六年级奥数专题:找规律
(完整版)六年级数学经典找规律专题
找规律专题一.解答题(共30小题)1.(2015•深圳)在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子厘米(π取3)2.(2015•龙泉驿区校级三模)摆一个六边形需要六根小棒,摆2个六边形需要11根小棒,3个需要16根小棒…问:摆10个六边形需要根小棒,摆100个六边形需要根小棒,摆n个六边形需要根小棒.3.(2015春•淮安校级期中)用计算器计算,再根据规律编写一道算式并直接写出得数.(24+25)×5=;(872+873)×5=;(2830+2831)×5=;(+)×=.4.(2015春•射阳县校级期中)根据规律填数.9×9+9=90 9876×9+6=8889098×9+8=890 98765×9+5=987×9+7=8890 987654×9+4=.5.(2015春•成都校级期中)如图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”最下层包含多少个小三角形?六层呢?七层呢?n层呢?(2)整个五层“宝塔”一共包含多少个小三角形?六层呢?七层呢?n层呢?6.(2015春•西安校级期中)仔细观察,根据发现的规律把表格填完整.第几幅图 1 2 3 5 …n共几个面在外面…7.(2015春•盐城校级期中)用小棒如图的方式搭正方形.搭1个正方形要4根小棒,搭2个正方形要7根小棒.(1)搭3个正方形要根小棒;(2)搭8个正方形要根小棒;8.(2015春•团风县期中)一串珠子按照3颗黑珠,2颗白珠,3颗红珠,2颗蓝珠的顺序排列.(1)第14颗珠子是珠子.(2)第998颗珠子是颜色珠子.9.(2015春•射阳县校级期中)想一想,填一填.用上面的图形在左边表里框出5个数,先算出这5个数的和,再想想算出的和与中间一个数有什么关系?如果5个数的和为795,请在上面图形里写出这5个数.10.(2015春•威宁县校级期中)表中一共有50个奇数,黑线框出的5个数之和是115;仔细观察后回答问题.(1)你能发现每次框出的5个数的和与中间数有什么关系吗?(2)如果框出5个数的和要是375,应该怎么框?(先在图中框一框,并在下面用文字说明)(3)能框出和是295的5个数吗?为什么?(4)一共可以框出多少个大小不同的和?11.(2015春•株洲校级月考)不计算,运用规律在横线上填上合适的数.7×9=6377×9=693777×9=69937777×9=69993…777777777×9=1÷7=0.142857142857…2÷7=0.285714285714…3÷7=0.428571428571…4÷7=0.575÷7=0.76÷7=7÷7=12.(2014•涟水县模拟)观察与计算.计算:1+2+3+…+99+100+99+98+…+3+2+1=13.(2014•金寨县校级模拟)找规律,填表.序号①②③④⑤…⑩数列A 1 3 5 7 9 …数列B 0 1 4 9 (81)14.(2014•宝安区校级模拟)观察下面3题的规律,然后算出(1)(2)两小题的结果.1+2+1=2×2=41+2+3+2+1=3×3=91+2+3+4+3+2+1=16(1)1+2+3+…+99+100+99+…+3+2+1=(2)+++…+++1+++…+++=15.(2014•绍兴)有些题目可以通过观察找出规律,知道答案.按照下图算式的规律不变,如果商是123456,括号中的“减数”应该是.(3﹣3)÷27=0(33﹣6)÷27=1(333﹣9)÷27=12(3333﹣12)÷27÷=123.16.(2014•武平县)观察图形找规律:(1)按照图形变化规律填表:1 2 3 4 5 …正方形个数直角三角0 4 8 …形个数(2)如果画8个正方形能得到个直角三角形,画n个正方形能得到个直角三角形.17.(2014•东莞)探寻规律.如图 是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图‚),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图ƒ),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.18.(2014•东台市)准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.19.(2014•长沙)在如图所示的数表中,第100行左边的第一个数是.20.(2014•成都)有甲、乙两个同样的杯子,甲杯装满水,乙杯是空的.第一次将甲杯里的倒入乙杯,第二次将乙杯中水的倒回甲杯,第三次将甲杯中的倒回乙杯,第四次将乙杯中的倒回甲杯,…,这样反复倒2015 次后,甲杯中的水是原来的几分之几?21.(2014•陕西校级模拟)有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?22.(2014•江油市校级模拟)有一串数,,,,,,,,,,…则是第个分数.23.(2014•临夏县模拟)找规律填数.1,4,9,16,,,49,,81.24.(2014•湖南模拟)分析推理找规律①1+2+1=4②1+2+3+2+1=9③1+2+3+4+3+2+1=16④1+2+…+49+50+49+…+2+1=⑤1+2+…+(n﹣1)+n+(n﹣1)+…+2+1=(n为自然数)25.(2014•江油市校级模拟)1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,…1+3+5+…+(2n ﹣1)=20132,则n=.26.(2014•宁远县校级模拟)如图,第6个图形一共由个小三角形组成,第n 个图形,一共由个小角形组成.27.(2014•广州模拟)为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形.(1)填写下表正方形的层数 1 2 3 4 5该层所需花盆的个数 4 12(2)按这种规律搭下去,搭第n(n为正整数)层正方形,需要盆花.28.(2014•台湾模拟)如图所示,按一定规律用棉花棒摆放图案:第一组的图案用棉花棒2枝,第二组用棉花棒7枝,第三组用棉花棒15枝,如此类推,问第二十组的图案用棉花棒多少枝﹖29.(2014•成都校级模拟)下面的小点按如图所示的规律摆放:第1个图形有6个小点,第2个图形有10个小点,第3个图形有16个小点,第4个图形有24个点…,依次规律,第10个图形中点的个数是30.(2014•海安县模拟)用小棒按照如下的方式摆图形.摆1个八边形需要8根小棒,摆2个八边形需要15根小棒,…摆50个八边形需要根小棒;如果摆这样的八边形用了771根小棒,你知道摆了个八边形.。
规律性问题(六年级奥数题及答案)
规律性问题(六年级奥数题及答案)
规律性问题
在平面上画20个圆,问这20个圆最多可能将平面分为多少个部分?
解:分析直接画出20个圆去数当然是行不通的.先考虑一些简单的情况:
一个圆最多分平面为2部分;
二个圆最多分平面为4部分;
三个圆最多分平面为8部分;
当第二个圆在第一个圆的基础上加上去时,第二个圆应与第
一个圆有2个交点,这两个交点将新加的圆分为2段,其中每一段弧都将所在平面部分一分为二,所以所分平面部分数在原有2部分的基础上又增添2部分.同样道理,三个圆最多分平面的部分数是在2个圆分平面为4部分的基础上又增加4部分.
