蔗糖密度梯度离心手册-Sucrose Gradient separation manual

合集下载

蔗糖密度梯度离心步骤

蔗糖密度梯度离心步骤

蔗糖密度梯度离心是一种分离和纯化生物分子(如蛋白质、核酸等)的常用方法。

密度梯度离心利用溶液中不同密度的层级来实现分离,蔗糖是常用的密度梯度介质之一。

下面是蔗糖密度梯度离心的一般步骤:
1. 准备样品:将待分离的混合物样品准备好,通常是细胞裂解液、细胞上清液、蛋白质提取物等。

2. 制备蔗糖梯度:按照需要离心的生物分子的密度范围,选择适当的蔗糖浓度。

通常是在离心管中按体积比例混合蔗糖和缓冲液,制备成密度梯度。

3. 加样:将待分离的样品轻缓地加到蔗糖梯度上,以防混合。

4. 离心:将装有样品和蔗糖梯度的离心管放入离心机中,进行高速离心。

离心过程会使样品中的生物分子沉降到与其密度相匹配的蔗糖层级中。

5. 收集分离物:离心后,观察离心管中形成的密度梯度。

在离心管中,生物分子会沉降到不同的密度层级,形成分离的带状区域。

用适当的技术,如针管、泵或滴管,从密度梯度中收集分离的生物分子。

密度梯度离心是一种常用的生物分离技术,特别适用于分离不同密度的生物分子或细胞亚群。

在生物学、生物化学、免疫学等领域中
广泛应用,用于纯化和分析复杂的混合物。

蔗糖密度梯度离心原理

蔗糖密度梯度离心原理

蔗糖密度梯度离心原理
蔗糖密度梯度离心是一种常用的生物化学分离技术,它利用蔗
糖在水溶液中形成梯度的性质,对生物大分子进行分离和纯化。


文将详细介绍蔗糖密度梯度离心的原理及其在生物化学实验中的应用。

蔗糖密度梯度离心的原理是利用蔗糖在水溶液中形成梯度的性质。

当蔗糖溶液的浓度逐渐增加时,溶液的密度也会逐渐增大,形
成密度梯度。

生物大分子在这样的密度梯度中会受到离心力的作用,从而在离心过程中按照其密度不同而分布在不同位置。

这样,就可
以实现对生物大分子的分离和纯化。

蔗糖密度梯度离心广泛应用于生物化学实验中。

例如,可以利
用蔗糖密度梯度离心来分离和纯化细胞器,如线粒体、叶绿体和内
质网等。

此外,蔗糖密度梯度离心还可用于分离和纯化蛋白质、核
酸和病毒等生物大分子。

在分子生物学和生物化学研究中,蔗糖密
度梯度离心是一项非常重要的技术手段。

在进行蔗糖密度梯度离心实验时,首先需要制备蔗糖溶液,并
将其加入离心管中。

然后,样品溶液也加入离心管中。

接下来,将
离心管放入离心机中进行离心。

在离心过程中,生物大分子会在密度梯度中分布到不同位置。

最后,根据需要,可以采集不同位置的生物大分子,从而实现分离和纯化的目的。

总之,蔗糖密度梯度离心是一种重要的生物化学分离技术,它利用蔗糖在水溶液中形成梯度的性质,对生物大分子进行分离和纯化。

在生物化学实验中,蔗糖密度梯度离心被广泛应用于细胞器、蛋白质、核酸和病毒等生物大分子的分离和纯化。

掌握蔗糖密度梯度离心的原理和操作方法,对于开展生物化学研究具有重要意义。

蔗糖密度梯度离心法纯化蛋白步骤

蔗糖密度梯度离心法纯化蛋白步骤

蔗糖密度梯度离心法纯化蛋白步骤下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!蔗糖密度梯度离心法在蛋白质纯化中的应用步骤蔗糖密度梯度离心法是一种常用的蛋白质纯化技术,它利用不同分子在溶液中沉降速度的差异来分离和纯化蛋白质。

实验1 蔗糖密度梯度离心法提取叶绿体

实验1 蔗糖密度梯度离心法提取叶绿体

实验1 蔗糖密度梯度离心法提取叶绿体实验原理2、1 概述密度梯度区带离心法(简称区带离心法):是将样品加在惰性梯度介质中进行离心沉降或沉降平衡,在一定的离心力下把颗粒分配到梯度中某些特定位置上,形成不同区带的分离方法。

此法的优点是:①分离效果好,可一次获得较纯颗粒;②适应范围广,能像差速离心法一样分离具有沉降系数差的颗粒,又能分离有一定浮力密度差的颗粒;③颗粒不会挤压变形,能保持颗粒活性,并防止已形成的区带由于对流而引起混合。

此法的缺点是:①离心时间较长;②需要制备惰性梯度介质溶液;③操作严格,不易掌握。

密度梯度区带离心法又可分为两种:(1)差速区带离心法:当不同的颗粒间存在沉降速度差时(不需要像差速沉降离心法所要求的那样大的沉降系数差)。

在一定的离心力作用下,颗粒各自以一定的速度沉降,在密度梯度介质的不同区域上形成区带的方法称为差速区带离心法。

此法仅用于分离有一定沉降系数差的颗粒(20% 的沉降系数差或更少)或分子量相差3倍的蛋白质,与颗粒的密度无关,大小相同,密度不同的颗粒(如线粒体,溶酶体等)不能用此法分离。

离心管先装好密度梯度介质溶液,样品液加在梯度介质的液面上,离心时,由于离心力的作用,颗粒离开原样品层,按不同沉降速度向管底沉降,离心一定时间后,沉降的颗粒逐渐分开,最后形成一系列界面清楚的不连续区带,沉降系数越大,往下沉降越快,所呈现的区带也越低,离心必须在沉降最快的大颗粒到达管底前结束,样品颗粒的密度要大于梯度介质的密度。

梯度介质通常用蔗糖溶液,其最大密度和浓度可达1、28 kg/cm3和60%。

此离心法的关键是选择合适的离心转速和时间(2)等密度区带离心法:离心管中预先放置好梯度介质,样品加在梯度液面上,或样品预先与梯度介质溶液混合后装入离心管,通过离心从而形成梯度,这就是预形成梯度和离心形成梯度的等密度区带离心产生梯度的二种方式。

