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?2、某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?3、四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.(6级)4、五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.(6级)5、光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?(6级)6、新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有多少人?7、五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数.8、六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?9、在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:三种都带了的有几人?只带了一种的有几个?9、盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.10、全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,数学成绩优秀的有几个学生?有几个人既会游泳,又会滑冰?11、在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?①有人摘了山莓;②有人同时摘了三种水果;③有人只摘了山莓;④有人摘了李子和草莓,而没有摘山莓;⑤有人只摘了草莓.12、五年级一班共有36人,每人参加一个兴趣小组,共有A 、B 、C 、D 、E 五个小组,若参加A 组的有15人,参加B 组的人数仅次于A 组,参加C 组、D 组的人数相同,参加E 组的人数最少,只有4人.那么,参加B 组的有多少人?13、五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?14、某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?图形中的重叠问题1、 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?2、把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?3、两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?4、 如图,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.图32厘米4厘米图35、一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.6、三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?7、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?8、如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?容斥原理在数论问题中的应用1、 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?2、 在自然数1100~中,能被3或5中任一个整除的数有多少个?3、 在前100个自然数中,能被2或3整除的数有多少个?4、 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?CB A105、求在1至100的自然数中能被3或7整除的数的个数.5、以105为分母的最简真分数共有多少个?它们的和为多少?7、分母是385的最简真分数有多少个?并求这些真分数的和.8、在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.9、在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?10、50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?11、有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3, (2000)然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?12、写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?13、在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?14、在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成________段.15、一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.16、一根1.8米长的木棍,从左端开始每隔2厘米画一个刻度,涂完后再从左端开始每隔3厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍?容斥原理中的最值问题1、将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?2、如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?3、某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?4、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.5、60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?6、图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?7、甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?8、在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?恰好被1个人浇过的花最多有多少盆?9、甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?。

小学奥数趣味学习《容斥问题》典型例题及解答

小学奥数趣味学习《容斥问题》典型例题及解答

小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

常见的容斥问题有两者容斥、三者容斥两种。

数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。

可画文氏(韦恩)图来解题。

例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。

钉成的木板长 _____ 厘米。

解:1、本题考查了学生的运算能力、应用能力。

解决重叠问题时,要注意重叠的部分不能重复计算。

2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。

例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。

A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。

孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。

2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。

选择B。

例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。

六年级《容斥原理》奥数教案

六年级《容斥原理》奥数教案

星系站备课教员:第二讲容斥原理一、教学目标: 1. 理解容斥原理,会画图分析其中关系,正确的找出答案。

2. 培养逻辑思维和数学思考能力。

3. 培养良好的书写习惯。

二、教学重点:理解容斥原理,会画图分析其中关系。

三、教学难点:理解容斥原理,会画图分析其中关系。

四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:一个家庭里有2个爸爸和2个儿子,同学们你们知道这个家庭有几个人吗?生1:4个啊,2+2=4啊。

生2:一个家庭怎么会有2个爸爸呢?师:这问题问的太好了,同学们,你爸爸叫你爷爷叫什么?生:爸爸啊。

师:那你爷爷管你爸爸叫什么呢?生:儿子。

师:所以这个家庭有几个人啊?生:3个。

师:也就是说爸爸既是爸爸也是儿子对吗?生:是的。

师:所以对于重复的题,我们在计算的时候要排除。

也就是我们这节课所要学习的内容。

【板书课题:容斥原理】二、星海遨游(30分钟)(一)星海遨游1(10分钟)一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