继续前面的分析过程,画第20个圆时,与前19个圆最多有19×2=38个交点,第20个圆的圆弧被分成为38段,也就是增加了38个区域,所以20个圆最多分平面的部分数为:
2+1×2+2×2+…+19×2
=2+2(1+2+3+ (19)。
奥数找规律计算(试题)全国通用六年级上册数学含参考答案
找 规 律1、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________________。
2、观察下列等式:221.4135−=×;222.5237−=×;223.6339−=×224.74311−=×;…………第5个等式位 .则第n (n 是自然数)个等式为3、自己观察下列算式,寻找规律填数.2+4=2×32+4+6=3×42+4+6+8=4×52+4+6+8+10+…+50= × .4.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )………… ①1=12; ②1+3=22; ③1+3+5=32④ ; ⑤;A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+315、 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…… .猜想:第n 个等式(n ____________________________.6、观察下列各式:1×3=21+2×1,2×4=22+2×2,3×5=23+2×3,请你将猜想到的规律用自然数n (n ≥1)表示出来: 。
7、 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数是 。
10.观察下列等式:211=2132+=4=1+3 9=3+6 16=6+10…2++=1353……………根据观察可得:13521_________.(n为非0自然数)n++++−=8、观察下列等式9-1=816-4=1225-9=1636-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为 .9、观察下列等式:第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n行的等式为____________10、观察下列各式:3211=332+=1233322++=123633332123410+++=……猜想:333312310++++= .11、观察下列几个算式,找出规律:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25……利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1= ②据①你会算出1+2+3+…+100是多少吗?③据上你能推导出1+2+3+…+n 的计算公式吗?12、你能很快算出21995吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10•n +5,即求2)510(+n 的值(n 为自然数),你试分析 ,3,2,1===n n n 这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。
六年级找规律奥数题
六年级找规律奥数题
题目:找出下面每行、每列和每个九宫格中的数字,并将它们组成一个四位数。
一行:357,892
一列:461,983
一个九宫格:289,417,982,357
要求:每个数字必须被4个数字整除,且这些数字不能重复。
解法:
首先观察题目中的数字,可以发现每行、每列和每个九宫格中的数字都是唯一的。
其次,我们可以使用穷举法来寻找符合条件的数字。
从行入手,如果行中的第一个数字是357,则该数字不能被4个数字整除,因此无法继续向下寻找。
同理,从列入手,如果列中的第一个数字是892,则该数字不能被4个数字整除,因此无法继续向下寻找。
因此,我们可以将这个行、列和九宫格中所有数字都排除掉,然后再从下一个行、列和九宫格中开始寻找符合条件的数字。
最后,我们使用计算机程序来解决这个问题,可以大大加快搜索的速度。
具体地,我们可以使用一个数组来表示符合条件的数字,使用一个循环来搜索整个数组。
在搜索过程中,我们需要检查每个数字是否被4个数字整除,如果符合条件,则将其加入数组中。
时间复杂度:O(n^3)
拓展:
这个问题可以推广到更大的数字规模。
例如,如果有n行、m列和n个九宫格,我们需要找到符合条件的n位数。
我们可以使用类似的方法来解决,即使用一个数组来表示符合条件的数字,使用一个循环来搜索整个数组。
在搜索过程中,我们需要检查每个数字是否被4个数字整除,如果符合条件,则将其加入数组中。
如果数字的规模很大,那么搜索的时间复杂度将变得非常高。
因此,我们需要使用更高效的算法来解决这个问题。
小学奥数找规律知识点
小学奥数找规律知识点小学奥数是指小学生参加的数学奥赛比赛,题目难度较高,常常需要运用一些找规律的方法来解题。
在小学奥数中,找规律是一种重要的解题技巧,掌握了找规律的知识点,可以在解题时事半功倍。
本文将介绍小学奥数中常用的找规律的知识点。
一、数字序列的规律在小学奥数中,经常会给出一组数字的序列,要求找出其中的规律。
在解决这类问题时,我们可以首先观察数字序列的前几个数,看是否能够找到一些明显的规律。
比如,给定数字序列:2, 4, 6, 8, 10,我们可以发现每个数字都是前一个数字加2,因此规律是“加2”。
有时候数字序列的规律可能更加复杂,我们可以根据数字之间的差异来寻找规律。
例如,给定数字序列:1, 3, 6, 10,我们可以发现每个数字相对于前一个数字的差值递增,即1, 2, 3,因此规律是“差值递增”。
二、图形的规律小学奥数中常常会出现一些图形题目,要求找出图形之间的规律。
在解决这类问题时,我们可以先观察图形的形状、颜色、数量等特征,看是否能够找到一些规律。
例如,给定以下图形序列:△ △△ △△△ △△△△我们可以发现每一行图形的数量递增,因此规律是“数量递增”。
有时候图形的规律可能与位置有关,我们可以根据图形在位置上的变化来寻找规律。
比如,给定以下图形序列:□□ □□ □ □□ □ □ □我们可以发现每一行图形的位置与数量有关,因此规律是“位置与数量相关”。
三、数学运算的规律在小学奥数中,常常会出现一些涉及数学运算的题目,要求找出运算中的规律。
解决这类问题时,我们可以先观察数学运算的过程和结果,看是否能够找到一些规律。
例如,给定以下数学运算序列:2 +3 = 53 +4 = 74 +5 = 9我们可以发现每一组的结果都比前一组的结果大2,即组数与结果之间存在着一定的关系,因此规律是“结果与组数相关”。
有时候数学运算的规律可能与数的性质有关,我们可以根据数的性质来寻找规律。
比如,给定以下数学运算序列:6 × 1 = 66 × 2 = 126 × 3 = 18我们可以发现每一组的结果都是一个等差数列,因此规律是“结果是一个等差数列”。
六年级奥数上 第12讲 找规律
1111…11 × 999 … 99 700个 9
找规律
பைடு நூலகம்
的积中有多少个奇数
多少个偶数字? 多少个偶数字?