离心时,样品的不同颗粒向上浮起,一直移动到与它们的密度相等的等密度点的特定梯度位置上,形成几条不同的区带,这就是等密度离心法。

标准操作规程(SOP)——蔗糖密度梯度离心纯化流感病毒

标准操作规程(SOP)——蔗糖密度梯度离心纯化流感病毒

标准操作规程(SOP)——一、目的流感病毒的浓缩和纯化方式可以分为物理和化学的方法。

如:超速离心法,酸沉淀法,红细胞吸附-释放法,蒸馏水透析法及聚乙二醇浓缩法等。

其中超速离心法最为常用并且纯度较高。

本SOP明确流感病毒蔗糖密度梯度离心纯化的标准操作方法,保证了实验结果的职能却可靠。

二、范围适用于中国国家流感中心的所有技术人员进行蔗糖密度梯度离心纯化流感病毒。

三、程序(一)生物安全要求H5、H7亚型高致病性禽流感病毒及H2N2亚型流感病毒的操作需要在BSL-3级实验室中进行。

其余流感病毒的操作需要在BSL-2级实验室中进行。

操作人员的生物安全防护要求详见流感中心“生物安全个人防护SOP”(二)材料1.病毒液2.PBS(100mmol/L pH7.2)液3.30%和60%蔗糖溶液4.耗材(注射器,离心管,吸管,实验滤纸)(三)实验步骤1.将待纯化的流感病毒种子株接种鸡胚或者MDCK细胞,收获病毒尿囊液。

具体接种方法参见“流感病毒的鸡胚分离方法SOP”和“MDCK细胞分离流感病毒SOP”。

2.将流感病毒收获的鸡胚尿囊液使用实验滤纸粗滤,以去除蛋壳或者其它沉淀物。

MDCK细胞培养的病毒收获液可以省略此步骤。

3.收集过滤液,使用SIGMA3K18 高速离心及2000rpm离心20min,去沉渣。

4.将上清使用OptimaTM L-80XP 超速离心机30000rpm的转速离心1h,去上清。

加入100mmol/L pH7.2的PBS液数滴浸泡沉淀,置4℃冰箱过夜。

5.制备蔗糖梯度管,用10mL吸管加5mL的60%的蔗糖溶液于管底,在其上小心加入10mL的30%的蔗糖溶液。

在其上缓慢加入20mL病毒悬液。

6.使用OptimaTM L-80XP 超速离心机20000rpm的转速离心1.5h,取出离心管。

使用注射器小心吸取位于30%和60%之间的靠近管底的病毒条带。

7.于所收获的液体加入5倍体积的PBS液,混匀后30000rpm的转速离心1h,去上清。

利用蔗糖密度梯度离心法分离小麦醇溶蛋白的方法[发明专利]

利用蔗糖密度梯度离心法分离小麦醇溶蛋白的方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201711215198.5(22)申请日 2017.11.28(71)申请人 河南工业大学地址 450001 河南省郑州市高新技术产业开发区莲花街100号河南工业大学科技处(72)发明人 贾峰 王金水 陈康 李桂玲 王琦 孙东东 (51)Int.Cl.C07K 14/415(2006.01)C07K 1/36(2006.01)C07K 1/14(2006.01)C07K 1/34(2006.01)(54)发明名称利用蔗糖密度梯度离心法分离小麦醇溶蛋白的方法(57)摘要本发明涉及小麦面筋蛋白分离及纯化加工技术。

本发明公开了一种利用蔗糖密度梯度离心法分离小麦醇溶蛋白的方法。

首先将蔗糖溶于水中,配制成不同质量百分比浓度的溶液,然后将待分离的溶于70%乙醇的醇溶蛋白溶液,注入离心管底。

采用层铺法配制10~70%的蔗糖密度梯度离心液。

在4℃下,以5000~20000g ,离心10~60 min,待醇溶蛋白达到沉降平衡后,取相应浓度的蔗糖溶液,采用分光光度计在280 nm波长下,测定所在层蔗糖溶液的蛋白质含量,根据不同的蔗糖密度可以将醇溶蛋白分为轻质、中质和重质醇溶蛋白。

本发明适用于分离纯化醇溶蛋白,结果准确,重复性好,操作简便、易行,需样品量少。

权利要求书1页 说明书2页CN 107652361 A 2018.02.02C N 107652361A1.利用蔗糖密度梯度离心法分离小麦醇溶蛋白的方法,其特征在于:所述蔗糖密度梯度离心采用不同浓度的蔗糖溶液配置成为10%-70%(v/w)的浓度梯度溶液,用5 000- 20 000 g的离心力分离小麦醇溶蛋白组分。

2.根据权利要求1所述的条件可以将小麦醇溶蛋白分离,其特征在于:醇溶蛋白在浓度为10%-30%的蔗糖溶液中的称为轻质醇溶蛋白,醇溶蛋白在浓度为30%-50%的蔗糖溶液中的称为中质醇溶蛋白,醇溶蛋白在浓度为50%-70%的蔗糖溶液中的称为重质醇溶蛋白。