师:同学们,最后班主任问了什么问题?生:谁语文、数学作业都没有做完?师:是的,但是有没有人举手啊?生:没有。

师:那说明什么?生:全班的人都至少做完一门作业。

师:至少做完一门作业都包括什么呢?生:只做完数学作业,只做完语文作业,语文、数学作业都做完。

师:现在我把我们班分成三组,第一组代表只做完语文作业的,第二组代表语文、数学都做完的,第三组代表只做完数学作业的,都明白自己都代表什么吗?生:明白。

师:那么我们班的人数怎么求?生:就等于三个组的人数和。

师:如果我问谁做完语文作业,那么哪些人会举手?生:第一组和第二组的人。

师:这些人有多少个?生:……(根据实际情况的人数)师:那如果我问谁做完数学作业呢?生:第二组和第三组的人。

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。

例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。

从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。

六年级容斥原理阴影面积课件

六年级容斥原理阴影面积课件

六年级容斥原理阴影面积课件一、引言容斥原理是数学中的一个重要概念,可以用于解决计数问题。

而阴影面积则是几何学中的一个问题,常常需要通过计算来求解。

本课件将通过容斥原理来解决一个有关阴影面积的问题,帮助六年级学生更好地理解和应用容斥原理。

二、背景知识回顾在开始讲解容斥原理和阴影面积问题之前,我们先来回顾一些相关的背景知识。

1. 集合和元素在数学中,集合是由一些确定的、互不相同的对象组成的整体。

组成集合的对象称为元素。

2. 集合的运算在集合中,常用的运算有并集、交集和差集。

- 并集:设A和B是两个集合,它们的并集记作A∪B,表示包含所有属于A或属于B的元素。

- 交集:设A和B是两个集合,它们的交集记作A∩B,表示包含同时属于A和属于B的所有元素。

- 差集:设A和B是两个集合,表示属于A但不属于B的元素的集合称为A与B的差集,记作A-B。

3. 容斥原理容斥原理是一种计数原理,用于求解有关集合的问题。

它的基本思想是通过加减操作,考虑重复计数的情况,从而得出准确的计数结果。

三、阴影面积问题现在我们来解决一个有关阴影面积的问题。

如下图所示,一个矩形区域被两个正方形所覆盖,我们需要求解阴影部分的面积。

┌───┐ ┌────┐│ │ │ ││ │ │ ││ A │ │ B ││ │ │ ││ │ │ │└───┘ └────┘假设矩形的长为L,宽为W,而其中一个正方形A的边长为X,另一个正方形B的边长为Y。

1. 求解过程首先,我们可以将整个矩形区域看作是正方形A与正方形B的并集。

然后,我们分别计算出正方形A和正方形B的面积,并求出它们的并集面积。

最后,通过容斥原理,我们可以得出阴影部分的面积。

具体的计算步骤如下: - 步骤一:计算正方形A和正方形B的面积。

- 正方形A的面积为X²。

- 正方形B的面积为Y²。

- 步骤二:计算正方形A和正方形B的并集面积。

- 正方形A与正方形B的并集面积为(A∪B) = X² + Y²。

6年级 奥数 容斥原理

6年级  奥数 容斥原理
5.小明和小龙两家合住一套房子,门厅、厨房和厕所为公用,在登记住房面积时,两家登记如下表:
姓名
居室
门厅
厨房
厕所
总面积
小明家
14
12
8
4
38
小龙家
20
12
8
4
44
他们住的这套房子共有多少平方米?
课后作业
1.100个小朋友做游戏,每人至少拿一面旗,其中56人拿小红旗,52人拿小黄旗。几人既拿小红旗又拿小黄旗?
容斥原理
专题解读:
在数学中,我们经常会碰到重复包含的现象。为了不重复计数,应从它们的和中减去重复部分,这一原理,我们称之为容斥原理,也称包含排除原理。正确运用这一原理,可以帮助我们解答血多抽象的数学问题。
例1.六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑自行车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?
5.某班学生进行短跑、游泳、篮球三个项目的测试。有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的人数如下表。求这个班的学生数?
短跑
游泳
篮球
短跑、游泳
游泳、篮球
短跑、篮球
短跑、游泳、篮球
17
18
15
6
6
5
2
课堂检测
1六一班有学生55人,每人至少参加赛跑和跳绳比赛中的一种,已知参加赛跑的有36人,参加跳绳的有38人。问两项比赛都参加的有几人?
例5.某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。
短跑
投掷
跳远
短跑、跳远
短跑、投掷

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

六年级奥数题及答案:容斥原理问题(高等难度)题型归纳

六年级奥数题及答案:容斥原理问题(高等难度)题型归纳

六年级奥数题及答案:容斥原理问题(高等难度)题型归纳容斥原理问题:(高等难度)
在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个
学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是
解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是
容斥原理问题答案:
根据每个人至少答出三题中的一道题可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