思路分析:如此大的因数,不可能按一般方法列竖式去乘, 一定存在着某些规律,使问题得到简化。 我们可以从“简单”入手去寻找规律:
1× 9 = 9 11 × 99 = 1089 111 × 999 = 110889 1111 × 9999 = 11108889 ……
第四次等分,……
各次总和分别是
5 5 15 , , …… 6 2 2
每一次总和都是上一次的3倍,因此和是一个公比是3 的等比数列。
5 5 1 3645 ( 8 −1) /× ×3 = × 3 3× 3× 3× 3× 3× 3 = = 1822.5 / 6 6 2 2
例6. 如下图
1 8 15 22 2 9 16 23 3 10 17 24 4 11 18 25 5 12 19 26 6 13 20 27 7 14 21 28
在一个圆周上标出一些数, 例5. 在一个圆周上标出一些数,第一次先把圆周 1 1 二等分, 二等分,在两个分点旁分别标上 2 和 3 ,如图 )。第二次把两段半圆弧二等分 第二次把两段半圆弧二等分, (1)。第二次把两段半圆弧二等分,在分点旁标 5 1 1 上相邻两分点所标两数的和,如图( 上相邻两分点所标两数的和,如图(2)6 = 2 + 3 ,。 第三次把4段圆弧再二等分,并在4个分点旁标上 第三次把4段圆弧再二等分,并在4 1 1 5 1 相邻两分点旁所标两数的和,如图( 相邻两分点旁所标两数的和,如图(3), 3 = 2 + 6 。 如此继续下去,当第八次标完数之后, 如此继续下去,当第八次标完数之后,圆周上所 有已标的数的总和是多少? 有已标的数的总和是多少? 1 1 1
六年级奥数——找规律
(3)1,8,27,(),125,()
(4)3,6,9,15,24,(),63,()
2、按照规律在括号里画出每组的第32个图形。
(1)◎□○◎□○◎□○……()
(2)○○○□○○○□○○○□……()
(3)△△△○○△△△○○……()
3、六(2)班同学在六一国际儿童节按下面的规律在教室里挂上气球。
教学课题
探索规律
教学目标
掌握算式、数列及数图形中的规律,根据规律解答相关题目。
教学过程
能简便计算的简便计算
探索规律
一、算式中的规律
在数学算式中探索规律,应认真观察算式的特点,再观察结果的特点,从而根据规律完成这一类题。如:
二、数列中的规律
按一定次数排列的一列数叫做数列
1、规律蕴涵在相邻两数的差和倍数中。
六、搭配中的规律
搭配问题的解题思路类似于乘法原理,即做一件事情,完成它需要分成n个步骤,做第一步有 中不同的方法,,做第二步有 中不同的方法…,做第 步有 中不同的方法,那么完成这件事有
例1:先观察下列各式,找出规律再填空。
(1)12345679×9=111111111
(2)12345679×18=222222222
例4:小明在一个正方形的棋盘里摆棋子,他先把最外层摆满,用了40个棋子,最外层每边有多少棋子?如果他要把整个棋盘摆满,还需要多少棋子?
例5:由1,2,3,4,5五个数字组成的五位数共有120个,将它们从小到大排列起来,第95个数是()。
跟踪练习
1、你能发现下列各组数的规律吗?
(1)8,11,14,17,(),23,26
如:12,15,17,30,22,45,27,60,…第1,3,5,…项依次相差5,第2,4,6,…项依次相差15。
六年级下册数学试题-奥数杂题专题:图形数列找规律
根据已有数字,找规律填空。
⑴21,18,15,12,( ),( )⑵3,5,8,12,17,( ),( )⑶2,1,3,3,4,5,5,7,( ),( )⑷1,3,4,7,11,( ),( )。
⑸1,3,9,27,( ),( )。
请根据已有图案的规律,将剩余3个图形放到合适的位置上。
图形数列找规律(★★★)(★★★)前三块石头是外星人E.T留下的记号,同学们你能通过前面的图形找到规律,画出第四图案吗?【趣味大挑战】(★★★★★★★)请问下面3组数字间有什么关系?1 3 8 72 4 65 9山洞的墙上是这样一列数:1,1,2,3,5,8,13,21,34,55,____,____,____为了我们神秘的礼物我们需要找到这个数列完成。
【拓展】1,1,2,3,5,8,13,21,34,55,____,____,____。
请问:这个数列的第100项是奇数还是偶数?(★★★) (★★★)在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.找规律填空⑴102、98、94、90、( )、82 …⑵1、3、4、7、1、8、9、7、( )、3、9、…A.(86),(6) B.(84),(5) C.(82),(6) D.(86),(5)2.小朋友们,下面的图形是按一定规律排列的,请你仔细观察,并在第4组的“”处填上适当的图形。
A.B.C.D.3.观察下列各组图的变化规律,并在空白处画出相关的图形。
A.B.C.D.4.有这样一列数:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,,你知道这个数列第5086项是奇数还是偶数?A.无法确定B.非奇非偶C.偶数D.奇数。
六年级找规律奥数题
例5用3个三角形最多可以把平面分成几部分?10个三角形呢?
1.求十五边形的内角和。
2.6条直线与2个圆最多形成多少个交点?
3.两个四边形最多把平面分成几部分?
例2四边形内有10个点以四边形的4个顶点和这10个点为三角形的顶点最多能剪出多少个小三角形
六年级找规律奥数题
找规律四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形?
例3n棱柱有多少条棱?如果将不相交的两条棱称为一对,那么n棱柱共有多少对不相交的棱?