蔗糖密度梯度离心原理

蔗糖密度梯度离心原理

蔗糖密度梯度离心原理
蔗糖密度梯度离心原理是一种常用的离心分离方法。

它基于不同物质在离心离心过程中所受的离心力不同,利用离心离心力将混合物中的物质分离出来。

在蔗糖密度梯度离心中,通常将一定浓度的蔗糖溶液制备成密度梯度。

制备密度梯度的方法可以通过加入不同浓度的蔗糖溶液层层加入,形成从低密度到高密度逐渐增大的梯度。

将待分离的混合物滴加到密度梯度上方,然后进行离心。

在离心过程中,不同密度的物质根据它们在蔗糖梯度中的浮力和离心力的平衡关系在梯度中形成不同高度的分离层。

离心时间越长,分离越明显。

离心结束后,可以通过分层梯度冷冻切片或者以分离层的方式收集不同密度的物质。

这种方法可以用于分离和纯化蛋白质、细胞器、病毒、DNA、RNA等多种生物样品。

蔗糖密度梯度离心原理的优势在于分离效果好,分离度高,可以分离密度相近的物质。

且操作简单,适用于多种生物样品的分离。

而且,蔗糖溶液对生物大分子具有较好的保护作用,不易对生物样品产生影响。

需要注意的是,在蔗糖密度梯度离心过程中,离心速度和时间的选择需要根据具体的实验条件和分离样品的特性来确定。

同时,在进行离心前需要将样品均质悬浮并避免气泡的产生,以保证分离效果的准确性。

蔗糖梯度密度离心

蔗糖梯度密度离心

纯化病毒常用的方法是蔗糖密度梯度离心法,能得到比较纯的病毒。

其过程如下:1、将收集的组织或脏器或其他,用玻璃匀浆器充分研磨后制成悬液,经反复冻融3 次后,置- 20 ℃冰箱中,备用。

2、先以5000g离心15分钟后,获取上清夜,然后再20000g高速离心30分钟后取上清夜。

3、接着10万g超速离心2h,将沉淀用少量STE溶解。

4、先在超速离心管中加入5-8mL的第3步所获取的含病毒样品的溶解液,然后在离心管中依次加入30 % , 45 % , 60 %的蔗糖,加的时候是用长针头从底部往上加的。

11万g离心2.5h,发现在30 %与45 % 以及45 % 与60 %之间都有一条明亮的带,用长针头将两条不同部位的带都吸取出来,分别收集到不同的瓶内。

5、去蔗糖;用STE缓冲液适量稀释纯化的病毒,然后11万g离心3h,用少量STE (根据沉淀的量决定加入多少)缓冲液把沉淀悬起,即最后获得了纯化的病毒。

-20度冻纯备用,用时可用分光光度计测定其病毒含量。

问:我在做病毒纯化时,需先用超速离心,再用蔗糖密度梯度离心,求助高手用蔗糖密度梯度离心时的转速与超速离心时的转速有联系吗,是相等还是蔗糖密度梯度离心的转速要比超速离心的速度高?若为后者,那又若何决定蔗糖密度梯度离心时的转速?谢谢!答:1、病毒的纯化时,先用超速离心,你应该查一下资料,看在多大的转速时能够把病毒离心下来.那么你的这一步的转速应该至少不小于该转速,你这一步离心下来的沉淀中含有病毒和蛋白成分。

2、因此你的第二步工作就是要将病毒与其他的蛋白以及杂质分离开,密度梯度离心就可以达到该目的。

这时你的离心速度要考虑病毒的大小和蔗糖的密度,使得病毒不能沉淀道管底又可与蛋白层分开。

这也可能要具体问题具体分析。

问:谢谢主任的指点,我的病毒直径为100nm。

查阅了有观资料,超速离心为21000rpm,45min,我用24000rpm2hr,我用20%-60%连续蔗糖密度梯度离心,该病毒在蔗糖中的浮密度为1.18mg/ml,请问我的糖密度梯度离心速度大概是多少?谢谢!答:我们实验室IBV (80-100nm)的纯化是:l 病毒纯化浓缩(方法一)1、冷冻之尿囊液解冻后,4℃,11000rpm离心20min。

不连续蔗糖密度梯度离心法

不连续蔗糖密度梯度离心法

不连续蔗糖密度梯度离心法嘿,今天咱们聊聊一个有趣的实验方法,叫做不连续蔗糖密度梯度离心法。

听起来是不是有点拗口?别担心,这可不是在教你什么高深的科学理论,而是个好玩又实用的东西,像是一道魔术,让你在实验室里“施展法术”。

想象一下,你有一堆细胞,要把它们分开。

就像在一场派对上,你得把舞池里的舞者和坐在角落里喝果汁的小伙伴分开。

咋办呢?这时候不连续蔗糖密度梯度离心法就派上用场了。

你先准备一些不同浓度的蔗糖溶液,嘿,这可不是拿来做甜点的,而是要把它们分层。

就像你喝的那种分层饮料,底下是浓稠的果汁,上面漂浮着清爽的气泡水。

然后,咱们把细胞样本放进去,转起来,呼啦啦,转速越来越快。

细胞就像在跳舞,重的细胞会往下沉,而轻的则慢慢漂到上面。

就这样,浓度高的蔗糖溶液在底部,浓度低的在顶部,形成了一个美丽的梯度。

这时候,就像一场精心策划的比赛,细胞们按照密度一层层地分开。

可别小看这层次分明的效果,简直能让你眼前一亮。

有趣的是,这个过程不仅仅是个玩笑,实际上它能帮助科学家们研究细胞的特性。

比如,某些细胞的内含物质,像是蛋白质、核酸,统统能在这个梯度里找到自己合适的位置。

就像每个人在聚会上找到自己最舒服的地方,有些人喜欢热闹,有些人更享受安静的角落。

通过这种方法,科学家们能够分离和纯化目标细胞,进而进行后续的实验。

说到这里,大家可能会想,离心机是不是个高大上的东西?它就像厨房里的搅拌机,只不过它把东西转得飞快,利用离心力把细胞和其他成分分开。

很多人一听“离心”,就觉得特别复杂,实则不然,只要你把样品放好,转起来,就能看见分层的奇观。

在实验室里,大家常常会调侃说,这简直是“看谁更沉”的游戏。

离心法的原理也很简单,重的下沉,轻的浮起。

这就好比吃火锅,底下的肉和菜煮得熟透了,浮上来的豆腐可能还在慢慢热。

科学家们就是借着这个道理,让细胞在密度的海洋中漂流,找到自己的位置。

最妙的是,这个方法还可以用来分离病毒和细胞器,真是多才多艺。

核糖体蔗糖密度梯度离心

核糖体蔗糖密度梯度离心

核糖体蔗糖密度梯度离心
核糖体蔗糖密度梯度离心是一种常用的分离纯化核糖体的方法。

下面将对这一方法的原理、步骤和注意事项进行详细介绍。

一、原理
核糖体蔗糖密度梯度离心的原理基于不同密度的物质在离心过程中会分层的特性。

在蔗糖水溶液中加入一定量的高密度物质(如葡萄糖或蔗糖),形成密度逐渐递增的梯度,将待离心的样品在梯度上离心,不同密度的物质会在不同位置分层,在离心后的梯度上可以看到不同密度的物质呈现出不同的色带,可以将其进行分离纯化。