分别设各类的人数为a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25①
由(2)知:a2+a23=(a3+ a23)2②
由(3)知:a12+a13+a123=a1-1③
由(4)知:a1=a2+a3④
再由②得a23=a2-a32⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然后将④⑤⑥代入①中,整理得到
a24+a3=26
由于a2、a3均表示人数,可以求出它们的整数解:
当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22
又根据a23=a2-a32⑤可知:a2a3
因此,符合条件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

故只解出第二题的学生人数a2=6人。

小学数学容斥原理知识点

小学数学容斥原理知识点

小学数学容斥原理知识点在小学数学中,容斥原理是一种非常重要的解题方法,可以帮助我们解决一些复杂的计数问题。

容斥原理通过排除重复计数来解决问题,让我们一起来了解一下容斥原理的具体内容。

容斥原理的基本思想是,对于所给的问题,我们可以从整体的角度来思考,然后通过减去重复计数的部分来得到最终的结果。

下面我们通过一个具体的例子来理解容斥原理。

假设有一个小学学生组成的班级,其中有20个学生,分别擅长数学、英语和音乐。

我们想要知道至少擅长其中一门学科的学生人数。

首先,我们可以分别统计擅长数学、英语和音乐的学生人数,分别记为M、E和M1;然后,我们可以统计同时擅长数学和英语、数学和音乐以及英语和音乐的学生人数,分别记为ME、MM和EM;最后,我们可以统计同时擅长数学、英语和音乐的学生人数,记为MEM。

根据容斥原理,我们可以得到至少擅长其中一门学科的学生人数为:M + E + M1 - (ME + MM + EM) + MEM在这个例子中,我们通过容斥原理将问题分解成了几个部分,并减去了重复计数的学生人数。

通过这样的计算,我们可以得到至少擅长其中一门学科的学生人数,而不需要逐个统计每个学生的情况。

容斥原理不仅可以用于解决学生人数的问题,还可以用于解决更复杂的计数问题。

下面我们通过更多的例子来进一步了解容斥原理的应用。

例子一:小明手中有4个红色球、3个蓝色球和2个绿色球,他从中随机取出3个球,问至少有两个球是红色的概率是多少?我们可以使用容斥原理来解决这个问题。

首先,我们可以计算至少取到一个红色球的概率(记为P(至少一个红色球));然后,我们可以计算至少取到两个红色球的概率(记为P(至少两个红色球));最后,我们可以计算至少取到三个红色球的概率(记为P(至少三个红色球))。

根据容斥原理,我们可以得到至少有两个球是红色的概率为:P(至少一个红色球) - P(至少两个红色球) + P(至少三个红色球)我们可以具体计算每个部分的概率,然后代入公式进行计算。

小学奥数 容斥原理 知识点+例题+练习 (分类全面)

小学奥数 容斥原理 知识点+例题+练习 (分类全面)
4、少年乐团学生中有170人不是五年级的,有135人不是六年级的,已知五、六年级的共有205人,少年乐团中五、六年级以外的学生共有多少人?
5、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?不是6的倍数或不是5的倍数的数有几个?
6、某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?
巩固:刘老师、夏老师和胡老师共有书90本,其中刘老师和夏老师一共有70本,夏老师和胡老师共有50本,三位老师各有书多少本?
例5、在1至10000中不能被5或7整除的数共有多少个?既不能被5整除又不能被7整除的有多少个?
巩固:在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?不是5的倍数或不是8的倍数的数有几个?
巩固:某校的每个学生至少爱好体育和文娱中的一种活动,已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。这个学校共有学生多少人?
例3、学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
课后作业
1、五年级有112人参加语文、数学考试,每人至少有一门功课得优,其中,语文得优的有65人,数学得优的有87人,问语文、数学都得优的有多少人?
2、某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有多少个学生?
3、五(1)班有学生50人,在一次测试中,语文90分以上的有30人,数学90分以上的35人,语文和数学都在90分以上的有20人,90分以下的有多少人?

