2016张宇八套卷数三
【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(K12教育文档)
【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)(word版可编辑修改)的全部内容。
2016年普通高等学校招生全国统一考试理科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S={}{}|(2)(3)0,|0S x x x T x x=--≥=>,则S T=( )(A) [2,3] (B)(—∞,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若12z i=+,则41izz=-( )(A)1 (B) —1 (C) i (D)-i(3)已知向量13(,)22BA= ,31(,),22BC=则∠ABC=( )(A)300 (B) 450(C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。
2016年高考全国3卷文数试题解析
2a, 3
∴ sin C 2 sin A sin( 3 A) 2 sin A , 2 cos A 2 sin A 2 sin A ,
3
4
3
2
2
3
∴ tan A 3 sin A 3 10 ,故选 D. 10
(10)如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多
(A)各月的平均最低气温都在 0℃以上 (B)七月的平均温差比一月的平均温差大
(C)三月和十一月的平均最高气温基本相同
(D)平均最高气温高于 20℃的月份有 5 个
【答案】D
【解析】
试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中
各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气
元素为 0,2,6,10 ,故 C A B {0,2,6,10},故应选答案 C 。
(2)若 z 4 3i ,则 z = |z|
(A)1
(B) 1
4+3i (C) 5 5
4 3i (D) 5 5
【答案】D
【解析】
试题分析:因 z 4 3i ,则其共轭复数为 z 4 3i ,其模为| z || 4 3i | 42 32 5 ,
8 (A) 15
1 (B) 8
1 (C) 15
1 (D) 30
【答案】C
【解析】
试题分析:前 2 位共有 3 5 15 种可能,其中只有 1 种是正确的密码,因此所求概率为 P 1 .故选 C.
15
1 (6)若 tanθ= 3 ,则 cos2θ=
4 (A) 5
1 (B) 5
2016考研数学三必备八大系列复习资料
2016考研数学三必备八大系列复习资料2015考研初试结束了,逛考研论坛那么久,下载了那么多资料,颇为受益,想在此盘点一下自己所用过的数三复习资料,谈谈自己的使用感受,适当地给出建议,算作是对考研论坛的一种回馈吧。
观点仅代表自己,不涉及营销。
若有不同意见,请随意喷,反正不在乎。
此贴洋洋洒洒万把字,是我对2013和2015两次考研所用书籍的回顾和思考,希望这些使用感受对各位的备考能有些许帮助。
在回顾所用辅导资料的过程中,我竭力突出一个核心思想----“真题为王”。
如果你愿意认真阅读此贴,相信你一定会感受到这一点。
现在的考研资料市场上,没有哪一本书是不可替代的。
因此,不必迷信任何一本书,博览群书集百家之长,才是一个准研究生该有的态度。
今年为了考研,我还特地报了一个网校辅导班,是文都网校,。
但是如果已经购买了一本资料,就踏踏实实去看,吃透了再看下本,现在考研资料极为丰富,质量都是有保证的,完全可以放心。
如果朝三暮四,吃着碗里看着锅里,一定会吃苦头。
本人考数三,两次备考总共使用过的数三参考资料大致可以分为下面8大类,基本包含了如今主流的参考资料:1、真题系列2、教育部考试中心官方资料3、教材系列:4、复习全书系列5、《XXX题》系列6、单科系列7、考研论坛各类笔记8、各类冲刺模拟卷内容有点长,研友可惜挑自己感兴趣的部分看看,最后根据自己实际情况选择辅导用书。
本人在此绝对不会做出“《XX》加上《XX》再加上《XX》就能考XX分”的结论,如何搭配使用还请自己判断。
一、真题系列代表作:《数学考试分析》;《李永乐历年真题解析》;《武忠祥历年真题分类解析》;《张宇真题大全解》。
对于学习数学这门学科,真题也许不是最好的资料,但是对于考试来说,真题一定是最为重要的资料,这一点再怎么强调也不为过。
各卷种历年真题就是武林中的九阴真经,不管是《复习全书》、《辅导讲义》还是各大模拟卷,又或者是你所能见到的各大培训机构视频班/面授班(张宇汤加凤王式安陈文灯..........),其中的习题变化皆出于真题,甚至直接“借鉴”(抄袭)真题,就连同济大学的教材之中你也可以看到90年代的考研真题(无从考证谁先谁后)。
2016考研数学三真题及答案解析
故 T2 T3 T1 ,应选(C).
(4)级数为 n1
1 n
1 n
1
sin(n
k
)
(
k
为常数)(
)
(A)绝对收敛 (B)条件收敛 (C)发散
(D)收敛性 k 有关
解析: 1 1 sin(n k) 1 1 ,
n n1
n n1
而 Sn
1 1
1 2
1 2
1 3
1 n
边际收益函数为 R ' p 20P 1200
当 P=100 时,边际收益为-800 万元 经济意义为:当价格为 100 万元时,收益亏损 800 万元.
(17)(本题满分 10 分)
设函数 f (x)
1| t2
0
x2
|
dt ( x
0),
求
f
(x) ,并求
f
(x)
的最小值.
解析:
当 0 x 1时, f (x) x (t2 x2 )dt 1(x2 t2 )dt 4x3 x2 1 ,
极值的怀疑点为: a,b,c, d
①
当x 当x
a时, a时,
f f
(x) (x)
0
0
a
为极大值点
当x b时, f (x) 0 ②当x b时, f (x) 0 a 不是极值点
③
当x 当x
c时, c时,
f f
(x) (x)
0 0
c
为极小值点
④当 x d 和 x d 时, f (x) 0 故 x d 不是极值点 ∴有 2 个极值点 排除 C,D.
lim
ex0
4 x3
e1 2
lim
数学三2016年真题及答案
2 2 2
为 1, 2 ,则(
)
(A) a 1 (B) a 2 (C) 2 a 1 (D) a 1 或 a 2 【答案】(C) 【解析】考虑特殊值法,当 a 0 时, f ( x1 , x2 , x3 ) 2 x1 x2 2 x2 x3 2 x1 x3 ,
n sin n
i 1
i
i
0
x sin xdx sin 1 cos 1
(11)设函数 f ( u, v ) 可微, z z ( x, y ) 有方程 ( x 1) z y 2 x 2 f ( x z , y ) 确定,则
dz
0 ,1
____ .
【答案】 dz 0,1 dx 2dy 【解析】 ( x 1) x y 2 x 2 f ( x z , y ) 两边分别关于 x , y 求导得
x 0 1 1
【解析】 lim cos 2 x 2 x sin x x 4
x 0
lim e
x 0
cos 2 x 2 x sin x 1 x4
1
lim e
x 0
x3 4 x 2 24 x 4 2 x x 1o( x 4 ) 3! 2 4! x4
x
x 0
2
t 2 dt t 2 x 2 dt
x
1
x
1 0
2
t 2 dt x 2 x 1 1 x 0 0 x 1 x 1
1 3
4 3 1 x x2 3 3
2 1 x 3 4 x 3 x 2 1 3 3 则 f x 4 x3 x 2 1 3 3 1 x2 3 2 x 2 4 x 2 x f ' x 2 4 x 2 x 2 x
2016年考研数三真题
2016年考研数三真题2016年考研数学三真题是考研数学考试中的一道经典题目,它涉及到了数学的多个领域,如线性代数、概率论和数理统计等。
这道题目的难度较大,需要考生具备扎实的数学基础和逻辑思维能力。
下面将对这道题目进行分析和解答。
首先,我们来看一下这道题目的具体内容。
题目中给出了一个4阶实对称矩阵A,且满足A^2 = 4A - 3E,其中E为单位矩阵。
考生需要证明A的特征值只能是-1, 1, 3或4。
为了解决这道题目,我们需要运用一些线性代数的知识。
首先,我们知道实对称矩阵一定可以对角化,即存在一个正交矩阵P,使得P^TAP = D,其中D是对角矩阵。
所以我们可以假设A可以对角化为D,即A = PDP^T。
接下来,我们将A^2 = 4A - 3E代入上式,得到PDP^T PDP^T = 4PDP^T - 3E。
由于P是正交矩阵,所以P^TP = E,代入上式得到DP^TDP = 4DP^T - 3E。
进一步整理得到DP^TD - 4DP^T + 3E = 0。
根据上式,我们可以得到D的特征值满足一个关于λ(特征值)的方程:λP^TP - 4P^T + 3E = 0。
由于P是正交矩阵,所以P^TP = E,代入上式得到λE - 4P^T + 3E = 0。
进一步整理得到(λ + 3)E - 4P^T = 0。
由于E是非零矩阵,所以(λ + 3)E - 4P^T = 0只有零解,即(λ + 3) = 0,即λ =-3。
所以A的特征值中至少包含-3。
接下来,我们需要证明A的特征值只能是-1, 1, 3或4。
为了证明这一点,我们需要考虑A的特征多项式。
由于A是4阶矩阵,所以它的特征多项式可以表示为:f(λ) = (λ - λ1)(λ - λ2)(λ - λ3)(λ - λ4)。
根据前面的分析,我们已经知道A的特征值中至少包含-3。
假设A的特征值还有其他值,即存在一个特征值λi,其中λi不等于-3。
根据特征多项式的性质,f(-3) = (-3 - λ1)(-3 - λ2)(-3 - λ3)(-3 - λ4) = 0。
数3--16真题答案
2016年考研数学(三)试题答案速查一、选择题(1)B (2)D (3)B (4)A (5)C (6)C (7)A (8)C 二、填空题(9)6 (10)sin1cos1− (11)d 2d x y −+ (12)12(1)3e − (13)432234λλλλ++++ (14)29三、解答题 (15)13e .(16)(Ⅰ)120010Q p =−.(Ⅱ)边际收益为80(万元),其经济学意义是需求量每提高一件,收益增加80万元.(17)242,01,()2, 1.x x x f x x x ⎧−<'=⎨>⎩11()24f =为()f x 的最小值.(18)()e e 2x xf x −+=−.(19)收敛域为[]1,1−,(1)ln(1)(1)ln(1),(1,1),()2ln 2, 1.x x x x x S x x +++−−∈−⎧=⎨ =±⎩(20)(Ⅰ)0a =.(Ⅱ)011210k ⎛⎫⎛⎫ ⎪ ⎪=−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x ,其中k 为任意实数.(21)(Ⅰ)9999989910010099221222221222000⎛⎫−+−−⎪=−+−− ⎪ ⎪⎝⎭A . (Ⅱ)99100112(22)(22)=−+−βαα,99100212(12)(12)=−+−βαα,9899312(22)(22)=−+−βαα.(22)(Ⅰ)3,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.(Ⅱ)U 与X 不独立.(Ⅲ)233220,0,3,01,2()132(1)(1),12,221, 2.Z z z z z F z z z z z <⎧⎪⎪−<⎪=⎨⎪+−−−<⎪⎪⎩(23)(Ⅰ)899,0,()0,.T t t f t θθ⎧<<⎪=⎨⎪⎩其他(Ⅱ)109a =. 2016年全国硕士研究生入学统一考试数学(三)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】B .【解析】根据极值的必要条件可知,极值点可能是驻点或导数不存在的点.根据极值的充分 条件知,在某点左右导函数符号发生改变,则该点是极值点,因此从图形可知函数()f x 有 2 个极值点.根据拐点的必要条件可知,拐点可能是二阶导数为0 的点或二阶导数不存在的点,根据拐点的充分条件可知,曲线在某点左右导函数的单调性发生改变,则该点是曲线的拐点,因此曲线()y f x =有3个拐点,故选 B . (2)【答案】D . 【解答】()2e (1)x x x y f x y −−'=−,()2e xy f x y '=−,所以x y f f f ''+=.(3)【答案】B . 【解答】由题目可知,三个积分被积函数相同,积分区域不同.又由被积函数不易直接计算,所以采用做差的方法进行比较.先比较1T 和2T ,在1T 较2T 多出的积分区域上,被积函数小于零,所以1T 小于2T .同理,可知1T 大于3T ,故选B . (4)【答案】A .【解答】由题目可得,11sin())n n n n k n k ∞∞∞===+=+=∑()1111n nn n n n+++,由正项级数的比较判别法得,该级数绝对收敛. (5)【答案】C .【解答】由A 与B 相似可知,存在可逆矩阵P 使得1−=P AP B ,则 由1T T ()−=P AP B ,即T T T 1T ()−=P A P B ,得T A 相似于T B .由111()−−−=P AP B ,即111−−−=P A P B ,得1−A 相似于1−B .由111111()−−−−−−+=+=+P A A P P AP P A P B B ,得1−+A A 相似于1−+B B . 可知选项A,B,D 正确.故选项为C . (6)【答案】C . 【解答】不妨设二次型矩阵为A ,则111111aa aλλλλ−−−−=−−−−−−E A 111111(2)11(2)01011001a a a a a a λλλλλλ−−−−=−−−−=−−−+−−−+()2(2)1a a λλ=−−−+.所以,特征值分别为:2a +和1a −(二重),已知正负惯性指数分别为1和2,故20a +>,10a −<,由此可得答案为C . (7)【答案】A . 【解答】根据条件得()()P AB P B =,()()1()()11()1()()P AB P A B P A B P B A P A P A P A −====−−. (8)【答案】C . 【解答】因为,X Y 独立,则22222()()()()D XY E XY EXY EX EY EXEY =−=− ()()()()()22214DX EX DY EY EXEY =++−=.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】6.