六年级奥数图形找规律学生版
4-1-2.图形找规律知识点拨六年级奥数图形找规律学生版⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.例题精讲模块一、图形规律——数量规律【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例 5】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?【例 6】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例 7】 观察下图中的点群,请回答:(1) 方框内的点群包含 个点;(2) 推测第10个点群中包含 个点; (3)前10个点群中,所有点的总数是 。
【例 8】观察下面由点组成的图形〈点群〉,请回答:〈1〉方框内的点群包含个点;〈2〉第〈10〉个点群中包含个点;〈3〉前十个点群中,所有点的总数是。
【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:〈1〉五层的“宝塔”的最下层包含多少个小三角形?〈2〉整个五层“宝塔”一共包含多少个小三角形?【例 10】在纸上画5条直线,最多可有个交点。
模块二、图形规律——旋转、轮换型规律【例 11】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○ □ ☆△ ○ □ ☆△△ ○ □ ☆△ ○ □ ☆☆△ ○ □ ☆△ ○ □〈〉〈〉〈〉〈〉〈〉〈〉〈〉〈〉【例 12】下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.〈1〉?第1组第3组第2组〈2〉?第1组第3组第2组〈3〉★★★★★?第3组第2组第1组【例 13】 观察下图的变化规律,画出丙图.甲D CB A乙DABC丙【例 14】 图中的三个图形都是由A 、B 、C 、D 〈线段或圆〉中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A ★BC ★DA ★D【例 15】 〈希望杯五年级一试第7题,6分〉下列四个图形是由四个简单图形A 、B 、C 、D〈线段和正方形〉组合〈记为*〉而成。
最新六年级奥数专题:找规律
六年级奥数专题:找规律同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。
这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。
例1 求99边形的内角和。
分析与解:三角形的内角和等于180°,可是99边形的内角和怎样求呢?我们把问题简化一下,先求四边形、五边形、六边形……的内角和,找一找其中的规律。
如上图所示,将四边形ABCD分成两个三角形,每个三角形的内角和等于180°,所以四边形的内角和等于180°×2= 360°;同理,将五边形ABCDE分成三个三角形,得到五边形的内角和等于180°×3=540°;将六边形ABCDEF分成四个三角形,得到六边形的内角和等于180°×4=720°。
通过上面的图形及分析可以发现,多边形被分成的三角形数,等于边数减2。
由此得到多边形的内角和公式:n边形的内角和=180°×(n-2)(n≥3)。
有了这个公式,再求99边形的内角和就太容易了。
99边形的内角和=180°×(99-2)=17460°。
例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形?分析与解:在10个点中任取一点A,连结A与四边形的四个顶点,构成4个三角形。
再在剩下的9个点中任取一点B。
如果B在某个三角形中,那么连结B与B所在的三角形的三个顶点,此时三角形总数增加2个(见左下图)。
如果B在某两个三角形的公共边上,那么连结B与B所在边相对的顶点,此时三角形总数也是增加2个(见右下图)。
类似地,每增加一个点增加2个三角形。
所以,共可剪出三角形 4+2× 9= 22(个)。
如果将例2的“10个点”改为n个点,其它条件不变,那么由以上的分析可知,最多能剪出三角形4+2×(n-1)=2n+2=2×(n+1)(个)。
六年级奥数题及答案讲解-找规律填数
六年级奥数题及答案讲解-找规律填数编者小语:下面这道试题是根据现在的考试热点精心挑选有关六年级找规律填数问题的试题,以便同学们可以练习.问题2.1观察分析下面各列数的变化规律,并填上合适的数.(1)7,11,15,19,(),…;(2)1,4,3,6,5,(),(),…;(3)1,4,9,16,(),…;(4)1,2,4,8,16,(),….分析观察分析一列数的变化规律,找出带有规律的东西.在(1)中,11-7=15-11=19-15=…=4.即在这一列数中,从第二个数起,每个数与它前一个数的差都等于4.根据这一规律,可以确定括号里应填23.在(2)中,第一、三、五、......位置上的数满足3-1=5-3= (2)第二、四、六、……位置上的数满足6-4=8-6=…=2.根据这一规律,可以确定括号里的数应该填7、10.在(3)中,第一个数1=1×1=12,第二个数4=2×2=22,第三个数9=3×3=32,第四个数16=4×4=42,….根据这一规律,可以确定括号里应该填52=25.在(4)中,2=1×2,4=2×2,8=4×2,16=8×2,…,即从第二个数起,每一个数都等于它前一个数的2倍.根据这一规律,括号里应该填32.解略.问题2.2 找规律填空.(1)11,3,8,3,5,3,(),();(2)15,6,13,7,11,8,(),();(3)2,5,14,41,();(4)1,1,2,3,5,8,13,21,().分析在(1)中,第一个数减去第三个数的差是3,第三个数减去第五个数的差也是3,而第二、四、六个数都是3.根据这一规律,可以确定括号里应该填2、3.在(2)中,第一个数减去2的差是第三个数,第三个数减去2的差是第五个数;第二个数加上1的和是第四个数,第四个数加上1的和是第六个数.根据这一规律,可以确定括号里应该填9、9.在(3)中,2×3-1=5,5×3-1=14,14×3-1=41.也就是说,前一个数的3倍与1的差等于相邻的后面的数.根据这一规律.可以确定括号里应该填122(即122=41×3-1).在(4)中,1+1=2,1+2=3,2+3=5,3+5=8,…,即前面两个数之和等于相邻后面的数.根据这一规律,可以确定括号里应该填34(即34=13+21).解略.问题2.3先找出规律,然后在括号里填上适当的数.(1)3,8,18,33,53,78,();(2)0,1,3,8,21,().分析在(1)中,8-3=5=1×5,18-8=10=2×5,33- 18=15=3×5,53-33=20=4×5,78-53=25=5×5,即从第二个数起,每一个数与它前一个数的差依次是5的1倍、2倍、3倍、4倍、5倍、…….根据这一规律,下一个差应是5的6倍,可以确定括号里应该镇108(即78+6×5=108).在(2)中,1×3=0+3,3×3=1+8,8×3=3+21,即从第二个数起,每一个数的3倍正好是它前后相邻两个数的和.因此,21×3=8+(55),即括号里应该填55.在(3)中,把方框中的四个数分为上下两部分,9÷3=3= 1+2,15÷3=5=3+2,即下行两数相除所得的商,正好是上行两数之和;或者说,上行两数之和与下行左边的数的积正好是下行右边的数.根据这一规律,第三个方框里的括号内应该填10(即(2+3)×2=10).解略.问题2.4 找规律填数.练习21.仔细观察每一排数的排列有什么规律,然后按规律在()内填上适当的数.(1)2,4,8,16,(),64.(2)1,4,9,16,(),36,49.64.(3)1,4,7,10,13,(),19,21.(4)1,4,16,64,(),1024,4096.(5)2,3,5,9,17,(),65,129.(6)15,4,13,4,11, 4,(),().(7)8,15,10,13,12,11,(),().2.空格里应填什么数? 3.找规律填数.4.在○中填数:已知9999÷9=1111,想一想:在○中填上什么数字,才能使下面的等式成立?(1)○999○÷9=2222;(2)○999○÷9=3333;(3)○999○÷9=4444;(4)○999○÷9=7777;(5)○999○÷9=9999.。