六年级奥数专题17:容斥原理

六年级奥数专题17:容斥原理

十七容斥原理(1)年级班姓名得分一、填空题1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有人.2.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是平方厘米.3.在1~100的自然数中,是5的倍数或是7的倍数的数有个.4.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人.5.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有人.6.在1至10000中不能被5或7整除的数共有个.7.在1至10000之间既不是完全平方数,也不是完全立方数的整数有个.8.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有人.9.分母是1001的最简真分数有个.10.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有人,最多有人. 6二、解答题11.某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数?12.求小于1001且与1001互质的所有自然数的和.13.如图所示,A、B、C分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A与B,B与C,C与A公共部分的面积分别是5、3、4,求A、B、C三个图形公共部分(阴影部分)的面积.14.分母是385的最简真分数有多少个,并求这些真分数的和.———————————————答案——————————————————————1. 26从图中可以看出全班45人,借语文或数学课外读物的共39+32=71(人),超过全班人数71-45=26(人),这26人都借了语文、数学两种课外书。

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。

参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十七容斥原理(1)年级班姓名得分一、填空题1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有人.2.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是平方厘米.863453.在1~100的自然数中,是5的倍数或是7的倍数的数有个.4.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人.5.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有人.6.在1至10000中不能被5或7整除的数共有个.7.在1至10000之间既不是完全平方数,也不是完全立方数的整数有个.8.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有人.9.分母是1001的最简真分数有个.10.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有人,最多有人.二、解答题11.某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数?12.求小于1001且与1001互质的所有自然数的和.13.如图所示,A 、B 、C 分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A 与B ,B 与C ,C 与A 公共部分的面积分别是5、3、4,求A 、B 、C 三个图形公共部分(阴影部分)的面积.14.分母是385的最简真分数有多少个,并求这些真分数的和.A B C———————————————答 案——————————————————————1. 26从图中可以看出全班45人,借语文或数学课外读物的共39+32=71(人),超过全班人数71-45=26(人),这26人都借了语文、数学两种课外书。