【解答】因为0001()sin 2()2lim lim 233x x x f x x xf x x x→→→===, 所以0lim ()6x f x →=.(10)【答案】sin1cos1−. 【解答】2112lim(sin 2sin sin )n nn n n n n→∞+++1011lim sin sin sin1cos1n n i i ix xdx n nn →∞====−∑⎰. (11)【答案】(0,1)d d 2d z x y =−+.【解答】方程22(1)(,)x z y x f x z y +−=−两边分别关于,x y 求导得21(1)2(,)(,)(1)x x z x z xf x z y x f x z y z '''++=−+−−, 212(1)2(,)()(,)y y x z y x f x z y z f x z y ⎡⎤''''+−=−−+−⎣⎦, 将0,1,1x y z ===代入得,(0,1)d d 2d z x y =−+. (12)【答案】12(1)3e−. 【解答】222112220012e d d 2e d d 2d e d (1)3e y y y y D D x x y x x y y x x −−−===−⎰⎰⎰⎰⎰⎰. (13)【答案】432234λλλλ++++. 【解答】4143210010100010=01+4110++2+3+400132+101432+1λλλλλλλλλλλλλλ+−−−−−⨯−=−−(-). (14)【答案】29. 【解答】由题目可知,每个球被取到的概率均为13.要使第4次取球时,三种颜色的球恰被取到,则需要前三次取了2种颜色的球,第四次才取到第三种颜色的球,并且每次取球是独立的,所以,221331112()23339P A C C ⎛⎫=⨯⋅= ⎪⎝⎭. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分) 解:利用泰勒展开计算()444ln(cos22sin )cos22sin 11limlimlim cos 22sin e e x x x x x x x x xx x x x x x →→++−→+==2434444440(2)(2)2112()()1()12!4!3!33limlim 3e ee x x x x x x x o x x x o x x x →→−++−+−−+===.(16)(本题满分10分)(Ⅰ)由弹性的计算公式d d p Q Q p η=可知d d 120p Q pQ p p−=−. 由此可得d d 120Q pQ p =−两边同时积分可得ln ln(120)Q p C =−+, 解方程可得(120)Q C p =−.由条件该商品的最大需求量为1200可知,(0)1200Q =,解得10C =−. 故10(120)120010Q p p =−−=−.(Ⅱ)由收益函数(120010)R Qp p p ==−.可知边际收益函数:d d d 1(120020)()2120d d d 10R R p p p Q p Q ==−−=−. 解得100p =万元时边际收益为,100d 80d p RQ==,其经济学意义是该商品的需求量每提高1件,收益增加80万元.(17)(本题满分10分) 解:当01x <时,1222232041()()d ()d 33xxf x x t t t x t x x −+−=−+⎰⎰, 当1x >时,2221()()d 3xf x x t t x =−=−⎰,则 ()32241,01,331, 1.3x x x f x x x ⎧−+<⎪⎪=⎨⎪−>⎪⎩所以 ()242,01,2,1,2, 1.x x x f x x x x ⎧−<<⎪'==⎨⎪>⎩令()0f x '=,可得12x =为驻点,且为极小值点,11()24f =,所以最小值为14.(18)(本题满分10分) 解:令u x t =−,则()()()()00d d d xxxf x t t f u u f u u −=−=⎰⎰⎰.代入方程可得,()d ()d ()d e 1xx xx f u u x f t t tf t t −=−+−⎰⎰⎰,两边同时求导可得,0()()d e xx f x f t t −=−⎰,①由于()f x 连续,可知()d xf t t ⎰可导,从而()f x 也可导.故对①式两边再求导可得,()()e xf x f x −'=+. ②在①式两边令0x =可得,(0)1f =−.解一阶线性微分方程②,得e e ()2x xf x −+=−.(19)(本题满分10分)解:212422(2)()lim li (23)(1)(21)m ()n n n n n nx n n x n n u x x u x +→+∞→∞+++++==,故当21x <,()()220121n n x n n +∞=++∑绝对收敛; 当21x =时,01()(1)(21)n n n u x n n ∞∞===++∑∑,收敛.故收敛域为[]1,1−.令()()22()121n n x S x n n +∞==++∑,[]1,1x ∈−,所以,()210()221n n x S x n +∞='=+∑,2202()21nn S x x x ∞=''==−∑.积分可得,202()d (0)1xS x t S t ''=+−⎰, 由(0)0S '=,得1()lnln(1)ln(1)1xS x x x x+'==+−−−, 再积分可得 01()(0)ln d (1)ln(1)(1)ln(1)1x tS x S t x x x x t+=+=+++−−−⎰.易知,()()220()121n n x S x n n +∞==++∑的收敛半径为1,且当1,1x x ==−时,11(1)lim ()2ln 2,(1)lim ()2ln 2x x S S x S S x −+→→−==−==. 所以级数收敛且收敛域为[1,1]−. 因此,()(1)ln(1)(1)ln(1)S x x x x x =+++−−,(1,1)x ∈−.综上,(1)ln(1)(1)ln(1),(1,1),()2ln 2, 1.x x x x x S x x +++−−∈−⎧=⎨=±⎩(20)(本题满分11分) (Ⅰ)解:利用初等变换211101111(,)10101121111220022a a a aa a a a a a −−⎛⎫⎛⎫⎪⎪=→−− ⎪ ⎪ ⎪ ⎪++−−−⎝⎭⎝⎭A β, 由方程组=Ax β无解,可知()(,)r r ≠A A β,所以,220,20a a a −=−≠,解得,0a =.(Ⅱ)当0a =时,TT 3221222,22222−⎛⎫⎛⎫⎪ ⎪==− ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭A A A β.由T T32211001(,)2222011222220000−⎛⎫⎛⎫⎪ ⎪=−→− ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭A A A β,得T =A Ax 0的基础解系为01,1⎛⎫ ⎪=− ⎪ ⎪⎝⎭ηT T=A Ax A β的一个特解为120⎛⎫⎪− ⎪ ⎪⎝⎭,因此,方程组T T=A Ax A β的通解为011210k ⎛⎫⎛⎫⎪ ⎪=−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x ,其中k 为任意实数.(21)(本题满分11分)解:(Ⅰ)由(1)(2)0−=++=λλλλE A ,得A 的特征值为1230,1,2,λλλ==−=−故A 相似于012⎛⎫⎪=− ⎪ ⎪−⎝⎭Λ. 当10λ=时,由(0)−=E A x 0,解得A 的属于特征值10λ=的特征向量为132;2⎛⎫⎪= ⎪ ⎪⎝⎭γ当21λ=−时,由()−−=E A x 0,解得A 的属于特征值21λ=−的特征向量为211;0⎛⎫ ⎪= ⎪ ⎪⎝⎭γ当32λ=−时,由(2)−−=E A x 0,解得A 的属于特征值32λ=−的特征向量为312.0⎛⎫ ⎪= ⎪ ⎪⎝⎭γ设123311(,,)212200⎛⎫ ⎪== ⎪ ⎪⎝⎭P γγγ,由1012−⎛⎫ ⎪==− ⎪ ⎪−⎝⎭P AP Λ, 可得1−=A P ΛP ,99991−=AP ΛP ,对于311212200⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,利用初等变换,可求出110022121112−⎛⎫ ⎪ ⎪=−− ⎪ ⎪− ⎪⎝⎭P ,故999919910031102212121220021112−⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪⎪==−−− ⎪ ⎪⎪ ⎪⎪ ⎪−⎝⎭⎝⎭− ⎪⎝⎭A P ΛP99999810010099221222221222000⎛⎫−+−−⎪=−+−− ⎪ ⎪⎝⎭. (Ⅱ)23210099=⇒==⇒⇒=B BA B BBA BA B BA ,由于123(,,)=B ααα,100123(,,)=Bβββ,故,9999989910010099123123123221222(,,)(,,)(,,)221222000⎛⎫−+−−⎪==−+−− ⎪ ⎪⎝⎭βββαααA ααα,因此, 99100112(22)(22)=−++−+βαα,99100212(12)(12)=−+−βαα,9899312(22)(22)=−+−βαα.(22)(本题满分11分) 解:(Ⅰ)区域D的面积121())d 3s D x x ==⎰,因为(,)f x y 服从区域D 上的均匀分布,所以23,(,)0,x y f x y ⎧<<⎪⎨⎪⎩其他..(Ⅱ)因为212011111,==0,=,d 3d 22224x x P U XP U X P X Y X x y ⎧⎫⎧⎫⎧⎫>==⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎰⎰. 11()(0)()22P U P U P X Y ===>=,212011d 228x P X x y ⎧⎫≤==−⎨⎬⎩⎭⎰.因为,1111,2222P UX P U P X ⎧⎫⎧⎫⎧⎫≠⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,故U 与X 不独立. (Ⅲ)()()F z P Z z ={0}{0}{1}{1}P U X z U P U P U X z U P U =+==++=={,0}{,1}{0}{1}{0}{1}P U X z U P U X z U P U P U P U P U +=+===+==={,}{1,}P X z X Y P X z X Y =>++,又①当0z <时,()()()0Z F z P P =∅+∅=;②当01z <时,()2233(),()d 3d 2zxZ xF z P X z X Y P x y z z =>+∅==−⎰⎰; ③当12z <时,()()31220113(),1,d 2(1)(1)222z Z x F z P X Y P X z X Y x y z z −=Ω>++=+=+−−−⎰④当2z 时,()1Z F z =.所以,233220,0,3,01,2()132(1)(1),12,221, 2.z z z z F z z z z z <⎧⎪⎪−<⎪=⎨⎪+−−−<⎪⎪⎩(23) (本题满分11分)解:(Ⅰ)根据题意,123,,X X X 独立同分布,T 的分布函数为123(){max{,,}}T F t P X X X t =()31231231{,,}{}{}{}{}P X t X t X t P X t P X t P X t P X t ===.当0t <时,()0T F t =;当0t θ<<时, 3293903()d t T x t F t x θθ⎛⎫== ⎪⎝⎭⎰;当tθ时,()1T F t =.所以899,0,()0,.T t t f t θθ⎧<<⎪=⎨⎪⎩其他(Ⅱ)8999()d 10t E aT aET a tt a θθθ===⎰, 根据题意,9()10E aT a θθ==,即109a =.。
2016年全国高考理科数学试题及答案-全国卷3(K12教育文档)
(直打版)2016年全国高考理科数学试题及答案-全国卷3(word版可编辑修改)(直打版)2016年全国高考理科数学试题及答案-全国卷3(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2016年全国高考理科数学试题及答案-全国卷3(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2016年全国高考理科数学试题及答案-全国卷3(word版可编辑修改)的全部内容。
(直打版)2016年全国高考理科数学试题及答案-全国卷3(word版可编辑修改)绝密★启封并使用完毕前2016 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷 1 至3 页,第Ⅱ卷 3 至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则 S I T=(A) [2 ,3](B)(—,2] U [3,+ )(C) [3,+ )(D) (0,2]U [3,+ )4i(2)若 z=1+2i ,则zz 1(A)1 (B) -1 (C) i(D)—i(3)已知向量u uvBA1 2( ,)2 2,u u u vBC3 1( ,),2 2则ABC=(A )300 (B)450 (C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低0C,B 点表示四月的平均最低气气温的雷达图。
2016年全国卷3理科数学试题及参考答案WORD版
学习资料收集于网络,仅供参考启封并使用完毕前绝密★试题类型:新课标Ⅲ年普通高等学校招生全国统一考试2016 理科数学页。
考试结束后,将本试卷4题,共150分,共II和第卷(非选择题)两部分,共24本试卷分第I卷(选择题) 和答题卡一并交回。
注意事项:答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
1.毫米黑字迹的签字笔书写,字体工整,笔迹清0.5选择题必须使用2B铅笔填涂;非选择题必须使用2. 楚。
请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答3. 题无效。
作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