六年级奥数专题:找规律
六年级奥数博题:找顺序之阳早格格创做共教们从三年级启初,便陆绝交战过许多“找顺序”的题目,比方创造图形、数字或者数表的变更顺序,创造数列的变更顺序,创造周期变更顺序等等.那一道的实质是通过创造某一问题的顺序,推导出该问题的估计公式.例1 供99边形的内角战.分解与解:三角形的内角战等于180°,但是99边形的内角战何如供呢?咱们把问题简化一下,先供四边形、五边形、六边形……的内角战,找一找其中的顺序.如上图所示,将四边形ABCD分成二个三角形,每个三角形的内角战等于180°,所以四边形的内角战等于180°×2= 360°;共理,将五边形ABCDE分成三个三角形,得到五边形的内角战等于180°×3=540°;将六边形ABCDEF分成四个三角形,得到六边形的内角战等于180°×4=720°.通过上头的图形及分解不妨创造,多边形被分成的三角形数,等于边数减2.由此得到多边形的内角战公式:n边形的内角战=180°×(n-2)(n≥3).有了那个公式,再供99边形的内角战便太简单了.99边形的内角战=180°×(99-2)=17460°.例2 四边形内有10个面,以四边形的4个顶面战那10个面为三角形的顶面,最多能剪出几个小三角形?分解与解:正在10个面中任与一面A,连结A与四边形的四个顶面,形成4个三角形.再正在剩下的9个面中任与一面B.如果B正在某个三角形中,那么连结B与B天方的三角形的三个顶面,此时三角形总数减少2个(睹左下图).如果B正在某二个三角形的大众边上,那么连结B与B天方边相对付的顶面,此时三角形总数也是减少2个(睹左下图).类似天,每减少一个面减少2个三角形.所以,共可剪出三角形 4+ 2× 9= 22(个).如果将例2的“10个面”改为n个面,其余条件没有变,那么由以上的分解可知,最多能剪出三角形4+2×(n-1)=2n+2=2×(n+1)(个).共教们皆了解圆柱体,如果将圆柱体的底里换成三角形,那么便得到了三棱柱(左下图);共理不妨得到四棱柱(下中图),五棱柱(左下图).如果底里是正三角形、正四边形、正五边形……那么相映的柱体便是正三棱柱、正四棱柱、正五棱柱……例3 n棱柱有几条棱?如果将没有相接的二条棱称为一对付,那么n棱柱公有几对付没有相接的棱?分解与解:n棱柱的底里战顶里皆是n边形,每个n边形有n个顶面,所以n棱柱公有2n个顶面.瞅察三棱柱、四棱柱、五棱柱的图形,不妨瞅出,每个顶面皆与三条棱贯串,而每条棱对接 2个顶面,所以n棱柱公有棱 2n×3÷2=3n (条).进一步瞅察不妨创造,n棱柱中每条棱皆与4条棱相接,与其余的3n-4-1 =(3n-5)条棱没有相接.公有3n条棱,所以没有相接的棱有 3n×(3n- 5)(条),果为没有相接的棱是成对付出现的,各估计一遍便沉复了一遍,所以没有相接的棱公有3n×(3n-5)÷2(对付).例4 用四条曲线最多能将一个圆分成几块?用100条曲线呢?分解与解:4条曲线时,咱们不妨试着绘,100条曲线便没有成能再绘了,所以必须觅找到顺序.如下图所示,一个圆是1块;1条曲线将圆分为2块,即减少了1块;2条曲线时,当2条曲线没有相接时,减少了1块,当2条曲线相接时,减少了2块.由此瞅出,要念分成的块尽管多,应当使后绘的曲线尽管与前里已绘的曲线相接.再绘第3条曲线时,应当与前里2条曲线皆相接,那样又减少了3块(睹左下图);绘第4条曲线时,应当与前里3条曲线皆相接,那样又减少了4块(睹左下图).所以4条曲线最多将一个圆分成1+1+2+3+4=11(块).由上头的分解不妨瞅出,绘第n条曲线时应当与前里已绘的(n—1)条曲线皆相接,此时将减少n块.果为一启初的圆算1块,所以n条曲线最多将圆分成1+(1+2+3+…+n)=1+n(n+1)÷2(块).当n=100时,可分成1+100×(100+1)÷2=5051(块).例5 用3个三角形最多不妨把仄里分成几部分?10个三角形呢?分解与解:仄里自己是1部分.一个三角形将仄里分成三角形内、中2部分,即减少了1部分.二个三角形没有相接时将仄里分成3部分,相接时,接面越多分成的部分越多(睹下图).由上图瞅出,新减少的部分数与减少的接面数相共.所以,再绘第3个三角形时,应使每条边的接面尽管多.对付于每个三角形,果为1条曲线最多与三角形的二条边相接,所以第3个三角形的每条边最多与前里2个三角形的各二条边相接,共可爆收3×(2×2)= 12(个)接面,即减少12部分.果此, 3个三角形最多不妨把仄里分成1+1+6+12= 20(部分).由上头的分解,当绘第n(n≥2)个三角形时,每条边最多与前里已绘的(n—1)个三角形的各二条边相接,共可爆收接面3×[(n—l)×2]=6(n—1)(个),能新减少6(n-1)部分.果为1个三角形时有2部分,所以n个三角形最多将仄里分成的部分数是2+6×[1+2+…+(n—1)]当n=10时,可分成2+3×10×(10—1)=272(部分).训练1.供12边形的内角战.2.五边形内有8个面.以五边形的5个顶面战那8个面为三角形的顶面,最多能剪出几个小三角形?3.已知n棱柱有14个顶面,那么,它有几条棱?4.n条曲线最多有几个接面?5.6条曲线与2个圆最多产死几个接面?6.二个四边形最多把仄里分成几部分?训练问案:1.1800°.2.19个.提示:与例2类似可得5+2×(8-1)=19(个).3.21条棱.提示:n棱柱有2n个顶面,3n条棱.4.n(n-1)÷2.解:1+2+3+…+(n-1)=n(n-1)÷2.5.41个.解:6条曲线有接面6×(6-1)÷2=15(个),每条曲线与二个圆各有2个接面,二个圆之间有2个接面,公有接面15+6×4+2=41(个).6.10部分.提示:睹左图.与例5类似,当绘第n(n≥2)个四边形时,每条边应与已绘的(n-1)个四边形的各2条边相接,共可爆收接面4×[(n-1)×2]=8(n-1)(个),新减少8(n-1)部分.果为1个四边形有2部分,所以n个四边形最多将仄里分成2+8×[1+2+…+(n-1)]=2+4n(n-1)(部分).。
六年级上奥数找规律
精心整理第一讲找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.开篇小练习:1。
2个数是3、案是4A.2n5、第n 67、8……猜想:3333 12310________ +++⋅⋅⋅+=典型例题:一、数字排列规律题1、下面数列后两位应该填上什么数字呢?23581217____2、请填出下面横线上的数字。