二、步骤
1. 制备离心液:将一定量的蔗糖或者葡萄糖溶于缓冲溶液中,混合均匀,制备出密度逐渐递增的梯度。

通常梯度密度范围为10%-50%,步长为5%。

2. 供试样品制备:取核糖体样品经过若干步骤制备出适宜的离心液上样品,目的是要使样品在离心过程中能够与梯度中的不同密度层渐进性分离。

3. 离心操作:将上述制备好的供试样品小管插入到离心管中,离心速度通常为20,000g,离心时间约为4小时,温度为4℃。

4. 取样分析:离心后,可以从顶部开始分别取出每一层样品,用分光光度计或其他检测方法进行检测所需物质的含量和纯度。

三、注意事项
1. 制备梯度时应注意密度的准确性和均匀性,否则会影响到分离效果。

2. 离心时需注意平衡和使用衡量量具,以确保离心的准确性。

3. 取样时应避免混合不同密度的样品,以免影响分析准确性。

4. 离心后的样品需在低温下进行保存,以确保样品质量。

优化的蔗糖密度梯度离心法分离完整叶绿体

优化的蔗糖密度梯度离心法分离完整叶绿体

优化的蔗糖密度梯度离心法分离完整叶绿体张年辉【摘要】建立了一种简单、低成本的分离完整叶绿体的方法.以家用食品料理机破碎植物细胞,采用两层不连续蔗糖梯度和使用较低的离心速度等措施降低了实验成本和对设备的要求;通过采取措施防止叶绿体粗提物制备过程中叶绿体外被膜的破裂,以及在梯度制备和随后离心过程中由于颗粒扩散而导致的梯度不稳定,从而使方法具有很好的重复性.用该方法分离的完整叶绿体完整性很高(>90%),可以用于叶绿体细胞生物学、生物化学与分子生物学等多方面的研究.【期刊名称】《实验技术与管理》【年(卷),期】2010(027)007【总页数】3页(P44-46)【关键词】完整叶绿体;密度梯度离心;不连续蔗糖梯度;本科生实验【作者】张年辉【作者单位】四川大学,生命科学学院,四川,成都,610064【正文语种】中文【中图分类】Q2-33;Q942制备完整叶绿体是进行叶绿体细胞生物学、生物化学与分子生物学研究的必要前提和基础。

完整叶绿体制备的一般过程是先破碎细胞,用差速离心法得到去除细胞核的叶绿体粗提物,然后再将叶绿体粗提物经密度梯度离心以制备得到完整叶绿体。

上述方法中,用密度梯度离心从叶绿体粗提物中分离完整叶绿体是这一实验成败的关键。

目前已经有很多成熟的方法用于完整叶绿体的分离。

例如采用Percoll连续梯度或者Percoll不连续梯度[1-2],以及不连续的蔗糖梯度。

所有这些方法中,有的需要有特殊的仪器设备,例如用Percoll梯度分离时,需要配有甩开转头(swing-out rotor)或垂直转头(vertical rotor)的高速冷冻离心机,而且使用Percoll梯度的成本较高。

有的实验操作复杂,例如采用不连续蔗糖梯度时,由于颗粒在不同梯度之间易于扩散,故梯度的制备和维持比较困难,而且要使用转速高达25 kr/min高速冷冻离心机[3]。

正是由于以上制约因素的存在,使得目前将密度梯度离心技术应用于本科生实验还不多见。

梯度 离心 蔗糖密度法

梯度 离心 蔗糖密度法

密度梯度离心法英文名称:density gradient centrifugation method〔1〕亦称平衡密度梯度离心法。

用超离心机对小分子物质溶液,长时间加一个离心力场达到沉降平衡,在沉降池内从液面到底部出现一定的密度梯度。

若在该溶液里加入少量大分子溶液,则溶液内比溶剂密度大的部分就产生大分子沉降,比溶剂密度小的部分就会上浮,最后在重力和浮力平衡的位置,集聚形成大分子带状物。

利用这种现象,测定核酸或蛋白质等的浮游密度,或根据其差别进行分析的一种沉降平衡法。

自1958年米西尔逊(M.Meselson),斯塔尔(F.W.Stahl),维诺格拉德(J.Vinograd)成功地分离了〔15N〕DNA和〔14N〕DNA以来,该法取得许多成果。

为得到必要的浓度梯度,多采用浓氯化铯溶液,所以有时也使用氯化铯浓度梯度离心法这个名称,还可采用氯化铷、溴化铯等溶液。

通常利用分析超离心机,但在将细胞颗粒成分进行分离等以纯化为目的的情况,利用密度差,使用分离超离心机,采用预先制备好的蔗糖等的密度梯度。

〔2〕采用蔗糖等一些小分子溶液,预先在分离超离心机的样品地内制备出密度梯度,在其上面再加上一层少量的大分子溶液后,离心,大分子就形成层状而沉降。

若含有沉降系数不同的许多成分,就会出现许多层。

这种情况采用适当的编排号码,取出样品池内的溶液,然后进行研究。

这是与〔1〕不同的一种沉降速度法,除了以相同的目的被用于通常的沉降速度法外,在能取出分离物这点上是有优越性的。

因多采用蔗糖密度梯度,所以亦称为蔗糖密度梯度离心法。

按同样原理,也可使用分析超离心机进行测定。

纯化病毒常用的方法是蔗糖密度梯度离心法,能得到比较纯的病毒。

其过程如下:1、将收集的组织或脏器或其他,用玻璃匀浆器充分研磨后制成悬液,经反复冻融3 次后,置- 20 ℃冰箱中,备用。

2、先以5000g离心15分钟后,获取上清夜,然后再20000g高速离心30分钟后取上清夜。

实验1蔗糖密度梯度离心法提取叶绿体

实验1蔗糖密度梯度离心法提取叶绿体

蔗糖密度梯度离心法提取叶绿体一实验目的掌握手工制作密度梯度的技术,了解蔗糖密度梯度离心的原理及优缺点。

二实验原理2.1 概述密度梯度区带离心法(简称区带离心法):是将样品加在惰性梯度介质中进行离心沉降或沉降平衡,在一定的离心力下把颗粒分配到梯度中某些特定位置上,形成不同区带的分离方法。