4. 5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I卷. 小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一.选择题:本大题共12????I0x|x??2)(x?3)0?,T?S?|x(x=T ,则S(1)设集合?????????????3,0,??2,32??,23,???3, C. D. B. A.D【答案】??????????0,2?3,???S2??,?ST3,D,【解析】易得,选【考点】解一元二次不等式、交集i4 (2),则若i2z?1??1zz? D. C. A. 1 B. ii?1?C【答案】4i,选C,,故【解析】易知i?z1?241??zzi??1?zz 【考点】共轭复数、复数运算学习资料.学习资料收集于网络,仅供参考??3113,BA? ),则(3),已知向量=(,BCABC?????2222?? A D.120°B. 45° C. 60° A. 30°y A【答案】C3x3BCBA?B2????ABCcos【解析】法一:,30???ABC2?11BCBA?点为坐标原点建立如图所示直角坐标系,易知法二:可以B30ABC?CBx?30,??60?ABx?,?【考点】向量夹角的坐标运算图.(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.点表示四月的平均最低气温约为下面叙述不正确的是A点表示十月的平均最高气温约为,B中C515C以上A. 各月的平均最低气温都在C0七月的平均温差比一月的平均温差大B.三月和十一月的平均最高气温基本相同C.个平均最高气温高于的月份有5D. C20D【答案】的月份有七月、八【解析】从图像中可以看出平均最高气温高于C20左右,故最多3个月,六月为C20【考点】统计图的识别32????tan ,则(5)若??2sin2cos4164864 A.D. B. C. 1252525A【答案】2????64cos4tan1cos??4sin2??【解析】??cos?2sin2?25222???tan?1?cossin【考点】二倍角公式、弦切互化、同角三角函数公式学习资料.学习资料收集于网络,仅供参考124(6),则已知25??3,cba?2,333 D. B. C. A.b?c?b?cb?a?c?aa?b?ca A【答案】21422,故【解析】525?3,c?a?2?4,b?ba?c?33333【考点】指数运算、幂函数性质=n(7)执行右面的程序框图,如果输入的a=4,b=6,那么输出的D. 6 A. 3 B. 4 C. 5B 【答案】【解析】列表如下a4 2 6 -2 4 2 6 -2 4b 6 6 6 4 4s20 0 10 16 6n4231【考点】程序框图Aπ1BC?B ,,边上的高等于(8)在中,则?BCAcosABC△341031010310 B. C. A. D. ??10101010CB【答案】CD【解析】如图所示,可设,则,,2?AB2DC?1AD?BD?2?5?910,由余弦定理知,??Acos?5?AC? 1052?2【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B. C. 90 D. 81 5?18545?1836【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为学习资料.学习资料收集于网络,仅供参考5?18?9?36?5433??2?3?6?2?32?【考点】三视图、多面体的表面积-的最=3,则V,BC=8,AA 内有一个体积为CV的球.若AB⊥BC,AB(10)在封闭的直三棱柱ABC=6AB1111大值是π32π9 A. D. B.C. π4π6 32 10B【答案】6【解析】由题意知,当球为直三棱柱的内接球时,体积最如图所示,选取过球心且平行于直三棱柱底面的截面,大,8则由切线长定理可知,内接圆的半径为2,?9433??R,所以内接球的半径为又的最大值为,即V23AA??2?1232【考点】内接球半径的求法22yx.B分别为C的左,右顶点为坐标原点,F是椭圆C:的左焦点,A,已知(11)O0)a??b??1(22ba 的BM经过OEM,与y轴交于点E. 若直线上一点,且为CPF⊥x轴.过点A的直线l与线段PF 交于点P 中点,则C的离心率为y2131 C.D. A.B.3342P E A【答案】MN c?aMFMFAFaONOB B???,??【解析】易得aOE2ONAOMFBFa?c x OAF c?ca?1aa????caa?2a?c1c???e3a【考点】椭圆的性质、相似,a,…a项为1,且对任意k≤2m,,mm共有{a规范(12)定义“01数列”{}如下:a}2m项,其中项为0,21nn”共有()01=4的个数不少于a中01的个数,若m,则不同的“规范数列k 12个.14C个.18A.个B16 .个D C 【答案】【解析】学习资料.学习资料收集于网络,仅供参考??0?1111????0?111????0????10?11?????1???1?01???????0?0?111???????00?11?????1?????011?1???? ?0??0?11????1?0????1?01??????0?111????00?11????1????1?010?1??????0?11???0?1??1?01????【考点】数列、树状图第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分x?y?1?0??x?2y?0,则x,y满足约束条件的最大值为________.(13)设y?x?z??x?2y?2?0?3【答案】231???????3,,1,故最小值为,代入目标函数可得【解析】三条直线的交点分别为1?,1,,0,2,?110???22??【考点】线性规划3cosxy?sinx?sinx??3cosxy的图像至少向右平移______个单位长度得到(14)的图像可由函数函数. ?2【答案】3??????【解析】,故可前者的图像可由后者向?2sinx3cosx?sin2sincosx?x?,y?x?3?ysinx?????33?????2个单位长度得到右平移3【考点】三角恒等变换、图像平移??????31,??yxx?xf()ln??3fx处的切线方程是则曲线当为偶函数,x(f(15)已知),时,______ 在点0x?学习资料.学习资料收集于网络,仅供参考【答案】0?1?2x?y11?????3???f'(x)?3,故切线方程为,【解析】法一:,21??f'f?1'?2??01?2x?y?x?x1??????????f'?1f??2'x?3,,法二:当时,,故切线方程为x3lnx?xf?x??f0?2x?y?10x?x 【考点】奇偶性、导数、切线方程22轴交于分别作已知直线的垂线与与圆:过交于两点,(16)03??mxy?3m?12??yxD,BCA,A,Bllx__________. ,则两点,若32AB??|CD|3【答案】y B,于作图所示,于,作【解析】如ABOF?FAE?BDE FA,即3?OF?AB?23,OA?23,E D x C3m?33,???m3?321m? 30°∴直线l的倾斜角为33??3CD?AE?2?2 【考点】直线和圆、弦长公式. 解答题:解答应写出文字说明,证明过程或演算步骤三.)12分(17)(本小题满分??a .,其中=1+λa已知数列λ≠0的前n项和S nn n??a 证明是等比数列,并求其通项公式;(1) n31?S ,求(2) 若λ.532(2) ;【答案】(1)【解析】?? (1) 解:0a,?S?1?nn0a??n????时,当2?na?aS??1??1?S?a?aa1nn?nnnn1n1??????a??1a即,1?nn学习资料.学习资料收集于网络,仅供参考???即1?0,???0,a?0,?1n?a??n,即2n,????a11n?????q,是等比数列,公比∴a?n1??,时,当n=1a??aS?11111?a即?1?1n?1?1???a??????n1?1???31?S 2)若(5325???1??1???????11??5?????31????则?1?S??????5?321??1???1?1???【考点】等比数列的证明、由求通项、等比数列的性质S n(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:777???2?0.55?(yy),≈2.646.,参考数据:,40.17yt?y9.32?7iiii1?i11?ii?学习资料.学习资料收集于网络,仅供参考n?)yt)(y(t??ii1i?参考公式:,r?nn??22y)(yt(t)??ii1i?1?i中斜率和截距的最小二乘估计公式分别为:回归方程bta?y?n?)(yt?y?t)(ii1i? bt?a?y,b?n?2)t(t?i1?i 1.82亿吨【答案】(1)见解析;(2),t0.92?0.10y?【解析】7?y i7?6?4?5?1?2?31i?1.331y???t?4由题意得,(1) 77n7??ynt?y)ty(t?t)(y?iiii1.33??7?440.171i1?i?0.99??r??0.55?287777????2222)(yt(?y)(t?t?)y(?t)y iiii1i1i?i1?1?i?yt的线性相关程度相当高,从而可以用线性回归方程来拟合t因为y与的相关系数近似为0.99,说明y与t的关系与n?)y(ty)(?t?ii2.891i? (2) 0.103b??? 28n?2t(t?i1i?0.92?4?y?bt?1.33?0.103a?t?0.10?a?bt?0.92yy的线性回归方程为所以关于t1.82?y代入回归方程可得,将9t?亿吨预测2016年我国生活垃圾无害化处理量将约为1.82【考点】相关性分析、线性回归)本小题满分(19)(12分,=3,AB=AD=ACBCABCD中,如图,四棱锥P-ABCDPA⊥底面,AD∥. PC的中点NAMM,为线段AD上一点,=2MD,为=4=PABC ∥平面MNPAB;证明(1).与平面求直线(2)所成角的正弦值PMNAN 学习资料.学习资料收集于网络,仅供参考58【答案】(1) 见解析;(2)252??2AMAD由已知得(1) ,取的中点,连接,【解析】TN,A TTBP312BC?TN?......3分由为中点知,. BCPC/NTN/2,四边形为平行四边形,,故又平行且等于AMNT/BCTNAD/AM. 于是AT/MN/ ........6分. 平面因为平面,平面,所以//MNMN?PABPABA T?PAB为以为坐标原点,,又面,故可以(2) 取中点,连接,则易知ABCDBCAEPA?AAE?EADAE轴建立空间直角坐标系,轴,以为轴,以为yAPADzx??5????????02,0,2,0,0,00、P、N0,0,4C、,1,2、MA5,则????2??????55??21,??4,PN?N,,?AN?1,2,PM?0,2,????????22??????故平面的法向量10,2,n?PMN584?cos?AN,n???255?5258与平面所成角的正弦值为直线PMNAN?25【考点】线面平行证明、线面角的计算)分本小题满分12(20)(2的准线CB两点,交C于A,xx的焦点为F,平行于轴的两条直线l,l:已知抛物线Cy分别交=221.Q两点于P,FQ;PQ的中点,证明AR∥(1)若F在线段AB上,R是. AB中点的轨迹方程△ABF的面积的两倍,求(2)若△PQF的面积是21??xy (2) 【答案】(1) 见解析;【解析】法一:(1)1,0)(F,则设,且.由题设by:?:ly?a,l0ab?2122211aa?bb1A(,a),B(,b),P(?,a),Q(?,b),R(?,).222222 学习资料.学习资料收集于网络,仅供参考分记过两点的直线为,则的方程为. .....3B,A0b)y?ab?(2x?a?ll. 由于在线段上,故0?1?abABF记的斜率为,的斜率为,则FQARkk21aba???b1ba. kk??b?????21aa22aba?a?1 ......5分所以. FQAR∥法二:PF,证明:连接RF,,=90°AFP+∠BFQAP 由=AF,BQ=BF及AP∥BQ,得∠,∴∠PFQ=90°的中点,∵R是PQ RP=RQ,=∴RF ≌△FAR,∴△PAR ,∠FRAAR∴∠P=∠FAR,∠PRA= AR,BFQBQF+∠=180°﹣∠QBF=∠PAF=2∠P∵∠,=∴∠FQB∠PAR ,∴∠PRA=∠PQF FQ∴AR∥.(2)设与轴的交点为,l,0)D(xx1ba?111 . 则?,?Sb?axSa?b?FD?PQFABF?1?2222a?b11,所以(舍去由题设可得),. ???axb1?x?0x111222设满足条件的的中点为. )y(x,EAB2y(x??1). 轴不垂直时,由可得当与ABk?kx DEAB1a?bx?a?b2y?. 而,所以1)?1(xy?x?22?x?1y. 分.重合与轴垂直时,与当所以,所求轨迹方程为....12DEABx 【考点】抛物线、轨迹方程) (21)(分本小题满分12 学习资料.学习资料收集于网络,仅供参考????????的最大值为. 设函数,其中,记xf1?acos2x?xxa?1?cosf0?aA??;(1)求xf'(2)求;A??. (3)证明:A?f'x2【答案】见解析【解析】???? (1) xsina?asin2xf'?x1??2|f(x)|?|acos2x?(a?1)(cosx?1)|?a?2(a?1)?f(0)2a??1a?3当时,(2) A?3a?2.因此,21?1)cosxx?(a?f(x)?2acos)xf(1?a?0.变形为时,将当21t?(a?1))g(t?2at?1,1][?(t)||g A令,则上的最大值,是在1?a?tg(tg(1)?3a?2)1)g(??a取得极小值,时,,且当,4a22?6aa?a1?(a?1)1)???1??g(.极小值为4a8a8a1?a11a??1a???1?(舍去).令,解得,4a351?0?ag(t)(?1,1)|g(?1)|?a|g(1)|?2?3a|g(?1)|?|g(1)|,所以①当,在内无极值点,时,,5A?2?3a.11?a?a?1g(?1)?g(1)?g()0?)?a?1)?g(1)?2(1g(.,知②当时,由54a2?6aaa?11?1?a(1?a)(1?7a))|?A?|g(|01)g(?|??g(||)?.又,所以4a8a4a8a学习资料.学习资料收集于网络,仅供参考1?2?3a,0?a??5?211a?a?6??A?1,?a综上,.?5a8?1?a?2,a3???'1|?|a1)sinx|?2a??f(x)|?|?2asin2x(a?|得.(1)(3) 由1'A2?3a)?a|?1?a?2?4?2(2|f(x)?0?a. 当时,5311a'A?a?f2(x)|?1|1?a?1???A?. ,所以时,当4588a''A?|xf|()?3a12?4?a?6Axf|()?2|1a?.时,当,所以【考点】导函数讨论单调性、不等式证明铅笔在答题卡上把所选题目题号后的方框涂黑。