112358____213、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?4、有一串数字36101521___第6个是什么数?5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(). A .1B .2C .3D .46、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.7、一组按规律排列的数:1,3,7,13,3621,……请你推断第9个数是. 8、已知下列等式:①13=12;②13+23=32;③13+23+33=62; ④13+23+33+43=102;…………由此规律知,第⑤个等式是.9、观察下列各式;①、12+1=1×2;②、22+2=2×3;③、32+3=3×4;………请把你猜想到的规律用自然数n 表示出来。
10、观察下面的几个算式:①、1+2+1=4;②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是() A .1B .2C .3D .412、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
六年级奥数作找规律学生版
操作找规律知识点拨六年级奥数作找规律学生版在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。
有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。
这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。
这类题主要考查孩子们的发现能力。
例题精讲模块一,周期规律【例 1】四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?〈参看下图〉【考点】操作找规律【难度】2星【题型】解答【关键词】华杯赛,初赛【解析】根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。
【答案】第2号【例 2】在1989后面写一串数字。
从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。
这样得到一串数字:1 9 8 9 2 8 6 8 8 42 ……那么这串数字中,前2005个数字的和是____________。
【考点】操作找规律【难度】2星【题型】填空【关键词】迎春杯,中年级,初试【解析】由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。
1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。
()-÷=⋯,前2005个数字和是2005463333()()()+++++++++⨯+++271198816120311989286884333286=++=。
【答案】12031【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。
找规律小学奥数题100道及答案(完整版)
找规律小学奥数题100道及答案(完整版)题目1:1,3,5,7,9,()答案:11(相邻两个数的差为2,依次递增)题目2:2,4,6,8,10,()答案:12(相邻两个数的差为2,依次递增)题目3:5,10,15,20,25,()答案:30(相邻两个数的差为5,依次递增)题目4:1,4,9,16,25,()答案:36(分别是1、2、3、4、5 的平方,下一个是 6 的平方)题目5:3,6,9,12,15,()答案:18(相邻两个数的差为3,依次递增)题目6:1,2,4,8,16,()答案:32(后一个数是前一个数的2 倍)题目7:2,6,12,20,30,()答案:42(相邻两个数的差依次为4、6、8、10、12)题目8:1,1,2,3,5,8,()答案:13(前两个数相加等于后一个数)题目9:3,4,7,11,18,()答案:29(前两个数相加等于后一个数)题目10:1,3,7,13,21,()答案:31(相邻两个数的差依次为2、4、6、8、10)题目11:2,5,10,17,26,()答案:37(相邻两个数的差依次为3、5、7、9、11)题目12:9,16,25,36,()答案:49(分别是3、4、5、6 的平方,下一个是7 的平方)题目13:1,8,27,64,()答案:125(分别是1、2、3、4 的立方,下一个是5 的立方)题目14:5,12,19,26,33,()答案:40(相邻两个数的差为7,依次递增)题目15:3,8,15,24,()答案:35(相邻两个数的差依次为5、7、9、11)题目16:2,3,5,8,13,()答案:21(前两个数相加等于后一个数)题目17:1,4,10,22,46,()答案:94(相邻两个数的差依次为3、6、12、24、48)题目18:1,5,14,30,55,()答案:91(相邻两个数的差依次为4、9、16、25、36)题目19:2,6,18,54,()答案:162(后一个数是前一个数的3 倍)题目20:7,14,28,56,()答案:112(后一个数是前一个数的2 倍)题目21:1,2,6,24,120,()答案:720(后一个数依次是前一个数乘2、3、4、5、6)题目22:3,5,9,17,33,()答案:65(相邻两个数的差依次为2、4、8、16、32)题目23:1,3,8,19,42,()答案:89(相邻两个数的差依次为2、5、11、23、47,这些差依次增加3、6、12、24)题目24:2,4,10,28,82,()答案:244(相邻两个数的差依次为2、6、18、54、162,后一个差是前一个差的 3 倍)题目25:5,9,17,33,65,()答案:129(相邻两个数的差依次为4、8、16、32、64)题目26:1,4,27,256,()答案:3125(分别是1、2、3、4 的1、2、3、4 次方,下一个是5 的 5 次方)题目27:1,6,21,66,201,()答案:606(相邻两个数的差依次为5、15、45、135、405,后一个差是前一个差的3 倍)题目28:3,8,15,24,35,()答案:48(相邻两个数的差依次为5、7、9、11、13)题目29:2,3,7,18,47,()答案:123(7 = 3×2 + 1,18 = 7×2 + 4,47 = 18×2 + 11,下一个数应为47×2 + 16 = 123)题目30:1,2,5,14,41,()答案:122(相邻两个数的差依次为1、3、9、27、81,后一个差是前一个差的3 倍)题目31:2,5,11,23,47,()答案:95(相邻两个数的差依次为3、6、12、24、48)题目32:4,9,16,25,36,()答案:49(分别是2、3、4、5、6 的平方,下一个是7 的平方)题目33:6,12,20,30,42,()答案:56(相邻两个数的差依次为6、8、10、12、14)题目34:1,3,7,15,31,()答案:63(相邻两个数的差依次为2、4、8、16、32)题目35:3,9,27,81,()答案:243(后一个数是前一个数的3 倍)题目36:5,13,25,41,()答案:61(相邻两个数的差依次为8、12、16、20)题目37:2,8,32,128,()答案:512(后一个数是前一个数的4 