此法的优点是:①分离效果好,可一次获得较纯颗粒;②适应范围广,能像差速离心法一样分离具有沉降系数差的颗粒,又能分离有一定浮力密度差的颗粒;③颗粒不会挤压变形,能保持颗粒活性,并防止已形成的区带由于对流而引起混合。

此法的缺点是:①离心时间较长;②需要制备惰性梯度介质溶液;③操作严格,不易掌握。

密度梯度区带离心法又可分为两种:(1)差速区带离心法:当不同的颗粒间存在沉降速度差时(不需要像差速沉降离心法所要求的那样大的沉降系数差).在一定的离心力作用下,颗粒各自以一定的速度沉降,在密度梯度介质的不同区域上形成区带的方法称为差速区带离心法。

此法仅用于分离有一定沉降系数差的颗粒(20% 的沉降系数差或更少)或分子量相差3倍的蛋白质,与颗粒的密度无关,大小相同,密度不同的颗粒(如线粒体,溶酶体等)不能用此法分离。

离心管先装好密度梯度介质溶液,样品液加在梯度介质的液面上,离心时,由于离心力的作用,颗粒离开原样品层,按不同沉降速度向管底沉降,离心一定时间后,沉降的颗粒逐渐分开,最后形成一系列界面清楚的不连续区带,沉降系数越大,往下沉降越快,所呈现的区带也越低,离心必须在沉降最快的大颗粒到达管底前结束,样品颗粒的密度要大于梯度介质的密度。

梯度介质通常用蔗糖溶液,其最大密度和浓度可达1.28 kg/cm3和60%。

此离心法的关键是选择合适的离心转速和时间(2)等密度区带离心法:离心管中预先放置好梯度介质,样品加在梯度液面上,或样品预先与梯度介质溶液混合后装入离心管,通过离心从而形成梯度,这就是预形成梯度和离心形成梯度的等密度区带离心产生梯度的二种方式。

蔗糖密度梯度离心

蔗糖密度梯度离心
靠自身分裂或出芽进行增殖。 分裂方式: 间壁分离:内膜向中心内褶,与对侧接触后一分为二; 收缩分离:内膜中央收缩并向两端延长,一分为二; 出芽分裂:先长出小芽,再通过分裂与母体分离。 线粒体的起源: 内共生假说:前真核生物吞噬一种需氧细菌并使其留在细胞内,形成共生关系逐渐演变为线粒体; 非共生假说(分化假说):线粒体的发生是质膜内陷的结果,并认为真核生物的前身是一种进化较高的需氧细菌,mtDNA起源于质粒DNA。
线粒体的化学组成
主要成分:脂类/蛋白质=200~300mg/g、水分 蛋白质:15~50%在基质和膜间腔,其余在膜上 脂类:90%在膜上,外膜上脂类/蛋白质=1,内膜上脂类组成特殊,心磷脂占20%以上,不含胆固醇; 线粒体酶的分布:~120种(参见P111表8-1) 外膜:特征酶是单胺氧化酶,还含有犬尿氨酸羟化酶、NADH-CytC氧化酶、脂肪酸激酶等; 膜间腔:腺苷酸激酶为特征酶,还含有二磷酸核苷激酶等; 内膜:呼吸链及各种脱氢酶系、氧化磷酸化酶系、换能系统等,特征酶是琥珀酸脱氢酶; 基质:三羧酸循环酶系、蛋白质和核酸合成酶系、脂肪酸氧化酶系、氨酰转移酶、DNA和RNA聚合酶线粒体核糖体等,苹果酸脱氢酶是其特征酶。
核糖体的形态结构
沉降系数(sedimentation coefficient): 测量物质在离心力作用下的沉降速度,以漂浮单位S表示。每一个漂浮单位为110-13秒沉降系数。某蛋白质沉降系数(s)为110-11秒,则为100个漂浮单位,即100S。沉降速度与颗粒的大小、形状和分子量成比例。 类型与分布(参见P98表7-1) 形态结构: 电镜下为球形到椭球形,15~30nm 由大小两个亚基组成 在一定的Mg2+浓度范围内能聚合和解离
内膜系统的基本结构
与细胞膜相同,区别在于膜脂组成及蛋白质种类不同且较薄。 内膜系统浮在胞质溶胶中,由立体网络支撑,溶胶中含有高浓度蛋白质。 内膜系统是相互联系的。 内膜系统处于运动状态。 内膜系统的主要成员: 核被膜:双层膜,外膜向外延伸与糙面内质网相连。 内质网:细胞内部封闭的腔管系统,并存在囊、泡、池等形态;分为粗面内质网和滑面内质网。 高尔基复合体:由光面膜包围的扁平囊、腔、潴泡组成的小体堆积而成。 液泡系:胞饮泡、消化泡、分泌泡等。