16年数三概率论解析
16年数三概率论解析(实用版)目录1.16 年数三概率论解析概述2.解析一:条件概率与独立事件3.解析二:离散型随机变量及其分布律4.解析三:连续型随机变量及其概率密度5.解析四:中心极限定理6.总结与建议正文【16 年数三概率论解析概述】本文主要针对 2016 年数学三的数三概率论部分进行解析。
数三概率论是数学三中的一个重要组成部分,主要涉及到条件概率与独立事件、离散型随机变量及其分布律、连续型随机变量及其概率密度、中心极限定理等内容。
【解析一:条件概率与独立事件】条件概率是指在某些条件下,事件发生的概率。
独立事件则是指两个事件之间互不影响,相互独立。
在数三概率论中,条件概率与独立事件是基本概念,需要掌握其定义、性质以及计算方法。
【解析二:离散型随机变量及其分布律】离散型随机变量是指其取值是有限个或者可数无穷个的随机变量。
离散型随机变量的分布律是指其取某个值的概率。
在数三概率论中,要求掌握离散型随机变量的定义、性质以及分布律的求法。
【解析三:连续型随机变量及其概率密度】连续型随机变量是指其取值是连续的随机变量。
连续型随机变量的概率密度是指其取某个值的概率密度。
在数三概率论中,要求掌握连续型随机变量的定义、性质以及概率密度的求法。
【解析四:中心极限定理】中心极限定理是指在一定条件下,多个独立的随机变量的平均值的分布趋近于正态分布。
在数三概率论中,要求掌握中心极限定理的定义、性质以及其应用。
【总结与建议】总的来说,2016 年数学三的概率论部分主要考察了条件概率与独立事件、离散型随机变量及其分布律、连续型随机变量及其概率密度、中心极限定理等基本概念和性质。
对于考生来说,需要掌握这些知识点的定义、性质以及计算方法,并能熟练运用到实际题目中。
2016年全国卷3理科数学理科综合试题及答案
、32 ,绝密★启用前理科数学注意事项:1 •答题前填写好自己的姓名、班级、考号等信息2 •请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合 S=S x|(x 2)(x 3) (A ) [2 , 3] (C ) [3,+ )【答案】D 【解析】0 ,T x|x 0 ,则 S I T=(B) (-, 2]U [3,+)(D ) ( 0, 2]U [3,+)考点:1、不等式的解法;2、集合的交集运算. 2.若 Z 1 2i ,则4i zz 1(A ) 1 (B ) -1(C ) i(D ) -i【答案】C【解析】试题分析:4i 4ii ,故选C .zz 1(1 2i)(1 2i) 1ABC 30,故选 A .考点:向量夹角公式.试题分析:由 (x 2)( x 3) 0 解得 x 3或 x 2,所以S {x|x 2或x 3},所以SI T {x|0 x 2或x3},故选D .2016年普通高等学校招生全国统一考试全国卷3tiv 1 ,3tiv 3 1则 ABC= 3.已知向量BA(-, ―) ,BC (―厂),2 2 2 2(A ) 300【答案】A【解析】(B )45(C ) 60°(D ) 1200试题分析:由题意,得cos ABCuur umrBA BC -tuu —utt^ |BA||BC|丄二3上3丄2__2 ___ 2__21 1考点:1、复数的运算;2、共轭复数.4•某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为15°C, B点表示四月的平均最低气温约为50C。
下面叙述不正确的是一月七月——平均•低*M --------------- ¥均■髙%■(A)各月的平均最低气温都在0°C以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C的月份有5个【答案】D【解析】试题分析:由图可知0 C均在虚线框内,所以各月的平均最低气温都在0 C以上,A正确; 由图可在七月的平均温差大于7.5 C ,而一月的平均温差小于7.5 C ,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在 5 C,基本相同,C正确;由图可知平均最高气温高于20C的月份有3个或2个,所以不正确.故选D.考点:1、平均数; 2、统计图5 .若ta n3」f2,则cos 2sin 24644816 (A) (B) (C) 1(D)252525【答案】A【解析】试题分析:由tan 3, 得sin3 4 ..,cos 或sin3,cos-,所以4 5 555216 ,12 64cos 2sin 24故选A.2525 25,考点:1、同角三角函数间的基本关系;2、倍角公式.4 2 16.已知a 23, b45, c 253,则(A) b a c(B) a b c (C) b c a(D) cab 【答案】A【解析】4 2 2 1 2 2试题分析:因为a 234345 b , c 25空5341考点:幕函数的图象与性质.a,所以b a c,故选A . 7•执行下图的程序框图,如果输入的 a 4,6,那么输出的□fl* =』卜+ a1否r>\t(B) 4(A) 3 【答案】B【解析】(C) 5 (D) 6试题分析:第次循环,得a 2,b 4,a 6, s 6, n 二次循环,得2,b 6, a 4, s 10 , n 2 ;第三次循环,得a2,b 4,a 6,s 16, n 3 ;第四次循环,得a2,b 6, a 4,s 20 16, n 4,退出循环,输出n 4,故选B.&在A ABC 中,B =:n, BC边上的高等于41BC,则cosA=3 10/、帀〜、V10(A) - (B) - (C)-——101010【答案】C【解析】考点:程序框图.(D)3 1010试题分析:设BC边上的高线为AD ,则BC3AD ,所以ACAB2AD . 由余弦疋cos A 2 2 2AB AC BC2AD25AD29 AD22AB AC 2 , 2 AD 、.5 AD10,故选C.考点:余弦定理..AD2DC25AD ,9•如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图, 则该多面体的表面积为(A )18 36.5 ( B )54 18、, 5( C ) 90 ( D )81【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S 2 3 6 2 3 3 2 3 3.554 18,5,故选 B •考点:空间几何体的三视图及表面积.10•在封闭的直三棱柱 ABC A 1B 1C 1内有一个体积为 V 的球,若AB BC , AB 6,BC 8, AA 3,则V 的最大值是(C) 6 n【答案】B 【解析】试题分析:要使球的体积 V 最大,必须球的半径 R 最大•由题意知球的与直三棱柱的上下 底面都相切时,球的半径取得最大值-,此时球的体积为42考点:1、三棱柱的内切球;2、球的体积.2x11.已知O 为坐标原点,F 是椭圆C :二a左,右顶点P 为C 上一点,且PF x 轴•过点A 的直线I 与线段PF 交于点M ,与y 轴交 于点E.若直线BM 经过OE 的中点,贝U C 的离心率为1123(A )( B )( C )( D )-32 3 4【答案】A【解析】 试题分析:由题意设直线I 的方程为y k(x a),分别令x c 与x 0得点R 3彳弓)39,故选B•2b1(a b0)的左焦点,A , B 分别为C 的1ka ac 1i,整理,得— —,所以椭圆离心率为 e —,故选A .2k (a c ) a ca 3 3考点:椭圆方程与几何性质.12.定义 规范01数列”何如下:{a n }共有2m 项,其中 m 项为0, m 项为1,且对任意k 2m , a 1,a 2,L ,a k 中0的个数不少于1的个数 若m=4,则不同的 规范01数列”共有(A ) 18 个 (B ) 16 个 (C ) 14 个 (D ) 12 个 【答案】C 【解析】试题分析:由题意,得必有 a 10 , a 81,则具体的排法列表如下:考点:计数原理的应用.| FM | k(a c) , |OE| ka ,由OBE:CBMR°E| 得 -- -----|FM | |OB| |BC|【答案】y 2x 1【答案】如图所示,由图知,当目标函数z x y 经过点32 .第 II 卷(非选择题)评卷人得分13•若x,y 满足约束条件请点击修改第II 卷的文字说明 二、填空题 (题型注释)y 2y 2y则z x y 的最大值为y+ 2 V - 2 = 0 Ax-j + 1= 0/ z 戶 y 念":考点:简单的线性规划问题. 14.函数y : 【答案】3 【解析】试题分析:因为 2sin[( x) 个单位长度得到.sin x . 3 cosx 的图像可由函数 y sin x 、、3cos x 2sin(xy sinx 、3cosx 的图像至少向右平移),y sinx 、、3cosx 2sin( x )=33 ],所以函数y si nx -、3cosx 的图像可由函数 y si nx3 cos x 的3 图像至少向右平移 个单位长度得到. 3考点:1、三角函数图象的平移变换; 2、两角和与差的正弦函数. 15.已知f x 为偶函数,当x 0时,f(x) ln( x) 3x ,则曲线y f x 在点(1, 3) 处的切线方程是 【解析】【解析】试题分析: 1A(1, —)时取得最大值,即Z m ax2作出不等式组满足的平面区域, 1 1 - 2试题分析:当 x 0时, x 0,贝U f ( x) ln x 3x .又因为f(x)为偶函数,所以1f(x) f( x) Inx 3x ,所以f (x)— 3,则切线斜率为f (1) 2,所以切线方程x为 y 32(x 1),即 y 2x 1 .考点:1、函数的奇偶性与解析式; 2、导数的几何意义. 16.已知直线l : mx y 3m 、、30与圆x 2 y 2 12交于A,B 两点,过A,B 分别做I 的垂线与x 轴交于C, D 两点,若AB 2 3,则|CD | 【答案】4 【解析】 因为|AB| 2込,且圆的半径为2 3 ,所以圆心(0,0)到直线试题分析:mx y 3m 3(I AB 中 (2)3'则由|3;€3'解得m代入直线I 的方程,得y2; 3,所以直线I 的倾斜角为30,由平面几何知识知在梯形 ABDC 中,|CD| 1 AB| 4 . cos30 考点:直线与圆的位置关系.评卷人得分17.已知数列{a n }的前n 项和S n 1 a n ,其中(I)证明{a n }是等比数列,并求其通项公式;31(D)若 S 531,求.321【答案】(I) a n —( )n 1; (D)11【解析】试题分析:(I)首先利用公式a n12,得到数列{a n }的递推公式,然后通过变换结合等比数列的定义可证; (n)利用(I)前n 项和S n 化为 的表达式,结合S 5的 值,建立方程可求得的值.0的距离为三、解答题(题型注释)【答案】(I )理由见解析;(n ) 1.82亿吨.解得18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图ii :牛册代码I 亠T 奇利廿庖年怖n)(t i b 〜2(t i t)i 1试题解析:(I )由题意得a 3 1 a ,,故 1 ,印 ,a , 0.由S n1 an ,Si1a n 1 得a n 1an 1a n ,即 a n 1(1) a n .由 3]0得a n 0 ,所以an 1an因此{a n }是首项为由(I )得—()n1. 1 1S n 1 ()n ,由 S 5 色得 1 ()5 印,即()5 132132 1,公比为一的等比数列,于是a n1考点: 1、数列通项 a n 与前n 项和为S n 关系;2、等比数列的定义与通项及前 n 项和为S n .(I )由折线图看出,可用线性回归模型拟合 (H )建立y 关于t 的回归方程(系数精确到量。
2016年全国卷3理科数学理科综合试题及答案
绝密★启用前2016年普通高等学校招生全国统一考试 全国卷3理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合S={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST=(A )[2,3] (B )(—∞ ,2] [3,+∞) (C )[3,+∞) (D)(0,2] [3,+∞) 【答案】D 【解析】试题分析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .考点:1、不等式的解法;2、集合的交集运算. 2.若12z i =+,则41izz =- (A )1 (B) —1 (C )i (D )-i 【答案】C 【解析】 试题分析:44(12)(12)11i ii i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数. 3.已知向量1(2BA = ,31(),22BC = 则∠ABC=(A)300 (B ) 450 (C )600 (D )1200【答案】A 【解析】试题分析:由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是(A )各月的平均最低气温都在00C 以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同 (D)平均气温高于200C 的月份有5个 【答案】D 【解析】试题分析:由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D .考点:1、平均数;2、统计图5.若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B ) 4825 (C ) 1 (D )1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式. 6.已知432a =,254b =,1325c =,则(A)b a c << (B )a b c << (C )b c a << (D)c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C)5 (D)6 【答案】B 【解析】试题分析:第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2,6,4,10a b a s =-===,2n =;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,2016,4a b a s n =-===>=,退出循环,输出4n =,故选B . 考点:程序框图.8.在ABC △中,π4B ,BC 边上的高等于13BC ,则cos A(A 310 (B 10(C)1010(D )31010【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+,2AB =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===⋅⨯⨯,故选C . 考点:余弦定理.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B)54185+ (C )90 (D)81【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+B .考点:空间几何体的三视图及表面积.10.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C)6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A,B 分别为C 的左,右顶点。