倍)题目38:7,16,29,46,()答案:67(相邻两个数的差依次为9、13、17、21)题目39:1,5,13,25,()答案:41(相邻两个数的差依次为4、8、12、16)题目40:6,18,54,162,()答案:486(后一个数是前一个数的3 倍)题目41:8,18,32,50,()答案:72(相邻两个数的差依次为10、14、18、22)题目42:1,4,13,40,()答案:121(相邻两个数的差依次为3、9、27、81)题目43:3,10,21,36,()答案:55(相邻两个数的差依次为7、11、15、19)题目44:5,15,45,135,()答案:405(后一个数是前一个数的3 倍)题目45:2,6,14,30,()答案:62(相邻两个数的差依次为4、8、16、32)题目46:9,25,49,81,()答案:121(分别是3、5、7、9 的平方,下一个是11 的平方)题目47:7,19,37,61,()答案:91(相邻两个数的差依次为12、18、24、30)题目48:4,12,36,108,()答案:324(后一个数是前一个数的3 倍)题目49:1,6,15,28,()答案:45(相邻两个数的差依次为5、9、13、17)题目50:8,20,36,56,()答案:80(相邻两个数的差依次为12、16、20、24)题目51:3,11,23,39,()答案:59(相邻两个数的差依次为8、12、16、20)题目52:6,15,35,77,()答案:143(相邻两个数的差依次为9、20、42、66,差依次增加11、22、24)题目53:2,9,28,65,()答案:126(分别是1、2、3、4 的立方加1,下一个是5 的立方加1)题目54:1,7,19,37,()答案:61(相邻两个数的差依次为6、12、18、24)题目55:5,16,29,46,()答案:67(相邻两个数的差依次为11、13、17、21)题目56:3,12,27,48,()答案:75(相邻两个数的差依次为9、15、21、27)题目57:7,18,33,52,()答案:77(相邻两个数的差依次为11、15、19、25)题目58:2,10,30,68,()答案:130(相邻两个数的差依次为8、20、38、62,差依次增加12、18、24)题目59:4,15,32,55,()答案:84(相邻两个数的差依次为11、17、23、29)题目60:6,21,42,72,()答案:106(相邻两个数的差依次为15、21、30、34)题目61:1,9,25,49,()答案:81(分别是1、3、5、7 的平方,下一个是9 的平方)题目62:8,24,48,80,()答案:120(相邻两个数的差依次为16、24、32、40)题目63:3,13,31,57,()答案:91(相邻两个数的差依次为10、18、26、34)题目64:5,19,41,71,()答案:105(相邻两个数的差依次为14、22、30、34)题目65:2,11,26,47,()答案:76(相邻两个数的差依次为9、15、21、29)题目66:9,27,51,81,()答案:117(相邻两个数的差依次为18、24、30、36)题目67:7,17,33,55,()答案:83(相邻两个数的差依次为10、16、22、28)题目68:4,14,30,52,()答案:78(相邻两个数的差依次为10、16、22、26)题目69:6,18,36,60,()答案:90(相邻两个数的差依次为12、18、24、30)题目70:1,11,27,51,()答案:81(相邻两个数的差依次为10、16、24、30)题目71:5,17,33,53,()答案:77(相邻两个数的差依次为12、16、20、24)题目72:3,14,31,58,()答案:91(相邻两个数的差依次为11、17、27、33)题目73:8,22,42,70,()答案:106(相邻两个数的差依次为14、20、28、36)题目74:2,13,30,53,()答案:84(相邻两个数的差依次为11、17、23、31)题目75:9,29,55,91,()答案:133(相邻两个数的差依次为20、26、36、42)题目76:7,20,39,64,()答案:95(相邻两个数的差依次为13、19、25、31)题目77:4,16,36,64,()答案:100(分别是2、4、6、8 的平方,下一个是10 的平方)题目78:3,15,33,57,()答案:87(相邻两个数的差依次为12、18、24、30)题目79:6,22,44,74,()答案:110(相邻两个数的差依次为16、22、30、36)题目80:1,13,29,53,()答案:89(相邻两个数的差依次为12、16、24、36)题目81:5,21,41,67,()答案:99(相邻两个数的差依次为16、20、26、32)题目82:8,26,50,82,()答案:118(相邻两个数的差依次为18、24、32、36)题目83:3,17,37,67,()答案:107(相邻两个数的差依次为14、20、30、40)题目84:7,23,45,73,()答案:107(相邻两个数的差依次为16、22、28、34)题目85:2,14,32,56,()答案:88(相邻两个数的差依次为12、18、24、32)题目86:9,31,59,95,()答案:139(相邻两个数的差依次为22、28、36、44)题目87:6,24,48,84,()答案:126(相邻两个数的差依次为18、24、36、42)题目88:1,15,33,57,()答案:87(相邻两个数的差依次为14、18、24、30)题目89:5,23,47,77,()答案:113(相邻两个数的差依次为18、24、30、36)题目90:8,28,52,82,()答案:118(相邻两个数的差依次为20、24、30、36)题目91:3,19,41,69,()答案:105(相邻两个数的差依次为16、22、28、36)题目92:7,27,51,81,()答案:117(相邻两个数的差依次为20、24、30、36)题目93:4,18,38,66,()答案:100(相邻两个数的差依次为14、20、28、34)题目94:6,26,50,80,()答案:116(相邻两个数的差依次为20、24、30、36)题目95:2,16,36,60,()答案:90(相邻两个数的差依次为14、20、24、30)题目96:9,33,63,99,()答案:141(相邻两个数的差依次为24、30、36、42)题目97:8,28,56,92,()答案:136(相邻两个数的差依次为20、28、36、44)题目98:5,21,43,71,()答案:105(相邻两个数的差依次为16、22、28、34)题目99:3,17,37,67,()答案:107(相邻两个数的差依次为14、20、30、40)题目100:7,25,49,79,()答案:115(相邻两个数的差依次为18、24、30、36)。
六年级找规律奥数题
六年级找规律奥数题找规律是奥数中常见的题型之一,要求学生通过观察数列或图形中的特点,找到其中的规律,并根据规律解答问题。
下面是几道六年级找规律的奥数题及其解题思路的相关参考内容:1. 题目: 2, 4, 8, 16, 32, ?解题思路:观察这个数列,可以发现每个数字都是前一个数字的2倍。
因此,下一个数字应该是32的2倍,即64。
答案:642. 题目: 3, 7, 15, 31, ?解题思路:观察这个数列,可以发现每个数字都是前一个数字的2倍再加1。
因此,下一个数字应该是31的2倍再加1,即63。