蔗糖梯度离心

蔗糖梯度离心

蔗糖梯度离心
人类在面对滋养营养和烹饪料理时,种类繁多的蔗糖一直是必不可少的原料。

随着人类的不断发展,酿造和制造行业也在发展,蔗糖作为原料就变得越来越重要了。

此外,糖料中不同的成分也是制作多种糖制品的主要原料,这其中就包括蔗糖。

蔗糖梯度离心是以蔗糖为原料,采用离心机进行分离提纯手段,将混合物分离为单一物质的一种工艺。

蔗糖梯度离心包括蔗糖提纯离心和蔗糖浓缩离心两个主要过程。

蔗糖提纯离心是指将蔗汁经过离心机的处理,毛的的糖浆分成蔗糖和其他成分的离心过程,即将原始蔗汁中的蔗糖分离出来,获得纯度较高的蔗糖。

蔗糖浓缩离心是指在蔗糖提纯离心的基础上,通过离心机进行浓缩,最终获得纯度更高、浓度更高的蔗糖溶液。

蔗糖梯度离心技术具有提纯效率高、成本低、环境污染低等优点,可以减少能耗,运行稳定,噪音低,对蔗糖行业起着至关重要的作用。

首先,蔗糖梯度离心机的特点是离心均衡可靠、离心度高,提纯效率高,能节省能源和人力,主要用于提纯糖汁中的蔗糖,进而产出更纯的蔗糖,是蔗糖行业的重要设备。

此外,蔗糖梯度离心机能够将糖汁中不同稀度的蔗糖进行分离,有利于蔗糖行业满足不同用户的不同需求。

此外,蔗糖梯度离心机的工艺流程简单、操作简便,工作环境舒适,污染较少,更有利于改善工厂环境,从而提高质量和效率。

最后,蔗糖梯度离心技术是蔗糖行业的重要技术,在解决糖汁中
的蔗糖分离与提纯问题方面发挥了极其重要的作用。

蔗糖梯度离心机的出现,不仅改善了蔗糖行业的环境,提高了蔗糖提纯效率,而且还满足了不同用户对蔗糖含量和纯度的不同要求,使蔗糖行业得到了更大的发展与壮大。

蔗糖梯度离心技术方法在提取内质网的应用

蔗糖梯度离心技术方法在提取内质网的应用

蔗糖梯度离心技术方法在提取内质网的应用付政祺;杨莹;田青【摘要】目的:通过蔗糖梯度离心方法提取内质网,探讨在内质网提取过程中质量控制的关键要素.方法:本文利用蔗糖建立连续的密度梯度,通过超速离心提取HEK293/wt细胞中的内质网,并利用Western blot技术、内质网特异性抗体Bip/GRP78对内质网所处位置进行检测,确定内质网所在层面,成功提取高浓度、高质量的内质网.结果:通过对HEK293/wt细胞的破膜方法和离心时间进行调整,经Western blot技术检测,内质网位于蔗糖梯度的第10、11、12层.结论:选择合适的破膜方法和离心时间是成功提取高浓度、高质量内质网的关键.【期刊名称】《医学理论与实践》【年(卷),期】2011(024)017【总页数】3页(P2022-2024)【关键词】内质网提取;梯度离心【作者】付政祺;杨莹;田青【作者单位】江汉大学医学院病理学与病理生理学教研室,湖北省武汉市,430056;华中科技大学同济医学院基础医学院病理生理学系;华中科技大学同济医学院基础医学院病理生理学系;华中科技大学同济医学院基础医学院病理生理学系【正文语种】中文【中图分类】G634.91借助离心机旋转所产生的离心力,使得不同大小、不同密度的物质进行分离的技术,称之为离心分离(centrifugation)[1],它被广泛应用于细胞的收集、细胞碎片和沉淀的分离等。

随着超速离心机的问世,离心技术不再被简单地用于较大颗粒的粗略分离,细胞器的分离、纯化技术得以建立,使得对各细胞器特有化学组成、功能的研究变成可能。

本文主要针对超速离心提取内质网的方法及质量控制进行详细介绍。

离心分离的基本方法,包括差速离心(differential centrifugation)和密度梯度离心(density gradient centrifugation)[2]。