2016年全国卷3理科数学试题及参考答案(WORD版)
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则ST =A. []2,3B. (][),23,-∞+∞C. [)3,+∞D. (][)0,23,+∞【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞,选D【考点】解一元二次不等式、交集 (2)若12z i =+,则41izz =- A. 1 B. 1- C. i D. i - 【答案】C【解析】易知12z i =-,故14zz -=,41ii zz ∴=-,选C 【考点】共轭复数、复数运算(3)已知向量13,22BA⎛⎫= ⎪⎪⎝⎭,BC =(32,12),则ABC∠A. 30°B. 45°C. 60°D.120°【答案】A【解析】法一:332cos112BA BCABCBA BC⋅∠===⨯⋅,30ABC∴∠=法二:可以B点为坐标原点建立如图所示直角坐标系,易知60,30,30ABx CBx ABC∠=∠=∴∠=【考点】向量夹角的坐标运算(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是A. 各月的平均最低气温都在0C以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20C的月份有5个【答案】D【解析】从图像中可以看出平均最高气温高于20C的月份有七月、八月,六月为20C左右,故最多3个【考点】统计图的识别(5)若3tan4α=,则2cos2sin2αα+=A. 6425B.4825C. 1D.1625【答案】A【解析】22222cos4sin cos14tan64 cos2sin225cos sin1tanααααααααα+++===++【考点】二倍角公式、弦切互化、同角三角函数公式(6)已知4213332,3,25a b c===,则A. b a c<< B. a b c<< C. b c a<< D. c a b<<【答案】Ax yCAB【解析】422123333324,3,255a b c =====,故c a b >> 【考点】指数运算、幂函数性质(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A. 3B. 4C. 5D. 6 【答案】B 【解析】列表如下 a4 2 6 -2 4 2 6 -2 4 b6 4 6 4 6 s 0 6 10 16 20 n1234【考点】程序框图(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =A.31010 B. 1010 C.1010- D. 31010-【答案】C【解析】如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,由余弦定理知,25910cos 10225A +-==-⨯ 【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18365+B. 54185+C. 90D. 81 【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为 2332362393654185⨯⨯+⨯⨯+⨯⨯+=+【考点】三视图、多面体的表面积DCAB(10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB. 9π2C. 6πD. 32π3【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2, 又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为34932R ππ=【考点】内接球半径的求法(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A. 13B. 12C. 23D. 34【答案】A【解析】易得,2ON OB a MF MF AF a c MF BF a c OE ON AO a -=====+ 12a a c a ca c a a c --∴=⋅=++ 13c e a ∴== 【考点】椭圆的性质、相似(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( ) A .18个 B .16个 C .14个 D .12个 【答案】C 【解析】86011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32【解析】三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为10-【考点】线性规划(14)函数sin y x x =-的图像可由函数sin y x x =+的图像至少向右平移______个单位长度得到. 【答案】23π【解析】sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-==+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到 【考点】三角恒等变换、图像平移(15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处的切线方程是______【答案】210x y ++= 【解析】法一:11'()33f x x x-=+=+-,()'12f ∴-=,()'12f ∴=-,故切线方程为210x y ++= 法二:当0x >时,()()ln 3f x f x x x =-=-,()()1'3,'12f x f x∴=-∴=-,故切线方程为210x y ++= 【考点】奇偶性、导数、切线方程(16)已知直线l:30mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D两点,若AB =,则||CD =__________. 【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,3AB OA OF ==∴=,即3=,m ∴= ∴直线l 的倾斜角为30°3CD AE ∴=== 【考点】直线和圆、弦长公式三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和S n =1+λa n ,其中λ≠0. (1) 证明{}n a 是等比数列,并求其通项公式; (2) 若53132S =,求λ. 【答案】(1) ;(2) 【解析】 解:(1) 1,0n n S a λλ=+≠0n a ∴≠当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=- 即()11n n a a λλ--=,0,0,10,n a λλ≠≠∴-≠即1λ≠即()1,21n n a n a λλ-=≥-, ∴{}n a 是等比数列,公比1q λλ=-,当n =1时,1111S a a λ=+=, 即111a λ=- 1111n n a λλλ-⎛⎫∴=⋅ ⎪--⎝⎭(2)若53132S =则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭-- 1λ∴=-【考点】等比数列的证明、由n S 求通项、等比数列的性质 (18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑721()0.55ii yy =-=∑7≈2.646.参考公式:12211()()()(y y)nii i nnii i i tt y y r tt ===--=--∑∑∑,回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =- 【答案】(1)见解析;(2)0.920.10y t =+,1.82亿吨 【解析】(1) 由题意得123456747t ++++++==,711.3317ii yy ==≈∑711777722221111()()40.1774 1.330.99280.55()()()()nii i ii i ii ii i i i i tt y y t ynt yr tt y y tt y y ======----⨯⨯===≈⨯----∑∑∑∑∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系(2) 121()()2.890.10328()nii i nii tt y y b tt ==--==≈-∑∑ 1.330.10340.92a y bt =-=-⨯≈所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+ 将9t =代入回归方程可得, 1.82y =预测2016年我国生活垃圾无害化处理量将约为1.82亿吨【考点】相关性分析、线性回归 (19)(本小题满分12分)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.【答案】(1) 见解析;(2)8525【解析】(1) 由已知得223AM AD ==,取BP 的中点T ,连接,AT TN , 由N 为PC 中点知//TN BC ,122TN BC ==. ......3分 又//AD BC ,故TN 平行且等于AM ,四边形AMNT 为平行四边形, 于是//MN AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB . ........6分(2) 取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则()()()()50,0,00,0,45,2,0,1,20,2,02A P CN M ⎛⎫⎪ ⎪⎝⎭、、、、()55,1,2,0,2,4,,1,222AN PM PN N ⎛⎫⎛⎫∴==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故平面PMN 的法向量()0,2,1n =485cos ,52552AN n ∴<>==⨯ ∴直线AN 与平面PMN 所成角的正弦值为8525【考点】线面平行证明、线面角的计算 (20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(1) 见解析;(2) 21y x =- 【解析】(1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---.记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. .....3分 由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a a a ab---=====-=+-. 所以FQ AR ∥. ......5分 法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 与AP ∥BQ ,得∠AFP +∠BFQ =90°, ∴∠PFQ =90°, ∵R 是PQ 的中点, ∴RF =RP =RQ , ∴△P AR ≌△F AR ,∴∠P AR =∠F AR ,∠PRA =∠FRA ,∵∠BQF +∠BFQ =180°﹣∠QBF =∠P AF =2∠P AR , ∴∠FQB =∠P AR , ∴∠PRA =∠PQF , ∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x , 则1111,222ABF PQF a b S b a FD b a x S ∆∆-=-=--=. 由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+-. 而2a by +=,所以21(1)y x x =-≠. 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分 【考点】抛物线、轨迹方程 (21)(本小题满分12分)设函数()()()cos 21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A .(1)求()'f x ;(2)求A ;(3)证明:()'2f x A ≤.【答案】见解析【解析】(1)()()'2sin 21sin f x a x a x =---(2)当1a ≥时,|()||cos 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-. ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (3)由(1)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=.当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤.【考点】导函数讨论单调性、不等式证明请考生在22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
(完整word版)2016年全国卷3理科数学试题及参考答案(WORD版)
