(完整)六年级上册分数四则混合运算+简便计算
分数混合运算和简便计算(人教六上)
“分数混合运算和简便计算”教学设计特级教师王世明教学内容《义务教育教科书数学》(人教版)六年级上册第8~9页例6、例7。
教材分析分数混合运算和简便计算这一内容起着承前启后的作用:(1)学生已有基础:四年级下册整数的四则混合运算和简便计算,五年级上册的小数四则混合运算和简便计算,五年级下册分数的加减法,六年级上册刚学的分数乘法;(2)启后的内容有分数除法、分数、整数、小数、百分数混合的四则混合运算及计算。
本节课知识结构是:先教学分数混合运算的顺序,再教学分数乘法的运算定律。
教材在学生已有的知识基础和方法储备上,通过类推迁移探究新知。
例6主题图呈现“做这个画框需要多长的木条?”这一情境,引出不同方法计算长方形的周长,沟通分数混合运算的顺序和整数混合运算的顺序相同,这样为运算定律的迁移起到了铺垫作用。
例7两道式题主要教学分数乘法交换律、结合律、分配律的运用,让学生体会整数乘法的各种运算定律对于分数乘法也适用。
教学目标1. 在解决问题的过程中,知道分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2.知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3. 在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及运算思维的灵活性。
教学重点、难点教学重点: 会计算分数混合运算,能利用乘法的运算定律进行简便运算。
教学难点:根据数据和运算符号特点,灵活地运用定律进行简便计算。
教学过程一、复习旧知,方法储备1. 说说下面算式的运算顺序。
75+25×4 24×(12+88)2.怎样简便就怎样计算125×7×8 23×17+83×23 34×99师:说说整数混合运算的顺序怎样的?[学情预设:没有括号,在同一级运算中,从左往右依次计算;没有括号,在只含有两级运算中,先算乘除法,再算加减法;含有括号的运算中,先算小括号里的,再算括号外的。
分数四则混合运算(讲义)-2024-2025学年六年级上册数学苏教版
第16讲 分数四则混合运算知识讲解知识点1:分数四则混合运算分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同(1)在一个算式里,如果只含有同一级运算,要接照从左往右的顺序进行计算。
(2)在一个算式里,如果含有两级运算,要先算乘除法,再算加减法(3)在一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
典型例题例1: 52+52×35+25(58- 58×35)÷512解析:(1)在一个算式里,如果含有两级运算,要先算乘除法,再算加减法 (2)在一个算式里,如果有括号,要先算小括号里面的,再算小括号外面的。
解答: 52+52×35+25(58- 58×35)÷512= 52+32+25=(58- 38)× 125= 4 25 = 14 × 125= 35变式题1:在有括号的四则混合运算中,应先算( )里面的,再算( )里面的,最后算( )。
算式(12+ 23× 34)÷16的第一步要先算()法,算式最后的结果是( )。
变式题2:13+ 23× 5416×23÷( 45- 815) (37- 13)÷ 121知识点2:整数运算律的推广整数的运算律或运算性质对于分数同样适用。
恰当地运用运算律或运算性质可以使计算简便。
加法交换律: 加法结合律: 乘法交换律: 乘法结合律: 乘法分配律: 减法的运算性质: 除法的运算性质:典型例题例2: 用简便方法计算(13 - 14 )×12 79÷115+29×511(59 + 125 )×9 + 1625 43× 4144解析:(1)此算式应用乘法分配律计算简便(2)先把分数除法变成乘法,再利用乘法分配律计算 (3)先利用乘法分配律计算,再用加法结合律 (4)把43写成(44-1),再利用乘法分配律解答:(13 - 14 )×12 79÷115+29×511= 13 ×12 - 14 ×12 = 79 × 511 +29×511= 4 - 3 = (79 +29)×511= 1 = 511(59+ 125)×9 + 162543× 4144= 59×9 + 125×9 + 1625= (44-1)× 4144= 5 + (925 + 1625 ) = 44× 4144 - 1×4144 = 5 + 1 = 41 - 4144 = 6 = 43344变式题1:用简便方法计算:819÷7 + 17× 619(37- 13)÷ 1211311- 47÷ 45- 27( 57+ 19)×7 + 29变式题2:用简便方法计算:24×(16+ 18) 49×511+ 79×511牛刀小试1、算一算。
(完整)六年级上册分数四则混合运算+简便计算
六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。
练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