2. 67将长方形和正文形面积相加,则图中阴影部分即三角形面积被多算了一次,即这两个图形盖住的图形面积为6734215568=⨯⨯-⨯+⨯(平方厘米). 3. 32在1到100这100个自然数中,5的倍数有20个,7的倍数有14个,既是5的倍数又是7的倍数有2个,故5的倍数或7的倍数的个数是20+14-2=32.4. 45从图中可以看出:懂俄语的人数(即阴影部分)等于总人数减去只懂英语的人数,即100-(75-20)=45(人)5. 19所求人数=全班人数-(会骑车人数+会游泳人数-既会骑车又会游泳人数)=46-(17+14-4)=19(人)6. 6857在1到10000中,能被5整除的有2000510000=⎥⎦⎤⎢⎣⎡(个),能被7整除的有1428710000=⎥⎦⎤⎢⎣⎡(个),能被35整除的有2857310000=⎥⎦⎤⎢⎣⎡⨯(个).因此能被5或7整除的共有2000+1428-285=3143(个).从而不能被5或7整除的有10000-3143=6857(个).7. 98831~10000中完全平方数有100个(因为1002=10000),完全立方数有21个(因为39人 32人 数学语文 共45人20 75 英 俄 会游泳 会奇车 全班213<10000<223),完全六次方数有4个(因为46<10000<56) 故1~10000中是完全平方数或完全立方数的数共有100+21-4=117个;从而既不是完全平方数,又不是完全立方数的数有10000-117=9883(个).8. 4如图所示,设既参加是球队又参加排球队的人数为x ,则依容斥原理,有20+12+10-6-2-x =30,解得x =4.9. 7201~1001中,有7的倍数14371001=⎥⎦⎤⎢⎣⎡(个);有11的倍数91111001=⎥⎦⎤⎢⎣⎡(个),有13的倍数77131001=⎥⎦⎤⎢⎣⎡(个);有7⨯11=77的倍数13771001=⎥⎦⎤⎢⎣⎡(个),有7⨯13=91的倍数11911001=⎥⎦⎤⎢⎣⎡(个),有11⨯13=143的倍数71431001=⎥⎦⎤⎢⎣⎡(个).有1001的倍数1个. 由容斥原理知:在1~1001中,能被7或11或13整除的数有(43+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个.10. 31,56如图,当100人都是或者音乐爱好者,或者体育爱好者时,这两者都爱好的人数为最小值即56+75-100=31(个).当所有的音乐爱好者都是音乐爱好者时,这两者都爱好的人数最大可为56人.11. 如图,选甲乙而不选丙的有a =29-24=5(人),选甲丙而不选乙的b =28-24=4(人),选乙丙而不选甲的有c =26-24=2(人), 仅选了丁的人有d =35-24-a -c =4(人),仅选了丙的人有e =31-24-b -c =1(人),故少选了一科的人数是:甲+d +c +e =45(人),故三门均未选的人数为50-45=5(人).10 12 20 6 2 x 排球队 足球队 蓝球队音乐 爱好者 体育爱好者甲 乙 丙24 a b c d e12. 由第9题的结论知分母是1001的最简分数的个数是720.又真分数1001a 和真分数10011001a - (a 与1001互质)是成对出现的,故上述720个真分数可以分成360对,每一对=数之和为1,故上述720个分母是1001的真分数之和为360.所以所有小于1001且与1001互质的数之和为360⨯1001=360360.13. 设阴影部分的面积是x ,由容斥原理知28-(5+3+4)+x =18,故x =2.14. 因为385=5⨯7⨯11,故在1~385这385个自然数中,5的倍数有765385=⎥⎦⎤⎢⎣⎡(个),7的倍数有557385=⎥⎦⎤⎢⎣⎡(个),11的倍数有355385=⎥⎦⎤⎢⎣⎡(个), 5⨯7=35的倍数有1135385=⎥⎦⎤⎢⎣⎡(个),5⨯11=55的倍数有755385=⎥⎦⎤⎢⎣⎡(个),7⨯11=77的倍数有⎥⎦⎤⎢⎣⎡77385=5(个),385的倍数有1个. 由容斥原理知,在1~385中能被5、7或11整除的数有77+55+35-(11+7+5)+1=145(个),而5、7、11互质的数有385-145=240(个).即分母为385的真分数有240(个).如果有一个真分数为385a ,则必还有另一个真分数385385a -,即以385为分母的最简真分数是成对出现的,而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1⨯120=120.十七 容斥原理(2) 年级 班 姓名 得分一、填空题1.某校有500名学生报名参加学科竞赛,数学竞赛参加者共312名,作文竞赛参加者共353名,其中这两科都参加的有292名,那么这两科都没有参加的人数为_______人.2.某门诊部统计某一天挂号的病人,内科150人,外科92人,其中内、外两科都求诊的18人,这一天共来了 个病人.3.两个正方形的纸片盖在桌面上,位置与尺寸如图所示,则它们盖住(平方厘米).4.不超过30的正整数中,是3的倍数或4的倍数的数有 个.5.在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人.那么甲班共有 人.6.在桌面上放置着三个两两重叠的圆纸片(如图),它们的面积都是100(cm 2)并知A 、B 两圆重叠的面积是20(cm 2),A 、C 两圆重叠的面积为45(cm 2),B 、C 两圆重叠面积为31(cm 2),三个圆共同重叠的面积为15(cm 2),求盖住桌子的总面积是 平方厘米.7.