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016 年普通高等学校招生全国统一考试理科数学本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 24 题,共 150 分,共 4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I卷一. 选择题:本大题共 12小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)设集合S x|(x 2)(x 3)0 ,T x|x 0 ,则S IT=A. 2, 3B. ,2 U 3,C. 3,D. 0, 2 U 3, 【答案】 D【解析】易得S ,2U 3, ,SI T 0, 2 U 3, ,选D考点】解一元二次不等式、交集(2)若z 1 2i,则4iA. 1B. 1 zz 1C. iD. i【答案】 C【解析】易知 z 12i ,故 zz 14 ,4ii ,选C考点】共轭复数、复数运算zz 1uuur 1 3 uuur 3 1(3) 已知向量 BA 2, 2 ,BC =( 23 ,2),则 ABC法二:可以 B 点为坐标原点建立如图所示直角坐标系,易知考点】向量夹角的坐标运算(4) 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图 中 A 点表示十月的平均最高气温约为 15 o C , B 点表示四月的平均最低气温约为 5 o C .下面叙述不正确的是A. 各月的平均最低气温都在 0 o C 以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于 20 o C 的月份有 5 个 【答案】 D【解析】从图像中可以看出平均最高气温高于 20o C 的月份有七月、八月,六月为 20 o C 左右,故最多 3个 【考点】统计图的识别32(5)若 tan 4,则 cos 22sin 264 48 16 A. B. C. 1 D.25 25 25答案】 A解析】2 cos 2 2sin 2 cos4sin cos 1 4tan 642 2 2 cos sin 1 tan 25考点】二倍角公式、弦切互化、同角三角函数公式A. 30 °B. 45 °C. 60 °D.120 答案】 A 解析】法cos ABC uuur uuu BABCuuuruuurBA BC 23 3 ,1 12 ,oABC 30ABx 60o , CBx 30o , ABC 30o421(6) 已知 a 23, b 33, c253, 则 A. b a c B. a bc C. b c a D. c a b【答案】 A42212【解析】 a 2343, b 33, c 253 53 ,故 c a b【考点】指数运算、幂函数性质(7) 执行右面的程序框图,如果输入的 a=4,b=6,那么输出的 n=A. 3B. 4C. 5D. 6 答案】 B 解析】列表如下π1 (8)在△ABC 中, B 4 , BC 边上的高等于 3 BC ,则cosA43a4 26-2426-24b64646s 06101620 n1234考点】程序框图A.3 10B. 10C. 10D.3 101010 1010答案】 C解析】 如图所示, 可设 BD AD 1,则 AB 2 ,DC2 5 9 10 2 2 5 10AC【考点】(9) 如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18 36 5B. 54 18 5C. 90D. 81 【答案】 B【解析】 由三视图可知该几何体是一个平行六面体,上下底面为5 ,由余弦定理知,解三角形 cosA2 3 3 2 3 6 2 3 9 36 54 18 5【考点】三视图、多面体的表面积 (10)在封闭的直三棱柱 ABC -A 1B 1C 1内有一个体积为 V 的球.若AB ⊥BC ,AB=6,BC=8,AA 1=3,则 V 的最 大值是4π B. 92π C. 6π D. 332π23答案】大,选取过球心且平行于直三棱柱底面的截面, 如图所示, 则由切线长定理可知,内接圆的半径为 2,考点】内接球半径的求法b 0) 的左焦点, A , B 分别为 C 的左,右顶点 . P 为 C 上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E. 若直线 BM 经过 OE 的考点】椭圆的性质、相似 (12)定义“规范 01数列”a{n }如下: {a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k ≤2m ,a 1,a 2,⋯, a k 中 0 的个数不少于 1的个数,若 m=4,则不同的 “规范 01数列”共有( )A .18 个B .16个C .14个D .12 个 答案】 C 解析】又 AA 1 3 2 2 ,所以内接球的半径为 即 V 的最大值为解析】 由题意知,当球为直三棱柱的内接球时,体积最 (11) 已知 O 为坐标原点, F 是椭圆 C : 中点,则 C 的离心率为11 23A. B CD.32 34【答案】A【解析】易得 ON OB aMF MF AF a cMF BF a c OE2ON AO a1aa ca c2 a ca a c10PEMN O0 11110 1111 1 0 111 010 0 1110 1 0 111 1 010 0 111 0 1 010 1110 1 0 1110 1 010 111 01 01【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分 .第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第 (24)题为选考题,考生根据要求作答 .二、填空题:本大题共 3小题,每小题 5 分x y10(13)设 x,y 满足约束条件 x2y 0 ,则z x y 的最大值为 ______ . x 2y 203【答案】32【解析】三条直线的交点分别为2, 1 , 1, 21 , 0, 1 ,代入目标函数可得33, 32, 1,故最小值为考点】线性规划(14)函数 y sinx 3cosx 的图像可由函数 y sinx 3cosx 的图像至少向右平移___ 个单位长度得到 .2 【答案】2 33【解析】 Q y sinx 3cosx 2sin x , y sinx 3cosx 2sin x 3,故可前者的图像可由后者向 332右平移23个单位长度得到3【考点】三角恒等变换、图像平移(15)已知 f(x)为偶函数,当x 0时, f (x) ln x 3x ,则曲线 y f x 在点 1, 3 处的切线方程是____________________________________________________________________________________答案】 2x y 1 0考点】奇偶性、导数、切线方程2 y 212交于A,B 两点,过A,B 分别作l 的垂线与 x 轴交于C,D解析】法f '(x) 1 3 13 , xxf'1 法二:当 x 0 时, f xx ln x 3x , f ' x 1 3,x 2 ,故切线方程为 2x y 1 0 f' 1 2,故切线方程为 2x y 1 0 两点,若 AB 2 3 ,则 |CD | 答案】 3解析】如图所示,作 AE BD 于E ,作OF AB 于F ,Q AB 2 3, OA 2 3, OF 3 ,即 ∴直线 l 的倾斜角为 30°x23 3 2 考点】直线和圆、弦长公式CD AE 2 3 三.解答题:解答应写出文字说明,证明过程或演算步骤已知数列 a n 的前 n 项和 S n =1+λa n ,其中 λ≠0. (1) 证明a n 是等比数列, 并求其通项公式; (2) 若 S 5 31,求32 λ.【答案】 (1) ;(2)【解析】解: (1) Q S n 1 a n , 0a n 0当 n 2 时, a nSnSn 11 a n 1 a n 1 a n(17)( 本小题满分 12 分) 即1 a n a n 1 ,(16)已知直线 l :mx y 3m 3 0 与圆 x 2Q 0, a n 0,1 0, 即 1i1i1i15311 32考点】等比数列的证明、由S n 求通项、等比数列的性质(18) ( 本小题满分 12 分)图是我国 2008 年至 2014 年生活垃圾无害化处理量 (单位:亿吨 )的折线图 .(1)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明;(2)建立 y 关于 t 的回归方程 (系数精确到 0.01),预测 2016年我国生活垃圾无害化处理量 附注:a nan 11, n 2,an是等比数列, 公比n=1时, S 1 1 a 1 a 1, a1ann12)S531 32则 S 511Q 0, a n 0, 1 0, 即17 7 7参考数据:y i 9.32 , t i y i 40.17 ,(y i y)2 0.55 , 7 ≈2.646.i1 i1 i1n(t i t )(y i y)i1参考公式: r , nn(t i t )2 (y i y)2i 1 i 1考点】相关性分析、线性回归 (19) ( 本小题满分 12 分)如图,四棱锥 P-ABCD 中, PA ⊥底面 ABCD , PA=BC=4,M 为线段 AD 上一点, AM=2MD ,N 为PC 的中点 .回归方程 t 中斜率和截距的最小二乘估计公式分别为: n(t i t )(y i y)i1ny b $t2(t it )2 i1答案】 (1)见解析; (2) y 0.92 0.10t , 1.82 亿吨 解析】(1) 由题意得12345 t7674, 7yii171.3317(t i i1r7 7(t i t)2(y i y)2t )(y i y)nty因为 y 与 t 的相关系数近似为 7(t ii10.99, t i y i i17t )2 (y i y)2i140.17 7 4 1.33 0.9928 0.55说明 y 与 t 的线性相关程度相当高,从而可以用线性回归方程来拟合 与 t 的关系ni 1(tit)( yiy)2.89 (2) b$ i1n (t t)222.889(t i t )2 28i10.103a $y b $t 1.33 0.103 4 0.92所以 y 关于 t 的线性回归方程为 y a $b $t 0.92 0.10t将 t 9 代入回归方程可得, y $1.82预测 2016 年我国生活垃圾无害化处理量将约为 1.82 亿吨 (1) 证明 MN ∥平面 PAB ;(2)求直线AN与平面PMN 所成角的正弦值 .AD∥BC,答案】 (1) 见解析; (2) 8 5252解析】 (1) 由已知得 AM 3AD 2,取BP的中点T,连接 AT,TN ,1由N为PC中点知TN / /BC , TN ........... B C 2. 3分2又AD / / BC ,故TN平行且等于AM ,四边形AMNT为平行四边形,于是MN / /AT .因为AT 平面PAB ,MN 平面PAB ,所以MN//平面PAB.(2) 取BC中点E ,连接AE ,则易知AE AD ,又Q PAuuur r 4 AN, n5 52直线AN 与平面PMN 所成角的正弦值为8 525考点】线面平行证明、线面角的计算(20)( 本小题满分 12 分)已知抛物线 C: y2=2x的焦点为 F,平行于 x轴的两条直线 l1,l2分别交 C 于 A,B 两点,交 C的准线于 P,Q 两点 .(1)若 F在线段 AB上,R是 PQ的中点,证明 AR∥FQ; (2)若△PQF的面积是△ABF的面积的两倍,求 AB中点的轨迹方程【答案】 (1) 见解析; (2) y2 x 1【解析】(1)法一:1由题设 F(2,0).设l1:y a,l2:y b,则ab 0,且22a 2b21 1 1 a bx 轴,以AD 为y 轴,以AP 为 z 轴建立空间直角坐标系,则A 0, 0,0 、P 0,0,4 、C 5, 2, 0 、N25,1,2、M 0, 2, 0uu ur AN 25,1, uuuur2 , PMuuur0, 2, 4 , PN N 25,1,故平面PMN 的法向量n0, 2,16分面ABCD ,故可以A为坐标原点,以AE为cos 85 25A(a2 ,a),B(b2 ,b),P( 21,a),Q( 21,b),R( 21,a2b).记过 A,B 两点的直线为 l ,则 l 的方程为 2x (a b)y ab 0. 由于 F 在线段 AB 上, 故1 ab 0. 记AR 的斜率为k 1, FQ 的斜率为 k 2 ,则 a b a b 1 ab k1 2 2b k 2 . 1 1 a 2 a 2ab a a所以 AR ∥FQ..5法二:证明:连接 RF , PF ,由 AP=AF ,BQ=BF 及 AP ∥ BQ ,得∠ AFP +∠BFQ =90°, ∴∠ PFQ =90°, ∵R 是 PQ 的中点, ∴RF=RP=RQ , ∴△ PAR ≌△ FAR ,∴∠ PAR=∠FAR ,∠PRA=∠FRA ,∵∠ BQF + ∠ BFQ =180°﹣∠ QBF=∠PAF=2∠PAR , ∴∠ FQB=∠PAR , ∴∠ PRA=∠PQF , ∴AR ∥FQ .(2)设l 与 x 轴的交点为 D(x 1,0),则SABF 2 b a FD2b a x1 2,SPQF 2 . 由题设可得 12b a x 1 12a 2b ,所以 x 1 0(舍去),x 1 1. 设满足条件的AB 的中点为 E(x,y) .当 AB 与 x 轴不垂直时,由 k AB k DE 可得 2 y(x 1).a b x 1 a b2而 2 y ,所以 y 2x 1(x 1).当 AB 与 x 轴垂直时, E 与 D 重合 .所以,所求轨迹方程为 y 2 x考点】抛物线、轨迹方程3分(21)( 本小题满分 12 分)1. .. 12 分设函数 f x acos2x a 1 cosx 1 ,其中 a 0 ,记 f x 的最大值为 A . 15(1) 求 f ' x ; (2) 求 A ; (3)证明: 2A. 解析】 (1) (2) 见解析 f'x 2asin2x a 1 sinx 1时, | f (x)| |acos2x (a 1)(cos x 1)| a 2(a 1) 3a 2 f (0) 因此, 3a 2. 当0 1时, 将 f (x) 变形为 f (x) 2acos 2 x (a 1)cos x 1 . 令 g(t) 2at 2 (a 1)t 1,则 A 是| g(t) |在[ 1,1]上的最大值, g( 1) a , g(1)3a 2 ,且当 14aa 时, 4a g(t) 取得极小值, 1a 极小值为 g( )4a(a 1)2 8aa 26a8a令1 14aa 1, 4a 解得 a舍去),a①当a 1时, 5 g(t)在( 1,1)内无极值点, | g( 1)| a , |g(1)| 2 3a ,|g( 1)| | g(1)| ,所以 3a.②当a 1时, 由g( 1) g(1) 2(1a) 0 ,知 g( 1)g(1)g(14aa ). 4a1 又|g(14a a)| | g( 1)| (1 a)(1 7a) 0,8a所以A1 |g(14aa )|a 26a 1 8a2 3a,02综上, Aa 6a 18a 3a1 5 2,a1. (3) 由(1)得|f(x)|2asin2x(a 1)sin x| 2a | a 1| . 1'当 0 a 时, | f '(x)| 1a2 4a 2(2 3a) 2A .当1 5 a 1 3 'a 1时, A 1,所以 | f '(x)| 1 a当a 1时, | f '(x)| 3a 1 6a 4 2A ,所以 | f '(x)|2A . 考点】导函数讨论单调性、不等式证明多做 ,则按所做的第一题计分。