《分数混合运算和简便运算》教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分数混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分数混合运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分数四则混合运算的基本概念。分数四则混合运算是指包含加、减、乘、除的分数计算问题。它在数学运算中非常重要,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设你有2/3升的果汁,想要和朋友们分享,每个人分到1/4升,那么你最多可以分给几个朋友?这个案例展示了分数混合运算在实际中的应用,以及它如何帮助我们解决问题。
(2)对于异分母分数的加减,可以设计如1/6 + 1/8 + 1/12的题目,指导学生如何找到最小公分母,并进行通分和约分。
(3)在解决实际问题时,如购物打折、分配物资等,教师应引导学生如何提取关键信息,构建分数运算模型,并选择合适的运算方法进行求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分数混合运算和简便运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个分数相加或相乘的情况?”比如购物时计算折扣,这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分数混合运算的奥秘。
5.熟练运用计算器进行分数混合运算。
本节课将结合具体实例,帮助学生巩固分数混合运算知识,提高运算速度和准确性,培养其解决问题的能力。
新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结
分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序 1、运算法则(1)加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
(2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母 (3)除法:除以一个数就等于乘这个数的倒数 2、运算顺序(1)如果是同一级运算,一般按从左往右依次进行计算 (2)如果既有加减、又有乘除法,先算乘除法、再算加减 (3)如果有括号,先算括号里面的(4)如果符合运算定律,可以利用运算定律进行简算。
模块一 分数四则混合运算例1 计算,能用简便方法的要用简便方法。
454544÷-÷784341187÷+⨯ 2011103231322-⨯-2412743⨯+)( 52424587⨯÷ 32753275⨯÷⨯5216514371⨯-÷ 9519154÷+⨯ 149)]321(2[⨯-+变式1 计算,能用简便方法的要用简便方法。
100992727⨯- 72767276+÷+ )4183(83+÷1352213518135-⨯+⨯ 361)9212721(÷-+ 41)]8341(1[÷+- 46944695⨯+⨯ 2120)768364(÷+⨯ 109185)2153(43⨯-+÷简便计算类型归纳:模块二 分数四则混合运算实际运用例2 英才小学六年级共有200人,其中六(1)班人数占全年级的41 ,六(2)班人数占全年级的4011,六(1)班和六(2)班一共有多少人?例3 小马虎在计算一个数减去53的差除以4时漏看了小括号,这样算出的结果比正确结果大109,这个数是多少?例4 一袋大米,吃了81后,又买来15千克倒入袋中,结果比原来重了21,这袋大米现在有多少千克?变式2 食堂有43吨大米,前2天每天吃掉81吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3 环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理59吨,第二组有10人,共清理513吨。
人教版六年级上册数学-分数的四则混合运算
这两道题该怎样算,先说说 运算顺序,再与同桌交流。
4 2211 3 99 84
1 11
4 9 11+3 9 22 8 4
12
13 44
=1
1
1
253 3
3 95 4
3
1
21 3 334
1 3 4
13 4
人 教版六 年级上 册数学- 分数的 四则混 合运算
下面的题又该怎样算,想好了与 同桌交流。(要用简便方法)
总结:
这节课你学 会了什么?
人 教版六 年级上 册数学- 分数的 四则混 合运算
人 教版六 年级上 册数学- 分数的 四则混 合运算
布置作业:
1、课本80页“练一练” 2、课本81页“练习十五”1—5题
人 教版六 年级上 册数学- 分数的 四则混 合运算
人 教版六 年级上 册数学- 分数的 四则混 合运算 人 教版六 年级上 册数学- 分数的 四则混 合运算
-(
9
9
+
8
)
= 1.8×(7+3) = 13
4
-
-
5
= 1.8×10
9
9
8
5
= 1-
= 18
3
8
=
8
例1
两种中国结各 做18个,一共用彩 绳多少米?
每个用 2 米彩绳 5
每个用 3 米彩绳 5
讨论:
这两种解法之间有什么联系, 你喜欢计算哪一个?为什么?