答案:633. 题目: 1, 2, 4, 7, 11, ?解题思路:观察这个数列,可以发现从第二个数字开始,每个数字都是前一个数字加上一个递增的数字。
第一个递增数字是1,第二个递增数字是2,第三个递增数字是3,以此类推。
因此,下一个数字应该是11加上递增数字4,即15。
答案:154. 题目: 1, 4, 9, 16, 25, ?解题思路:观察这个数列,可以发现每个数字都是前一个数字的平方。
因此,下一个数字应该是25的平方,即625。
答案:6255. 题目: 2, 5, 10, 17, ?解题思路:观察这个数列,可以发现每个数字都比前一个数字大2,4,6,8...。
因此,下一个数字应该比17大10,即27。
答案:276. 题目: 1, 4, 9, 16, 25, ?解题思路:观察这个数列,可以发现每个数字都是前一个数字的平方。
因此,下一个数字应该是25的平方,即625。
答案:6257. 题目: 1, 3, 6, 10, ?解题思路:观察这个数列,可以发现每个数字都是前一个数字加上一个递增的数字。
第一个递增数字是2,第二个递增数字是3,第三个递增数字是4...因此,下一个数字应该是10加上递增数字5,即15。
答案:15通过以上的例题可以看出,在解答找规律的问题时,可以通过观察数列或图形中数字的变化,找到其中的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数专题:找规律
同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。
这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。
例1 求99边形的内角和。
分析与解:三角形的内角和等于180°,可是99边形的内角和怎样求呢我们把问题简化一下,先求四边形、五边形、六边形……的内角和,找一找其中的规律。
如上图所示,将四边形ABCD分成两个三角形,每个三角形的内角和等于180°,所以四边形的内角和等于180°×2= 360°;同理,将五边形ABCDE分成三个三角形,得到五边形的内角和等于180°×3=540°;将六边形ABCDEF分成四个三角形,得到六边形的内角和等于180°×4=720°。
通过上面的图形及分析可以发现,多边形被分成的三角形数,等于边数减2。
由此得到多边形的内角和公式:
n边形的内角和=180°×(n-2)(n≥3)。
有了这个公式,再求99边形的内角和就太容易了。
99边形的内角和=180°×(99-2)=17460°。
-
例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形
分析与解:在10个点中任取一点A,连结A与四边形的四个顶点,构成4个三角形。
再在剩下的9个点中任取一点B。
如果B在某个三角形中,那么连结B与B所在的三角形的三个顶点,此时三角形总数增加2个(见左下图)。
如果B在某两个三角形的公共边上,那么连结B与B所在边相对的顶点,此时三角形总数也是增加2个(见右下图)。
类似地,每增加一个点增加2个三角形。
所以,共可剪出三角形4+2× 9= 22(个)。
如果将例2的“10个点”改为n个点,其它条件不变,那么由以上的分析可知,最多能剪出三角形
4+2×(n-1)=2n+2=2×(n+1)(个)。
同学们都知道圆柱体,如果将圆柱体的底面换成三角形,那么便得到了三棱柱(左下图);同理可以得到四棱柱(下中图),五棱柱(右下图)。
如果底面是正三角形、正四边形、正五边形……那么相应的柱体就是正三棱柱、正四棱柱、正五棱柱……
|
例3 n棱柱有多少条棱如果将不相交的两条棱称为一对,那么n棱柱共有多少对不相交的棱
分析与解:n棱柱的底面和顶面都是n边形,每个n边形有n个顶点,所以n棱柱共有2n个顶点。
观察三棱柱、四棱柱、五棱柱的图形,可以看出,每个顶点都与三条棱相连,而每条棱连接2个顶点,所以n棱柱共有棱2n×3÷2=3n(条)。
进一步观察可以发现,n棱柱中每条棱都与4条棱相交,与其余的3n-4-1 =(3n-5)条棱不相交。
共有3n条棱,所以不相交的棱有3n×(3n- 5)(条),因为不相交的棱是成对出现的,各计算一遍就重复了一遍,所以不相交的棱共有
3n×(3n-5)÷2(对)。
例4 用四条直线最多能将一个圆分成几块用100条直线呢
分析与解:4条直线时,我们可以试着画,100条直线就不可能再画了,所以必须寻找到规律。
如下图所示,一个圆是1块;1条直线将圆分为2块,即增加了1块;2条直线时,当2条直线不相交时,增加了1块,当2条直线相交时,增加了2块。
由此看出,要想分成的块尽量多,应当使后画的直线尽量与前面已画的直线相交。
再画第3条直线时,应当与前面2条直线都相交,这样又增加了3块(见左下图);画第4条直线时,应当与前面3条直线都相交,这样又增加了4块(见右下图)。
所以4条直线最多将一个圆分成1+1+2+3+4=11(块)。
由上面的分析可以看出,画第n条直线时应当与前面已画的(n—1)条直线都相交,此时将增加n块。
因为一开始的圆算1块,所以n条直线最多将圆分成
-
1+(1+2+3+…+n)
=1+n(n+1)÷2(块)。
当n=100时,可分成
1+100×(100+1)÷2=5051(块)。
例5 用3个三角形最多可以把平面分成几部分10个三角形呢
分析与解:平面本身是1部分。
一个三角形将平面分成三角形内、外2部分,即增加了1部分。
两个三角形不相交时将平面分成3部分,相交时,交点越多分成的部分越多(见下图)。
由上图看出,新增加的部分数与增加的交点数相同。
所以,再画第3个三角形时,应使每条边的交点尽量多。
对于每个三角形,因为1条直线最多与三角形的两条边相交,所以第3个三角形的每条边最多与前面2个三角形的各两条边相交,共可产生3×(2×2)= 12(个)交点,即增加12部分。
因此,3个三角形最多可以把平面分成
1+1+6+12= 20(部分)。
由上面的分析,当画第n(n≥2)个三角形时,每条边最多与前面已画的(n—1)个三角形的各两条边相交,共可产生交点
}
3×[(n—l)×2]=6(n—1)(个),能新增加6(n-1)部分。
因为1个三角形时有2部分,所以n个三角形最多将平面分成的部分数是
2+6×[1+2+…+(n—1)]
当n=10时,可分成2+3×10×(10—1)=272(部分)。
练习
1.求12边形的内角和。
2.五边形内有8个点。
以五边形的5个顶点和这8个点为三角形的顶点,最多能剪出多少个小三角形
3.已知n棱柱有14个顶点,那么,它有多少条棱
^
条直线最多有多少个交点
条直线与2个圆最多形成多少个交点
6.两个四边形最多把平面分成几部分
练习答案:
°。
个。
提示:与例2类似可得5+2×(8-1)=19(个)。
条棱。
提示:n棱柱有2n个顶点,3n条棱。
(n-1)÷2。
[
解:1+2+3+…+(n-1)=n(n-1)÷2。
个。
解:6条直线有交点6×(6-1)÷2=15(个),每条直线与两个圆各有2个交点,两个圆之间有2个交点,共有交点15+6×4+2=41(个)。
部分。
提示:见右图。
与例5类似,当画第n(n≥2)个四边形时,每条边应与已画的(n-1)
个四边形的各2条边相交,共可产生交点
4×[(n-1)×2]=8(n-1)(个),新增加8(n-1)部分。
因为1个四边形有2部分,所以n个四边形最多将平面分成2+8×[1+2+…+(n-1)]=2+4n(n-1)(部分)。