2016年河南省八市重点高考数学三模试卷(理)含答案解析
2016年河南省八市重点高中高考数学三模试卷(理科)一、选择题(每题5分)1.定义A B={x|x∈A或x∈B,但x∉A∩B}.已知M={y|y=2|x|},N={x|≤2},则M N=()A.[0,1)∪(2,+∞)B.(﹣∞,]∪[1,2]C.[,1)∪(2,+∞)D.[1,2)2.若复数z满足(1+2i)•z=|2﹣i|,则()A.1+2i B.(1﹣2i)C.(1+2i)D.(1﹣2i)3.已知命题p:∀x∈(0,+∞),x≥lnx+1,命题q:∃x∈[0,+∞),sinx>x,则下列结论正确的是()A.p∧q是真命题B.¬p∨q是真命题C.¬q是假命题D.p∧¬q是真命题4.如图所示是一个几何体的三视图,则这个几何体的表面积是()A.3+B.2+C.2+D.3+5.已知O为直角坐标原点,点A(2,3),点P为平面区域(m>0)内的一动点,若•的最小值为﹣6,则m=()A.1 B.C.D.6.执行如图所示的程序框图,则输出的k为()A.3 B.4 C.5 D.67.已知函数f(x)=ln(x+m)的图象与g(x)的图象关于x+y=0对称,且g(0)+g(﹣ln2)=1,则m=()A.1 B.﹣1 C.2 D.﹣28.已知数列{log a b n}(a>0且a≠1)是首项为2,公差为1的等差数列,若数列{a n}是递增数列,且满足a n=b n lgb n,则实数a的取值范围是()A.(,1)B.(2,+∞)C.(,1)∪(1,+∞)D.(0,)∪(1,+∞)9.已知F1,F2为双曲线C:x2﹣=1(b>0)的左、右焦点,点M是双曲线C左支上的一点,直线MF2垂直双曲线的一条渐近线于点N,且N为线段MF2的中点,则b=()A.B.2 C.D.310.在Rt△ABC中,∠ACB=90°,点O是△ABC所在平面内一点,且||=1,=1,=,则||的最小值为()A.B.C.D.311.已知三棱柱ABC﹣A1B1C1,所有棱长为都为2,顶点B1在底面ABC内的射影是△ABC 的中心,则四面体A1﹣ABC,B1﹣ABC,C1﹣ABC公共部分的体积为()A.B.C.D.12.已知函数f(x)=(3x+1)e x+1+kx(k≥﹣2),若存在唯一整数m,使f(m)≤0,则实数k的取值范围是()A.(,2]B.[,2)C.(﹣,﹣]D.[﹣2,﹣)二、填空题(每题5分)13.直线y=x与抛物线y=2﹣x2所围成的图形面积为_______.14.某校运动会上高一(1)班7名运动员报名参加4项比赛,每个项目至少有一人参加且每人只能报一个项目,其中A、B两名运动员报同一项目,则不同的报名种数共有种_______.15.已知正项数列{a n},a1=2,(a n+1)a n+2=1,a2=a6,则a11+a12=_______.16.已知O是锐角△ABC的外心,B=30°,若+=λ,则λ=_______.三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2﹣sinB•sinC=.(1)求A;(2)若a=4,求△ABC面积的最大值.18.设A市120急救中心与B小区之间开120急救车所用时间为X分钟(单程),所用时50(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.20.已知抛物线C1:x2=2py(p>0)的焦点为F,点F″与F关于x轴对称,直线l:y=2与抛物线C1相交于A,B两点,与y轴相交于M点,且•=﹣5.(1)求抛物线C1的方程;(2)若以F″,F为焦点的椭圆C2过点(,).①求椭圆C2的方程;②过点F的直线与椭圆C2相交于P,Q两点,且=2,求|+|的值.21.已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m 的取值范围.选做题(选一题)选修4-1:几何体证明选讲22.如图,PA为半径为1的⊙O的切线,A为切点,圆心O在割线CD上,割线PD与⊙O相交于C,AB⊥CD于E,PA=.(1)求证:AP•ED=PD•AE;(2)若AP∥BD,求△ABD的面积.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.(1)求曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.选修4-5:不等式选讲24.已知函数f(x)=2|x+a|﹣|x﹣1|(a>0).(1)若函数f(x)与x轴围成的三角形面积的最小值为4,求实数a的取值范围;(2)对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.2016年河南省八市重点高中高考数学三模试卷(理科)参考答案与试题解析一、选择题(每题5分)1.定义A B={x|x∈A或x∈B,但x∉A∩B}.已知M={y|y=2|x|},N={x|≤2},则M N=()A.[0,1)∪(2,+∞)B.(﹣∞,]∪[1,2]C.[,1)∪(2,+∞)D.[1,2)【考点】子集与交集、并集运算的转换.【分析】利用交、并、补集的混合运算求解.【解答】解:∵M={y|y=2|x|}=(0,+∞),N={x|≤2}=(﹣∞,]∪(2,+∞),A B={x|x ∈A或x∈B,但x∉A∩B},∴M N=(﹣∞,]∪[1,2].故选:B.2.若复数z满足(1+2i)•z=|2﹣i|,则()A.1+2i B.(1﹣2i)C.(1+2i)D.(1﹣2i)【考点】复数代数形式的乘除运算.【分析】直接利用复数的除法运算法则化简求解即可.【解答】解:复数z满足(1+2i)•z=|2﹣i|,可得z===(1﹣2i).则=(1+2i)故选:C.3.已知命题p:∀x∈(0,+∞),x≥lnx+1,命题q:∃x∈[0,+∞),sinx>x,则下列结论正确的是()A.p∧q是真命题B.¬p∨q是真命题C.¬q是假命题D.p∧¬q是真命题【考点】复合命题的真假.【分析】结合函数的单调性分别判断p,q的真假,从而判断出复合命题的真假即可.【解答】解:令f(x)=x﹣lnx﹣1,则f′(x)=1﹣=,则x∈(0,1)时,f′(x)<0,f(x)递减,x∈(1,+∞)时,f′(x)>0,f(x)递增,∴f(x)的最小值是f(1)=0,故x≥lnx+1,故命题p是真命题;令g(x)=sinx﹣x,g′(x)=cosx﹣1≤0,g(x)递减,g(x)的最大值是0,故sinx≤x,故命题q是假命题;故p∧﹣q是真命题,故选:D.4.如图所示是一个几何体的三视图,则这个几何体的表面积是()A.3+B.2+C.2+D.3+【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度、并判断出线面位置关系,由勾股定理和三角形的面积公式求出各个面的面积,并加起来求出几何体的表面积.【解答】解:根据三视图可知几何体是一个三棱锥,直观图如图所示:且D是AB的中点,PD⊥平面ABC,PD=AD=BD=CD=1,∴PD⊥CD,PD⊥AB,由勾股定理得,PA=PB=PC=,由俯视图得,CD⊥AB,则AC=BC=,∴几何体的表面积S=+=2+,故选:B.5.已知O为直角坐标原点,点A(2,3),点P为平面区域(m>0)内的一动点,若•的最小值为﹣6,则m=()A.1 B.C.D.【考点】简单线性规划;平面向量数量积的运算.【分析】根据向量数量积的公式求出•=2x+3y,结合•的最小值为﹣6,得到y=﹣x﹣2,作出对应的直线方程,求出交点坐标进行求解即可.【解答】解:∵•=2x+3y,∴设z=2x+3y,得y=,∵•的最小值为﹣6,∴此时y=﹣x﹣2,作出y=﹣x﹣2则y=﹣x﹣2与x=﹣1相交为B时,此时B(﹣1,﹣),此时B也在y=m(x﹣2)上,则﹣3m=﹣,得m=,故选:C.6.执行如图所示的程序框图,则输出的k为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的a,k的值,当a=时,满足条件|a﹣1.42|<0.01,退出循环,输出k的值为4.【解答】解:模拟执行程序,可得a=1,k=1不满足条件|a﹣1.42|<0.01,执行循环体,a=,k=2不满足条件|a﹣1.42|<0.01,执行循环体,a=,k=3不满足条件|a﹣1.42|<0.01,执行循环体,a=,k=4满足条件|a﹣1.42|<0.01,退出循环,输出k的值为4.故选:B.7.已知函数f(x)=ln(x+m)的图象与g(x)的图象关于x+y=0对称,且g(0)+g(﹣ln2)=1,则m=()A.1 B.﹣1 C.2 D.﹣2【考点】函数的图象.【分析】根据函数的对称性求出函数g(x)的解析式,利用方程关系进行求解即可.【解答】解:∵函数y=f(x)=ln(x+m)的图象与g(x)的图象关于x+y=0对称,∴﹣x=ln(﹣y+m),即﹣y+m=e﹣x,即y=m﹣e﹣x,则g(x)=m﹣e﹣x,∵g(0)+g(﹣ln2)=1,∴m﹣e0+m﹣e﹣(﹣ln2)=1即m﹣1+m﹣2=1,则2m=4,m=2,故选:C.8.已知数列{log a b n}(a>0且a≠1)是首项为2,公差为1的等差数列,若数列{a n}是递增数列,且满足a n=b n lgb n,则实数a的取值范围是()A.(,1)B.(2,+∞)C.(,1)∪(1,+∞)D.(0,)∪(1,+∞)【考点】等差数列的通项公式;对数的运算性质.【分析】由题意求出,得到a n=b n lgb n=a n+1•lga n+1=(n+1)a n+1lga,再由数列{a n}为递增数列,可得nlga<(n+1)alga(n≥2).然后转化为关于a的不等式组结合恒成立问题求得答案.【解答】解:∵数列{log a b n}(a>0且a≠1)是首项为2,公差为1的等差数列,∴log a b n=2+1×(n﹣1)=n+1,∴,由a n=b n lgb n=a n+1•lga n+1=(n+1)a n+1lga为递增数列,且(n≥2),可得na n lga<(n+1)a n+1lga(n≥2).由a>0且a≠1,得nlga<(n+1)alga(n≥2).∴①,或②.由①得,0;由②得,a>1.综上,实数a的取值范围是(0,)∪(1,+∞).故选:D.9.已知F1,F2为双曲线C:x2﹣=1(b>0)的左、右焦点,点M是双曲线C左支上的一点,直线MF2垂直双曲线的一条渐近线于点N,且N为线段MF2的中点,则b=()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】求得双曲线的a=1,设F2(c,0),渐近线方程为y=bx,运用点到直线的距离公式可得F2到渐近线的距离为b,再由中位线定理可得|MF1|=2|ON|=2a,运用双曲线的定义可得|MF2|﹣|MF1|=2a,即可得到b=2.【解答】解:双曲线C:x2﹣=1的a=1,c=,设F2(c,0),渐近线方程为y=bx,F2到渐近线的距离为=b,由题意可得|F2M|=2b,即有|ON|==a,由中位线定理可得|MF1|=2|ON|=2a,由双曲线的定义可得|MF2|﹣|MF1|=2a,即为2b﹣2a=2a,即b=2a=2.故选:B.10.在Rt△ABC中,∠ACB=90°,点O是△ABC所在平面内一点,且||=1,=1,=,则||的最小值为()A.B.C.D.3【考点】平面向量数量积的运算.【分析】以B为原点建立坐标系,设A(x,y),O(cosα,sinα),根据=1,=列方程得出x,y与α的关系,求出||2关于α的函数f(α),利用导数求出f(α)的最小值.【解答】解:以B为坐标原点建立平面直角坐标系,如图,设C(x,0),A(x,y).∵||=1,∴O在单位圆B上.设O(cosα,sinα).则=(cosα,sinα),=(x,y),.∵=1,=,∴,∴,∴.∴=(2x+cosα,y+sinα).∴||2=4x2+y2+4xcosα+2ysinα+1=4x2+y2+4=.令f(α)=.则f′(α)=.令f′(α)=0得4sin4α=cos4α.∴sin2α=,cos2α=.∴f min(α)==.∴||的最小值为=.故选:A.11.已知三棱柱ABC﹣A1B1C1,所有棱长为都为2,顶点B1在底面ABC内的射影是△ABC 的中心,则四面体A1﹣ABC,B1﹣ABC,C1﹣ABC公共部分的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】作出图形,找到三个棱锥的公共部分,利用相似三角形得出公共部分棱锥的高,代入体积公式计算.【解答】解:设菱形ABB1A1的中心为E,菱形BCC1B1的中心为F,连结CE,AF交点为P,则四面体A1﹣ABC,B1﹣ABC,C1﹣ABC公共部分为三棱锥P﹣ABC.取底面ABC的中心O,连结B1O,则B1O⊥平面ABC.延长BO交AC于D,则D为AC的中点,∵AB=BC=AC=2,O是正三角形ABC的中心,∴BD==,BO=BD=.∴B1O==.∵EF AC,∴△PEF∽△PCA,∴,又∵E是B1A的中点,∴P到底面ABC的距离h=×=.===.∴V P﹣ABC故选A.12.已知函数f(x)=(3x+1)e x+1+kx(k≥﹣2),若存在唯一整数m,使f(m)≤0,则实数k的取值范围是()A.(,2]B.[,2)C.(﹣,﹣]D.[﹣2,﹣)【考点】利用导数求闭区间上函数的最值.【分析】根据不等式的关系转化为两个函数的大小关系,构造函数g(x)=kx,h(x)=﹣(3x+1)e x+1,由题意得g(x)≤h(x)的整数解只有1个,求出h′(x)、判断出h(x)的单调性画出图象,利用图象和条件列出不等式组,求出实数k的取值范围.【解答】解:由f(x)≤0得(3x+1)e x+1+kx≤0,即kx≤﹣(3x+1)e x+1,设g(x)=kx,h(x)=﹣(3x+1)e x+1,h′(x)=﹣(3e x+1+(3x+1)e x+1)=﹣(3x+4)e x+1,由h′(x)>0得:﹣(3x+4)>0,即x<﹣,由h′(x)<0得:﹣(3x+4)<0,即x>﹣,即当x=﹣时,函数h(x)取得极大值,由题意知,存在唯一整数m,使f(m)≤0即g(m)≤h(m),当k≥0时,满足g(x)≤h(x)的整数解超过1个,不满足条件.