小结:
分数四则混合运
算的运算顺序与整数 四则混合运算的顺序 相同,也就是先算乘 除,后算加减,有括 号的要先算括号里面 的。整数的运算定律 在分数中同样适用。
=
7(吨) 10
青岛版六年级数学上册第六单元《分数四则混合运算》课时练含答案(共7份)
一般的分数四则混合运算一、直接写得数。
3÷76=65÷10=83÷109= 21-41=18×61=107÷1514= 二、怎样简便就怎样计算:51÷(1-31×21)109×【87÷(54+41)】(41-41×21)÷4165+89×95×98三、解决问题:1、一桶油20千克,用去54,还剩下多少千克?2、一桶油20千克,用去一些后还剩下52。
用去多少千克?参考答案: 一、直接写得数。
3÷76=7265÷10=11283÷109=51221-41=1418×61=2107÷1514=24二、怎样简便就怎样计算:51÷(1-31×21)109×【87÷(54+41)】 =15÷(1-16)=910×[78÷2120]=15÷56=910×56=625=34(41-41×21)÷4165+89×95×98 =(14-18)÷14=56+59=18÷14=2518=12三、解决问题:1、一桶油20千克,用去54,还剩下多少千克? 20×(1-45)=20×15=4(千克) 答:还剩下4千克。
2、一桶油20千克,用去一些后还剩下52。
用去多少千克?20×(1-2)5=20×35=12(千克)答:用去12千克。
整数运算律的推广一、怎样简便就怎样算: 84×(43-31)83+(73+141)×321211÷81+1213×8三、解决问题1、织一批布,第一天织了总数的51,第二天织了100米,还剩下总数的157。
小学六年级四则混合运算练习题及答案
小学六年级四则混合运算练习题及答案精品文档小学六年级四则混合运算练习题及答案一、用递等式进行计算9405-2940?28×21 20-1680?40?690+47×52-398148+3328?64-75360×24?32+730100-94+4851+×2215+?8136-720? 1080?×808528?41×38-904264+318-8280?69814-?151406+735×9?453168-7828796-5040?85+?364688,28?1 ×4932×2?80+200×5×27?2×5-617×26-000 ?38+50×?30 ?5112,12×972?45?72,72?123×9+9×33×9?3?5+45?5,10 50+50,250+5060+40?10,10 ?5,10400?80+20?553,0,90?15+6521,21×12+881156?17+5040?42610,714?21×138+2108?34,292×1 1305,?91?二、选择题103乘以38减去26的差,积是。
A(3898B(388C(12361 / 7精品文档98加上42除以14的商,和是。
A(4 B(101 C(10甲数是99,比乙数的3倍多15,乙数是。
A(B(31 C(38从369里减去15的4倍,差是多少,正确的算式是。
A(×B(369,15× C(369×4,1573?的算式用文字表达是。
A(73除以26加上3B(73除以26的商加上38C(73除以26加上38的和三、列式计算968减去864的差除以56,商是多少,8与52的和乘以它们的差,积是多少,113减去1856除以32的商,差是多少,分数四则混合运算一、准确计算:554518211316,3×,4××5?513211133231496? 12,4,10?5?93334一个数的10是4,这个数是多少, 减去4与5的积,所得的差除9,商是几,二、解决问题:1、计算下列物体的表面积。
六年级上册数学分数除法的混合运算及简便运算
(7 +11) 36
12 18 5
3
2 运用了什么运算定律?
7 36+11 36
12 5 18 5
1
1
21+22
55
43 5
48 13+22 13 35 19 35 19 4819+2219 35 13 35 13 (48+22) 19 35 35 13
运用了什么运算定律?
7019 35 13
1
1 2
1 3
5 8
4 1 7 3 5 4 3 10
(0.25- 1)40 8
( - 1)40 8
140 8
5
2 0.375 6
9
7
11
2 6
9
7
34
1 6 12 7
1 7 12 6
7 72
(0.75- 3 )(2 1) 16 9 3
( - 3 )(2 1) 16 9 3
4 7 1 7 12 6
3 7 9 4 12 14
拓展练习
18 9 9 20
(18 9 ) 1 20 9
18 1 9 1 9 20 9
2 1 20
2 1 20
拓展练习
231231 ÷231 232
(231 231) 1 232 231
231 1 231 1 231 231 231
219 13
38 13
7 (7 3) 8 84
7 (7 3) 8 84
计算下面各题,怎样简便就怎样算。
7 3+ 7 4 24 4 24
8 23+ 1 9
17
23 17
11 11 33 33
131 93
1 9
拓展练习
18 7+6 1+16 1 6 776
(完整版)六年级上册分数四则混合运算+简便计算
六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。
练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
小学六年级数学四则混合运算题库
小学六年级数学四则混合运算题库一、准确计算:65+35×54 85-41×(98÷32) (21-61)×53÷5161÷【179×(43+32)】 1211-41+103÷53 32÷【(43-21)×54】一个数的109是43,这个数是多少? 43减去43与54的积,所得的差除9,商是几?二、解决问题:1、计算下列物体的表面积。
21米 52米 25米 54米 52米 52米2、从A 地去B 地,货车需要90分钟,客车需要80分钟。
货车每分钟行35千米,客车每分钟行多少千米?分数四则混合运算(二)一、简便计算:52+154-52 76×85+83÷67 (117-83)×88 13—48×(121+161)54÷3+32×54 52+21×53+107 1312×73+74×1312+1312二、解决问题:1、一个三角形的面积83平方米,底边长52米。
高多少米?(用方程解)2、一桶油重15千克,倒出52,平均装到8个瓶子里,每个瓶子装多少千克?3、一根绳子,剪去41后,短了5米。
这根绳子长多少米?4、一筐香蕉连筐重42千克,卖出31后,剩下的连筐重29千克。