差速离心是指在密度均一的介质中由低速到高速对大小不同的细胞和细胞器进行逐级离心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Sucrose GradientSeparation Manual_______________________A protocol optimized for the separation of mitochondrial OXPHOS proteins by discontinuous sucrose gradient separation.March 2005Also available at /PDF/sg.pdfsupport@Ver.#JM5.1ContentsPageI. Required ReagentsŸ n-dodecyl-β-D-maltopyranoside (Lauryl maltoside, Anatrace) Ÿ Phosphate buffered saline, PBS (section VII)Ÿ Sucrose solutions 15, 20, 25, 27.5, 30 and 35 %Ÿ Double distilled waterŸ Protease inhibitor cocktail (section VII)Ÿ 13 x 51 mm polyallomer centrifuge tubes (Beckman 326819)Required EquipmentŸ Swing-out compatible ultracentrifuge and rotor (eg. Beckman SW50.1Ÿ pH meter, weighing balance and other standard lab equipment Ÿ Laboratory benchtop microfugeŸ Protein electrophoresis and Western blotting equipment. I. Required reagents and equipment.......................................... 2 II. Sample preparation..................................................................... 3 III. Sample solubilization.................................................................. 4 IV. Sucrose gradient preparation................................................... 5 V. Centrifugation of gradients and elution of fractions............ 7 VI. Sample analysis........................................................................... 8 VII. Buffer recipes............................................................................... 9 VIII. Optimization steps and general tips........................................ 10 IX. Troubleshooting Guide............................................................... 12 XI. Flowchart....................................................................................... 13 X. Notes. (14)II. Sample preparationThe MitoSciences sucrose gradient separation procedure is a protein subfractionation method optimized for mitochondria. It can be used to reduce sample complexity facilitating large scale proteomics efforts (Taylor et al, 1Hanson et al). Also when this procedure was coupled to MitoSciences highly sensitive Western blotting antibodies it allows the detection of mis-assembled mitochondrial enzyme complexes in patient cell lines (2Hanson et al).This method resolves a sample into at least 10 fractions. It is possible to separate solubilized whole cells into fractions of much lower complexity but when analyzing already isolated mitochondria the fractions are even more simplified. Details of mitochondrial isolation can be found at /PDF/mitos.pdfThe total amount of OXPHOS complexes in mitochondrial samples/ cell samples varies greatly between species and tissues. Therefore it is highly recommended that, during the experimental planning steps, an estimation of the total amount of protein in the users sample is made. In this way the appropriate detection strategy can be employed. Table I suggests detection strategies based amount of starting material.Starting mitochondria applied to the gradient Recommended detection strategy5 mg + Gel staining with coomassie0.5 mg + Gel staining with silver/sypro ruby< 0.5 mg Western blotting with MitoSciences mAbs Table I. Suggested detection methods by amount starting material. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003 Mar;21(3):239-40.1 Hanson BJ, Schulenberg B, Patton WF, Capaldi RA. A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map. Electrophoresis. 2001 Mar;22(5):950-9.2 Hanson BJ, Carrozzo R, Piemonte F, Tessa A, Robinson BH, Capaldi RA. Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J Biol Chem. 2001 May 11;276(19):16296-301.III. Sample solubilizationThe sucrose gradient separation technique detailed in this manual isdesigned for an initial sample volume of up to 0.5 ml at 5 mg/ml protein. Therefore 2.5 mg or less of total protein should be used. Forlarger amounts, multiple gradients can be prepared or larger scale gradients are also possible, see section VIII.The sample should be solubilized in a non-ionic detergent. It has been determined that at this protein concentration mitochondria are completely solubilized by 20 mM n-dodecyl-β-D-maltopyranoside (1% w/v lauryl maltoside). The key to this solubilization process is that the membranes are disrupted while the previously membrane embedded multisubunit OXPHOS complexes remain intact, a step necessary for this density based sucrose separation procedure described here*.Ÿ To a mitochondrial membrane suspension at 5 mg/ml protein in PBS add lauryl maltoside to a final concentration of 1 %. Mix well and incubate on ice for 30 minutes. Centrifuge at 72 000 g for 30 minutes. The Beckman Optima benchtop ultracentrifuge is recommended for small sample volumes** (however at a minimum a benchtop microfuge on maximum speed should suffice, which is usually around 16 000 g). The supernatant is collected and the pellet discarded. Add a protease inhibitor cocktail (see section VII) and keep the sample on ice until centrifugation is performed. Note: with samples very rich in mitochondria the cytochromes in complexes III and IV may give this supernatant a brown color, which is useful when checking the effectiveness of the separation in section V.* One important exception is the pyruvate dehydrogenase enzyme: In order to isolate PDH at a protein concentration of 5 mg/ml mitochondria, the required detergent concentration is only 10 mM (0.5 %) lauryl maltoside. ** The PDH enzyme should also be centrifuged at lower speeds, a centrifugal force of 16 000 g is maximum for the PDH complex.IV. Sucrose gradient preparationA discontinuous sucrose density gradient is prepared by layering successive decreasing sucrose densities solutions upon one another. The preparation and centrifugation of a discontinuous gradient containing sucrose solutions from 15-35 % is described in detail in this manual. This gradient gives good separation of the mitochondrial OXPHOS complexes (masses ranging from 200 kDa to 1000 kDa). However this setup can be modified for the separation of a particular complex or for the separation of larger amounts of material (the details of optimization steps and considerations are given in section VIII).Sucrose sample 15 %20 %25 %27.5%30 %35 %0.5 ml1 ml 1 ml 1 ml 0.75 ml 0.5 ml 0.25 mlallow to run downinside of tube Figure 1. Setup for the sucrose gradient preparation.Ÿ 15-35 % sucrose density gradient . The preparation of these sucrose solutions is described in section VII. The gradient is prepared by layering progressively less dense sucrose solutions upon one another, therefore the first solution applied is the 35 % sucrose solution. A steady application of the solutions yields the most reproducible gradient therefore the setup described above in Figure 1 is recommended. Firstly a Beckman polyallomer tube is held upright in a tube stand. Next a yellow (200 µl) pipettor tip is placed on the end of a blue (1000 µl) pipettor tip. Both snugly fitting tips are held steady by a clamp stand and the end of the yellow tip is allowed to make contact with the inside wall of the tube as shown below. Now sucrosesolutions can be placed inside the blue tip and gravity will feed thesolutions into the tube slowly and steadily, starting with the 35 % solution (the volumes of this and the other solutions are shown inTable II). Note: if the solutions fail to feed down through the tips and into the tube a small amount of positive air pressure can be applied to the blue tip to start the flow. This is done by gently tapping on the wide end of the blue tip. Once the 35 % solution has drained into the tube, the 30 % solution can be loaded into the blue tip which will then flow down the inside of the tube and layer on top of the 35 % solution. This procedure is continued with the 27.5 %, 25 %, 20 % and 15 % respectively. There should now be enough space left at the top of the tube upon which to pipette the 0.5 ml sample of solubilized mitochondria described in section III.Solution Volume1 (top) Sample 0.5 ml2 15 % sucrose 1 ml3 20 % sucrose 1 ml4 25 % sucrose 1 ml5 27. 