当﹣2≤k<0时,要使g(x)≤h(x)的整数解只有1个,则,即,解得﹣2≤k<﹣,所以实数k的取值范围是[﹣2,﹣),故选:D.二、填空题(每题5分)13.直线y=x与抛物线y=2﹣x2所围成的图形面积为.【考点】定积分.【分析】求两个曲线的交点,利用定积分的几何意义求区域面积.【解答】解:将y=x,代入y=2﹣x2得x=2﹣x2,解得x=﹣2或x=1,y=﹣2,y=1,∴直线y=x和抛物线y=2﹣x2所围成封闭图形的面积如图所示,∴S=(2﹣x﹣x2)dx=(2x﹣﹣)|=(2﹣﹣)﹣(﹣4+﹣2)=,故答案为:.14.某校运动会上高一(1)班7名运动员报名参加4项比赛,每个项目至少有一人参加且每人只能报一个项目,其中A、B两名运动员报同一项目,则不同的报名种数共有种1560.【考点】计数原理的应用.【分析】依题意,分(4,1,1,1);(3,2,1,1),(2,2,2,1)三组,先分组,后排列,最后求和即可.【解答】解:依题意,7名同学可分四组:第一组(4,1,1,1),从不含A,B中选2名和A,报同一个项目,剩下的3人报3个项目,故有C41C52A33=240种,第二组(3,2,1,1),A,B单独一组,故有C41C53A33=240种,再选1人和A,B一组,故有C41C51C42A33=720种,共计240+720=960种,第三组(2,2,2,1),A,B单独一组,故有•C41=360种,根据分类计数原理,可得240+960+360=1560种,故答案为:1560种.15.已知正项数列{a n},a1=2,(a n+1)a n+2=1,a2=a6,则a11+a12=+.【考点】数列递推式.【分析】正项数列{a n},a1=2,(a n+1)a n+2=1,a2=a6,对n取值,利用递推关系即可得出.【解答】解:∵正项数列{a n},a1=2,(a n+1)a n+2=1,a2=a6,∴3a3=1,(a2+1)a4=1,(a3+1)a5=1,(a4+1)a6=1,(a5+1)a7=1,(a6+1)a8=1,(a7+1)a9=1,(a8+1)a10=1,(a9+1)a11=1,(a10+1)a12=1.∴a3=,a5=,a7=,a9=,a11=,a2=a4=a6==a8=a10=a12,则a11+a12=+=+.故答案为: +.16.已知O是锐角△ABC的外心,B=30°,若+=λ,则λ=1.【考点】向量在几何中的应用.【分析】作出图形,根据三角形外心的定义以及向量数量积的计算公式及三角函数的定义即可得出,这样在的两边同乘以,便可得出,可设△ABC的外接圆半径为R,从而由正弦定理便可得到,再根据正弦定理便可得出2sin(A+C)=λ,而A+C=150°,从而便可得出λ的值.【解答】解:如图,由得:;∴;即=;设△ABC外接圆半径为R,则;在△ABC中由正弦定理得:;∴;∴;∴2RsinCcosA+2RcosCsinA=λR;∴2sin(C+A)=2sin150°=λ;∴λ=1.故答案为:1.三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2﹣sinB•sinC=.(1)求A;(2)若a=4,求△ABC面积的最大值.【考点】余弦定理的应用.【分析】(1)利用二倍角公式,结合差、和角的余弦公式,即可求A;(2)若a=4,利用余弦定理,结合基本不等式,三角形的面积公式,即可求△ABC面积的最大值.【解答】解:(1)在△ABC中,∵cos2﹣sinB•sinC=,∴cos(B﹣C)﹣sinB•sinC=,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=;(2)由余弦定理可得16=b2+c2﹣≥(2﹣)bc,当且仅当b=c时取等号,∴bc≤16+8,∴S△ABC==≤4(+1),∴△ABC面积的最大值为4(+1).18.设A市120急救中心与B小区之间开120急救车所用时间为X分钟(单程),所用时50(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.【考点】几何概型.【分析】(1)由频率估计概率X的分布列,由分布列求期望值;(2)设X1,X2分别表示往返所需时间,明确事件是相互独立事件,根据独立事件同时发生的概率公式解答.(2)设X1,X2分别表示往返所需时间,X1,X2的取值相互独立且与X的分布列相同,设事件M“表示病人接到急救中心所需时间不超过75分钟“,由于从小区接病人上急救车大约需要5分钟,所以事件M对应“接病人在途中所用时间不超过70分钟”,即P()=P(X1+X2>70)=PP(X1=35,X2=40)+P(X1=40,X1=35)+P(X2=40,X2=40)=0.3×0.2×2+0.2×0.2=0.16,所以P(M)=1﹣P()=1﹣0.16=0.84.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)令AD=1,求出BD=,从而AD⊥BD,进而BD⊥平面PAD,由此能证明平面PAD⊥平面PBD.(2)以D为坐标原点,DA为x轴,DC为y轴,过D作垂直于平面ABCD的直线为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣PB﹣C的余弦值.【解答】证明:(1)在平行四边形ABCD中,令AD=1,则BD==,在△ABD中,AD2+BD2=AB2,∴AD⊥BD,又平面PAD⊥平面ABCD,∴BD⊥平面PAD,BD⊂平面PBD,∴平面PAD⊥平面PBD.解:(2)由(1)得AD⊥BD,以D为坐标原点,DA为x轴,DC为y轴,过D作垂直于平面ABCD的直线为z轴,建立空间直角坐标系,令AD=1,则A(1,0,0),B(0,,0),C(﹣1,,0),P(,0,),=(﹣1,,0),=(﹣),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则,取y=1,得=(),设平面PBC的法向量=(a,b,c),,取b=1,得=(0,1,2),∴cos<>===,由图形知二面角A﹣PB﹣C的平面角为钝角,∴二面角A﹣PB﹣C的余弦值为﹣.20.已知抛物线C1:x2=2py(p>0)的焦点为F,点F″与F关于x轴对称,直线l:y=2与抛物线C1相交于A,B两点,与y轴相交于M点,且•=﹣5.(1)求抛物线C1的方程;(2)若以F″,F为焦点的椭圆C2过点(,).①求椭圆C2的方程;②过点F的直线与椭圆C2相交于P,Q两点,且=2,求|+|的值.【考点】抛物线的简单性质.【分析】(1)用p表示出,的坐标,代入向量的数量积公式列方程解出p即可;(2)①使用待定系数法列方程解出椭圆方程;②设直线PQ的方程,联立方程组得出P,Q的坐标关系,根据=2列方程解出直线PQ的斜率k,求出PQ的中点N,则|+|=|2|.【解答】解:(1)F(0,),F″(0,﹣).A(﹣2,2),B(2,2).∴=(﹣2,2+),=(2,2﹣).∴=﹣4p+4﹣=﹣5,解得p=2.∴抛物线C1的方程为x2=4y.(2)①由(1)得F(0,1),F″(0,﹣1).设椭圆C2的方程为(a>b>0).则,解得.∴椭圆C2的方程为:.②设过点F的直线方程为:y=kx+1,设P(x1,y1),Q(x2,y2),联立方程组,消元得:(k2+2)x2+2kx﹣1=0,∴x1+x2=﹣,x1•x2=﹣.∵=(﹣x1,1﹣y1),=(x2,y2﹣1),,∴﹣x1=2x2,∴﹣x2=﹣,﹣2x22=﹣.∴2=.解得k2=.即k=±.设PQ的中点为N(,),则当k=时,N(﹣,),∴=(﹣,﹣).∴|+|=|2|=2=.同理可得:当k=﹣,||=.∴||=.21.已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,通过讨论m的范围,确定函数的单调性;(2)求出g(x)的导数,通过讨论m的范围,求出函数的单调区间,从而求出函数的最值,判断是否符合题意,从而判断出m的范围即可.【解答】解:(1)由已知得mx+1>0,f′(x)=,①若m>0时,由mx+1>0,得:x>﹣,恒有f′(x)>0,∴f(x)在(﹣,+∞)递增;②若m<0,由mx+1>0,得:x<﹣,恒有f′(x)<0,∴f(x)在(﹣∞,﹣)递减;综上,m>0时,f(x)在(﹣,+∞)递增,m<0时,f(x)在(﹣∞,﹣)递减;(2)g(x)=ln(mx+1)+﹣2,(m>0),∴g′(x)=,令h(x)=mx2+4m﹣4,m≥1时,h(x)≥0,g′(x)≥0,g(x)无极值点,0<m<1时,令h(x)=0,得:x1=﹣2或x2=2,由g(x)的定义域可知x>﹣且x≠﹣2,∴﹣2>﹣且﹣2≠﹣2,解得:m≠,∴x1,x2为g(x)的两个极值点,即x1=﹣2,x2=2,且x1+x2=0,x1•x2=,得:g(x1)+g(x2)=ln(mx1+1)+﹣2+ln(mx2+1)+﹣2=ln(2m﹣1)2+﹣2,令t=2m﹣1,F(t)=lnt2+﹣2,①0<m<时,﹣1<t<0,∴F(t)=2ln(﹣t)+﹣2,∴F′(t)=<0,∴F(t)在(﹣1,0)递减,F(t)<F(﹣1)<0,即0<m<时,g(x1)+g(x2)<0成立,符合题意;②<m<1时,0<t<1,∴F(t)=2lnt+﹣2,F′(t)=<0,∴F(t)在(0,1)递减,F(t)>F(1)=0,∴<m<1时,g(x1)+g(x2)>0,不合题意,综上,m∈(0,).选做题(选一题)选修4-1:几何体证明选讲22.如图,PA为半径为1的⊙O的切线,A为切点,圆心O在割线CD上,割线PD与⊙O相交于C,AB⊥CD于E,PA=.(1)求证:AP•ED=PD•AE;(2)若AP∥BD,求△ABD的面积.【考点】与圆有关的比例线段.【分析】(1)连接AC,先证明,利用切割线定理得到=.Rt△ACD中,AB⊥CD,由射影定理得AE2=CE•ED,即可证明AP•ED=PD•AE;(2)求出AB,证明△ABD是等边三角形,即可求△ABD的面积.【解答】证明:(1)连接AC,∵PA为⊙O的切线,∴∠PAC=∠ADC,∵CD为⊙O的直径,AB⊥CD,∴∠BDC=∠ADC.∵∠BDC=∠CAB,∴∠PAC=∠CAB,∴=,∴,∵PA为⊙O的切线,∴AP2=PC•PD,∴=.Rt△ACD中,AB⊥CD,由射影定理得AE2=CE•ED,∴=,∴,∴AP•ED=PD•AE;解:(2)∵AP∥BD,∴∠P=∠BDC.Rt△APE中,∠PAC=∠CAB=∠P=30°,∴AP=PC.∵AP2=PC•PD,∴AP2=PC(PC+2),∴PC=AC=1,∴AE=,AB=∵∠ADB=60°,∴△ABD是等边三角形,∴S△ABD=.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.(1)求曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.【考点】参数方程化成普通方程.【分析】(1)曲线C1的参数方程为(α为参数),利用cos2α+sin2α=1可得普通方程.曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4,利用y=ρsinθ,x=ρcosθ即可化为直角坐标方程.(2)设B(cosβ,2sinβ),则|BC1|==,利用三角函数的单调性与值域、二次函数的单调性即可得出.【解答】解:(1)曲线C1的参数方程为(α为参数),利用cos2α+sin2α=1可得:x2+(y﹣1)2=.圆心C(0,1).曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4,可得直角标准方程:y2+4x2=4,即+y2=4.(2)设B(cosβ,2sinβ),则|BC 1|==≥,当sin 时取等号.∴|AB |的最小值=﹣.选修4-5:不等式选讲24.已知函数f (x )=2|x +a |﹣|x ﹣1|(a >0).(1)若函数f (x )与x 轴围成的三角形面积的最小值为4,求实数a 的取值范围; (2)对任意的x ∈R 都有f (x )+2≥0,求实数a 的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)求出f (x )分段函数的形式,求出A ,B ,C 的坐标,从而表示出三角形的面积,求出a 的范围即可;(2)求出f (x )的最小值,从而得到关于a 的不等式,解出即可.【解答】解:(1)f (x )=,如图示:函数f (x )与x 轴围成的△ABC ,求得:A (﹣2a ﹣1,0),B (,0),C (﹣a ,﹣a ﹣1),∴S △ABC = [=(a +1)2≥4(a >0),解得:a ≥﹣1;(2)由(1)得:f (x )min =f (﹣a )=﹣a ﹣1,对任意x ∈R ,都有f (x )+2≥0,即(﹣a ﹣1)+2≥0,解得:0<a ≤1.2016年9月15日。
16年数三考研真题
16年数三考研真题2016年数学三考研真题考研是无数学子追求梦想的舞台,而数学三作为考研数学科目之一,对考生的数学基础和解题能力提出了较高的要求。
本文将回顾2016年数学三考研真题,并对其中涉及的各个知识点进行分析和解答。
第一部分:选择题选择题是考研中常见的题型之一,可以帮助考生快速检验自己的基础知识。
下面是2016年数学三考研真题中的一道选择题:1. 设函数 f(x) = (sinx)^2 - (cosx)^2, g(x) = (sinx)^2 + (cosx)^2,若对任意 x∈R,f(x) <= g(x),则 x∈()。
A. (-π/4, π/4)B. (π/4, π/2)C. (0, π/2)D. (π/4, π/4)解析:考察三角函数的性质。
根据已知条件,f(x) <= g(x),即(sinx)^2 - (cosx)^2 <= (sinx)^2 + (cosx)^2,化简得 sin2x <= 1,再考虑到sin2x 取值范围为 [-1, 1],得到 -1 <= sin2x <= 1。
由此可知,对任意实数 x,都满足该不等式。
因此,选项 A、B、C、D 都是正确的答案。
第二部分:解答题解答题是考察考生解题能力和深度理解能力的重要环节。
下面是2016年数学三考研真题中的一道解答题:2. 设 a_n = a_1 + a_2 + ... + a_n,其中 a_1 = 5,a_{n+1} - a_n = n + 1。
求证:a_n = n(n + 5)/2。
解析:考察数列求和的方法。
根据已知条件,可以得到 a_{n+1} =a_n + (n + 1)。
将式子两边从 n = 1 加到 n = m 可得到 a_{m+1} = a_1 + (2 + 3 + ... + (m + 1))。
利用等差数列求和公式,可知 2 + 3 + ... + (m + 1) = (m + 1)(m + 2)/2 - 1。