在一次考试中,某班数学得100分的有17人,语文得100分的有13人,两科都得100分的有7人,那么两科中至少有一科得100分的共有 人.全班45人中两科都不得100分的有 人.8.在1,2,3,…,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有 个.9.小于1000的自然数中,是完全平方数而不是完全立方数的数有 个.10.某校有学生960人,其中有510人订阅“作文报”,有330人订阅“数学报”,有120人订阅“科学爱好者”,全校学生中有270人订阅两种报刊,有58人三种报刊都订,那么这学校中没有订阅任何报刊的有 人.2 2 1.5 1.53 3AB C二、解答题11.70名学生参加体育比赛,短跑得奖的31人,投掷得奖的36人,弹跳得奖的29人,短跑与投掷二项均得奖的12人,跑、跳、投三项均得奖的有5人,只得弹跳奖的有7人,只得投掷奖的有15人.求(1)只得短跑奖的人数;(2)得二项奖的总人数;(3)一项奖均未得的人数.12.64人订A、B、C三种杂志.订A种杂志的28人,订B种杂志的有41人,订C种杂志的有20人, 订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人,问三种杂志都订的有多少人?13.求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.14.夏日的一天,有十个同学去吃冷饮.向服务员交出需要冷饮的统计,数字如下,有6个人要可可,有5个人要咖啡,有5个人要果汁,有3个人既要可可又要果汁,有一个人既要可可、咖啡又要了果汁.求证其中一定有一个人什么冷饮也没有要.———————————————答 案——————————————————————1. 127从图中可以看出:参加数学、作文竞赛的总人数为312+353-292=373(人)从而可知这两科都没有参加的人数为500-373=127(人).2. 224从图可以看出,来诊病人总数为150+92-18=224(人).3. 10.75把两个正方形面积加起来得22+32=13,但其中多算了一块阴影部分的面积,这部分面积为 1.52=2.25(平方厘米),故两个正方形盖住的总面积是22+32-1.52=13-2.25=10.75(cm 2)4. 15不超过30的3的倍数有10330=⎥⎦⎤⎢⎣⎡(个),不超过30的4的倍数有7430=⎥⎦⎤⎢⎣⎡-(个);不超过30的3⨯4=12的倍数有24330=⎥⎦⎤⎢⎣⎡⨯(个),因此不超过30的正整数中是3的倍数,或是4的倍数的数共有10+7-2=15(个).5. 41如图所示,易知总人数为(15+12-7)+21=41(人).6. 219由容斥原理知,盖住桌面的总面积为100+100+100-(20+45+31)+15=219(平方厘米).7. 23;22至少一科得100分的有17+13-7=23(人),两科都不得100分的有45-23=22(人).数学 312 作文 353292 ? 内科 150人 外科92人18 人 田赛 径赛15 127 21 数学 语文 78. 333在1~1000的自然数中,2的倍数有50021000=⎥⎦⎤⎢⎣⎡(个),3的倍数有33331000=⎥⎦⎤⎢⎣⎡(个),2⨯3=6的倍数共有166321000=⎥⎦⎤⎢⎣⎡⨯(个),故是2或是3的倍数共有500+333-166=667(个),从而既不是2的倍数,又不是3的倍数的数共有1000-667=333(个).9. 28小于1000的自然数中,是完全平方数的有12、22、…,312共31个.其中12=13,82=43,272=93.又是完全立方数,故符合条件的数有31-3=28(个)10. 121由容斥原理知,或订“作文报”或订“数学报”或订“科学爱好者”的总人数为510+330+120-270+58=748(人)故三种报刊都没有订的人数为960-748=212(人).11. (1)如图,用矩形表示参赛的70个学生,而用三个圆表示分别在跑、跳、投中得奖的人.设x 为只得短跑奖的人数,y 为只在短跑和弹跳两项得奖的人数,z 为只在弹跑与投掷两项得奖的人数,u 为只在投掷和短跑两项得奖的人数.则有u =12-5=7(人),z =36-15-12=9(人),y =29-5-7=8(人),x =31-12-8=11(人).即只得短跑奖的有11人.(2)得二次奖的人数为y +z +u =8+9+7=24(人).(3)因至少得一次奖的人数为x +y +z +u +5+7+15=62(人),故一项奖均未得的人数为70-62=8(人).12. 设三种杂志均订的人数为x ,则有28+41+20-10-12-12+x =64,解得x =9,即三种杂志都订的有9人.跑 跳 投15 7 5 z x y u AB C x13. 在1~1994中,能被5整除的个数为39851994=⎥⎦⎤⎢⎣⎡;能被6整除的个数为33261994=⎥⎦⎤⎢⎣⎡;能被7整除的个数为28471994=⎥⎦⎤⎢⎣⎡;能被5⨯6=30整除的个数为66301994=⎥⎦⎤⎢⎣⎡;能被5⨯7=35整除的数为56351994=⎥⎦⎤⎢⎣⎡;能被6⨯7=42整除的个数为47421994=⎥⎦⎤⎢⎣⎡;能被5⨯6⨯7=210整除的个数为92101994=⎥⎦⎤⎢⎣⎡. 根据容斥原理,1~1994中或能被5,或能被6,或能被7整除的数的个数为:(398+332+284)-(66+54+47)+9=854,从而不能被5整除,也不能被6或7整除的自然数的个数为1994-854=1140(个).14. 要了冷饮的总人数为6+5+5-3-2-3+1=9(人),但总人数为10人,故一定有一个人什么冷饮也没有要.。

相关文档
最新文档