筐重多少千克?5、甲32小时生产60个零件,乙每小时生产60个零件。
两人合做多少小时生产100个零件?6、甲车每小时行80千米,乙车每小时行70千米,两车同时从两地相对开出,行40分钟相遇。
两地相距多少千米?7、分数四则混合运算(三)一、怎样简便就怎样算:(87-165)×(95+32) 138÷7+71×136【1-(41+83)】÷4197÷511+92×115(61+43-32)×12 2-136÷269-32 99×1009954减32的差乘一个数得72,求这个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级分数的四则运算+简便计算
专题复习
一、分数四则运算的运算法则和运算顺序
运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:
异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母
3、除法:除以一个数就等于乘这个数的倒数
运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的
4、如果符合运算定律,可以利用运算定律进行简算。
练习:
1、34 -(15 + 13 )× 98
2、 107
13151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-
3、⎪⎭⎫
⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦
⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、
52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷40
1
二、分数四则运算的简便运算
引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:
① 乘法交换律:________________________
② 乘法结合律:________________________ ③ 乘法分配律:________________________
做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型
第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)26
6
831413⨯
⨯
涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅
基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2
1
43(⨯+
涉及定律:乘法分配律 bc ac c b a ±=⨯±)(
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
第三种:乘法分配律的逆运算 例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)75
1754⨯+⨯
涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
7
第四种:添加因数“1”
例题:1)759575
⨯- 2)9216792⨯- 3)232331
17
233114+⨯+⨯
涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。
第五种:数字化加式或减式 例题:1)16317⨯ 2)19718⨯ 3)3169
67
⨯
涉及定律:乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。
例如:999可化为1000-1。
其结果与原数字保持一致。
第六种:带分数化加式 例题:1)4161725⨯ 2)351213⨯ 3)13
5127⨯
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。
第七种:乘法交换律与乘法分配律相结合 例题:1)247174249175⨯+⨯ 2)1981361961311⨯+⨯ 3)138
1137138137139⨯+⨯
涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。
不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。
课堂练习
1、59 × 34 +59 × 14
2、17× 916
3、( 34 +58 )×32
4、 54 × 18 ×16
5、15 + 29 × 310
6、44-72×5
12 7、52×214×10 8、6.8×51+5
1×3.2 9、)325(61-⨯ 10、46×4544 11、 (32+43-21)×12 12、
125×4
1
×24
13、42×(65-74) 14、69765⨯⨯ 15、(32+21)×76 16、53×914-94×5
3
17、2008×20062007 18、 23 +( 47 + 12 )×7
25 19、 149×14×9
2
20、47 ×1522 ×712 21、12×( 1112 - 348 ) 22、 910 ×1317 +910 × 4
17
23、36×937 24、 1113 -1113 ×1333 25、( 94 - 32 )× 83
26、( 38 -0.125)×4
13 27、 43×52+43×0.6 28、 257×101-25
7 29、508310019⨯⨯ 30、9
5739574⨯+⨯
31、解方程:
815 X +512 X = 57 X ÷35 = 512 ×815 3X +1335 = 57 34 x÷1
6 =18
家庭作业
1、直接写出得数:
2、下面各题怎样简便怎样算:
47 ÷32 +4
7 ÷3 (1-21-41)÷81 12÷(1+31-65)
524 ×12 = 6×524 = 49 ×2710 = 23 +34 = 225 ×5
6 =
72÷89 = 617 -1351 = 56 ÷12= 1320 ÷91100 = 78 ÷4
7 = 14 ×15 ×10= 83÷169 = 130 ÷15 ÷15 = =2156 47 ×1522 ×712 12×( 1112 - 348 ) 910 ×1317 +910 ×417 1113 -1113 ×1333 36×937 926 ÷ 813 ×827 1639 ÷914 +1639 ×49 ( 94 - 32 )× 83 ( 38 -0.125)×413。