5 % sucrose 0.75 ml6 30 % sucrose 0.5 ml7 (bottom) 35 % sucrose 0.25 ml5 ml totalTable II. Volumes of solutions used.V. Centrifugation and elution of fractionsOnce the sucrose gradient is poured discrete layers of sucrose should be visible. Having applied the sample to the top of the gradient the tube should be handled and loaded into the rotor very carefully. Centrifugation should begin as soon as possible. However all centrifugation procedures require a balanced rotor therefore another tube containing precisely the same mass must be generated. In practice this means 2 gradients must be prepared although the second gradient need not contain an experimental sample but could contain 0.5 ml water in place of the 0.5 ml protein sample.Ÿ The polyallomer tubes should be centrifuged in a swinging bucket SW 50.1 type rotor (Beckman) at 37 500 rpm (RCF av 132 000 x g) for 16 hours 30 minutes at 4 o C with an acceleration profile of 7 and deceleration profile of 7.Ÿ Immediately after the run the tube should be removed from the rotor, taking great care not to disturb the layers of sucrose. When separating a sample rich in mitochondria, discrete colored protein layers might be observable. Most often these are Complex III (500 kDa – brown color) approximately 10 mm from the bottom of the tube and Complex IV (200 kDa – green color) 25 mm from the bottom of the tube. In some circumstances additional bands can be observed. These are the other OXPHOS complexes.Ÿ For fraction collection the tube should be held steady and upright by a clamp stand. A tiny hole should be introduced into the very bottom of the tube using a fine needle. The hole should be just big enough to allow the sucrose solution to drip out at approximately 1 drop per second. Fractions of equal volume are then collected in eppendorf tubes below the pierced hole. A total of 10 x 0.5 ml fractions are appropriate however collecting more fractions which are thus smaller in volume is also possible e.g. 20 x 0.25 ml fractions. The fractions can now be stored at – 80o CVI. Sample analysis.Fractions collected can now be resolved by electrophoresis. Resolvedproteins should be detected by the method chosen in Table I above. Optimized protocols for electrophoresis, gel staining and Westernblotting can be found at /PDF/western.pdfAs described in these protocols samples are first solubilized in SDS-PAGE sample buffer, see section VII. Prior to loading the sample canbe reduced by 50 mM DTT or 1 % β-mercaptoethanol. Anotheroptional step is heating of the sample which can be done at 95o C for 5minutes or at 37o C for 30 minutes prior to loading onto the gel. These steps may increase the resolution of protein bands and also reduce the complexity of the sample by breaking any disulfide bonded proteins.A typical example of fractions taken from a sucrose gradient of solubilized heart mitochondria are shown below. 10 µl of each fraction was resolved by SDS-PAGE before coomassie staining.1 2 3 4 5 6 7 8 9 10Figure 2. A typical sucrose gradient separation of mitochondriashowing enrichment of OXPHOS Complex I (predominates in lane2), Complex II (lane 8), Complex III (lane 4 & 5), Complex IV (lane7 and 8), and Complex V (lane 4).VII. Buffer recipes------------------------------------------------------------------------------- Phosphate buffered saline solution (PBS)1.4 mM KH2PO48 mM Na2HPO4140 mM NaCl2.7 mM KCl, pH 7.3------------------------------------------------------------------------------- Lauryl maltoside stock200 mM n-dodecyl-β-D-maltopyranoside (10 % w/v lauryl maltoside) (Anatrace D310S)------------------------------------------------------------------------------- Protease inhibitor stocks (each is 1000 x)1 M phenylmethanesulfonyl fluoreide (PMSF) in acetone (Sigma L7626) 1 mg/ml leupeptin (Sigma L2884)1 mg/ml pepstatin (Sigma P4265)------------------------------------------------------------------------------- Sucrose solutionsTo six 15 ml tubes polypropylene centrifuge tubes (Corning)add 1.5g, 2g, 2.5g, 2.75g, 3g and 3.5 g sucrose.Fill each tube to 10 ml with 50 mM Tris. HCl pH 7.5, 1 mM EDTA, 0.05 % lauryl maltoside.Turn the tubes on a rotator for approximately 20 minutes until all the sucrose has dissolved.------------------------------------------------------------------------------- 2x SDS page sample buffer20 % glycerol4 % SDS100 mM Tris pH 6.80.002 % Bromophenol blueoptional – 100 mM dithiothreitol-------------------------------------------------------------------------------VIII. Optimization steps and general tipsProtein determinationEach fraction should be 500 µl (or less if greater than 10 fractions were collected). The protein content within each fraction can be determined by protein assay, we recommend the BCA or micro BCA methods (Pierce).Protein precipitation for concentration and/or sucrose removal The proteins in the sample can be precipitated for concentration and sucrose removal however precipitated proteins will be denatured. We recommend the Chloroform/methanol precipitation method. Briefly add 600 µl fraction methanol to a 150 µl of a fraction. After thorough mixing 150 µl chloroform is added. Vortex then add 450 µl water, vortex again (appears cloudy white) and centrifuge immediately for 5 minutes at full speed in a microfuge. A white disc of protein should form between the organic layer (bottom) and the aqueous layer (upper). Discard the upper aqueous layer. Add 650 µl of methanol to the tube and invert 3 times. Spin for 5 minutes at full speed in a microfuge. Remove all liquid and allow the pellet to air dry. The precipitated protein pellet can be taken up in SDS PAGE sample buffer for electrophoresis and/or protein assay.Other sucrose gradient formulationThe sucrose gradient concentrations and number of layers can be altered when optimizing for the separation of a particular enzyme complex. For example to improve the separation of Complex I (the largest complex) proportional volume of the 27.5 %, 30 % and 35 % sucrose solutions should be increased. An example of such a gradient would be 500 µl each of a 37.5% 35%, 32.5%, 30%, 27.5%, 22.5%, 20%, 17.5%, and 15% sucrose solution and a 500 µl sample makes the total volume of 5 ml.Larger sucrose gradients are possible– an exampleGradients larger than 5 ml can be prepared for separation of starting samples greater than 2.5 mg protein (i.e. 500 µl sample at 5 mg/ml). However larger tubes and centrifuge rotors are necessary.As an example 40 mg of mitochondria can be resolved by a 55-25%41 ml sucrose gradient. This is made by layering sucrose solutions of 55% (5 ml), 50% (5 ml), 35% (10 ml), 30% (10 ml), 25% (3 ml), andfinally on top 8 ml of solubilized mitochondria (which is the supernatant from 8 ml of mitochondria (5 mg/ml) solubilized by 1% lauryl maltoside and centrifuged 30 min 72 000 g as described above in section III). This gradient should be centrifuged at 37 000 rpm (113 000 RCF av) in a VTi50 type rotor for 17 hours at 4o C with acceleration profile 9 and deceleration profile 9.IX. Troubleshooting guideNo bands appear after centrifugation In order to see resolved bands thesample must be rich in mitochondria.Prior to centrifugation the sample mightappear colored brown. If not then themitochondrial content may be lower andtherefore the more sensitive methods ofgel staining/Western blotting detectionshould be chosen.The bands may have diffused aftercentrifugation before fraction collectionThe sucrose layers may have beendisturbedWeak or no gel staining signal Isolate mitochondria from the sampleIncrease the amount of sampleSilver stain the gelWestern blot the gel and detect withMitoSciences antibodiesIsolate the mitochondria to higher purity Non-specific bands when WesternblottingAdd a reducing agent to the elutedsample eg. DTTHeat the eluted sample at 95 o C for 5mins before loadingXI. Flow chart2.5 mg mitochondria in 0.45 ml PBS, supplemented with1 µg/ml pepstatin, 1µg/ml leupeptin, 1mM PMSF↓Add 50 µl 10% LM incubate on ice 30 mins↓Centrifuge 72 000g 4o C 10 minutes↓Prepare the following sucrose solutions in Buffer A35% (0.25 ml), 30% (0. 5 ml), 27.5% (0.75 ml),25% (1 ml), 20% (1ml)↓Load the 0.5 ml solubilized mitochondria on top ofthe prepared sucrose gradient↓Centrifuge SW 50.1 for 16.5 hours at 37 500 g↓Pierce the bottom of the tube and collect10 (or more) fractions of equal volume.Perform protein assay and electrophoresis/Western blotting.↓Buffer A : 50 mM Tris.HCl pH 7.5Leupeptin : 1 mg/ml (water)Pepstatin : 1 mg/ml (ethanol)PMSF : 0.3 M (ethanol)LM : n-dodecyl-β-D-maltosideX. NotesSales & Customer Support:1-800-910-6486sales@Copyright © 2004 by Mitoscience LLC。

相关文档
最新文档