东营市2021年中考数学二模试卷D卷

合集下载

2021-2021年中考数学二模试题(答案不全)

2021-2021年中考数学二模试题(答案不全)

2021-2021年中考数学二模试题(答案不全)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,数轴上有A,B,C,D四个点,其中绝对值为2的数对应的点是ABCA.点A与点C B.点A与点D1-2-10C.点B与点C D.点B与点DD22.2021年第一季度全国网上商品零售额6310亿元,将6310用科学记数法表示应为 A.6.310?103B.63.10?10 C.0.6310?10 D.6.310?102443.下列计算正确的是235826347A.2a+3a=6a B. a+a=a C. a÷a=a D. (a)= a4.如图,已知a//b, ?1?130?,?2?90?, 则?3?A.70? B. 100? C. 140? D.170?5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.若一个正多边形的每一个外角都是40?,则这个多边形的边数为A.7 B.8 C.9 D.10 7. 若x?1?(y?2)2?0,则(x?y)2021等于D.-32021A.-1 B.1 C.38.右图所示的几何体的俯视图是2021A B C D9. 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为 A. 2 B.4 C. 6 D. 8 10. 下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上 B. 打开电视频道,正在播放《焦点访谈》2C. 射击运动员射击一次,命中十环D. 方程x��2x��1=0必有实数根2a?b?2 ,则3a?b的值为 11. 已知a、b满足方程组a?2b?6 A. 8 B. 4 C. -4 D. -8 12. 代数式x2?4x?5的最小值是A.-1 B.1 C.2 D.5 13.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫,从点A开始按ABC DAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2021cm时停下,则它停的位置是A. 点FB. 点EC. 点AD. 点C14.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图像是 A15.如图,在直角三角形ABC中,∠ACB=90°,CA=4.点P是半圆弧 AC的中点,连接BP,线段BP把图形APCB(指半圆和直角三角形 ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是 A.2 B.4 C.1.5π-2 D.B C (B')BA'A'C'B'CC' P D O . A 第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上)16.分解因式:3m2?6mn+3n2= .17. 要使二次根式x?2在实数范围内有意义,则实数x的取值范围是18.已知点A(4,6)与B(3,n)都在反比例函数y?k?k?0?的图象上,则n? . x19.如图所示,平行四边形的两条对角线及过对角线交点的任意一条直线将平行四边形纸片分割成六个部分,现在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为.20.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若,2,,则的长为__________.21.已知二次函数y1=x-2x-3及一次函数y2=x+m,将该二次函数图象在x轴下方的部分沿x轴翻折到轴上方,图象的其余部分不变,得到一个新图象,求新图象与直线y2=x+m 有三个不同公共点时 m的值三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本题7分) ?2x?x?2,2x1.(1)解不等式组:? (2)化简:2??2x?1x?1x?1??x.?3y o xA23.(本题7分)(1)已知:如图,点B,F,C,E在一条直线上,BFCEDBF=CE,AC=DF,且AC∥DF.求证:∠B=∠E.(2)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)24.(本题8分) 在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:人数 40 频数劳动时间(时)频率 30 (人数) 300.5 12 0.12 18 20 1 30 0.3 1210 x 1.5 0.4 y 2 18 0 1 0.5 2 时间(时)m 合计 1(1)统计表中的m? ,x? ,y? ;(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.25. (本题8分) 某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程. 已知2021年投资1000万元,预计2021年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1) 平均每年投资增长的百分率;(2)已知河道治污每平方米需投入400元,园林绿化每平方米需投入200元,若要求2021年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?26.( 本题9分)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=k(x>0)的图象经过OB的中点E,且与边BC交于点D.x(1)求反比例函数的解析式和点D的坐标;(2)求三角形DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线解析式.27.(本题9分)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方备用图向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC 1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接22写出k的值和AC1+(kDD1)的值.28.(本题9分)如图,抛物线y=1x��3x��9与x轴交于A、B两点,与y轴交于点C,连222接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).解答题24-28题答案24.解:(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即x?40;频数为18,频率应为0.18时,即y?0.18;m?12?30?40?18?100.(2)被调查同学劳动时间的中位数为1.5时;(3)略(4)所有被调查同学的平均劳动时间为0.5?0.12?1?0.3?1.5?0.4?2?0.18?1.32时.25.解:(1)设平均每年投资增长的百分率为x,根据题意,得21000(1+x)=1210, 解这个方程得:(舍去)答:平均每年投资增长的百分率为10%.(2)设园林绿化的费用是y万元,则河道治污的费用是(1210-y)万元,由题意,得解这个不等式组得:190≤y≤242.答:园林绿化的费用应不少于190万元且不多于242万元.26.解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式,解得k=2,∴反比例函数解析式为y=2,x∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,解得x=1,∴点D的坐标为(1,2);(2)略(3)设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,×8=5,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=��2x+4,当D(1,2),F(4,0)时,,解得综上所述,直线的解析式为y=��2x+4或y=��x+.,此时,直线解析式为y=��x+,感谢您的阅读,祝您生活愉快。

中考数学二模试卷含答案

中考数学二模试卷含答案

中考数学二模试卷一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.2020﹣1的相反数是()A.﹣2020B.﹣C .D.20202.23000000用科学记数法表示应为()A.2.3×103B.23×106C.2.3×107D.23×1023.下列所给图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .4.如图,含45°角的三角板的直角顶点A在直线a上,顶点C在直线b上.若a∥b,∠1=58°,则∠2的度数为()A.85°B.110°C.103°D.118°5.下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a76.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同.设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168x2(1﹣x2)=1088.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式﹣2m2+2m+2020的值为()A.2018B.2019C.2020D.20219.对于一组数据:x1,x2,x3,…x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A.中位数B.平均数C.众数D.方差10.如图,反比例函数y1=经过矩形ABCD的顶点D,反比例函数y2=经过矩形ABCD 的顶点C.矩形ABCD的顶点A在x轴的负半轴上运动,矩形ABCD的顶点B在x轴的正半轴运动上,如果矩形ABCD的面积为定值,下列哪个值不变()A.a+b B.a﹣b C .D.ab二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.分解因式:9m2﹣n2=.12.不等式组:的解集为.13.如图,在△ABC中,∠C=90°,AC=6,若cos A =,则BC的长为.14.如图,在矩形ABCD中,E是边CD的延长线上一点,连接BE交边AD于点F,若AB =40,BC=60,DE=20,则AF的长为.15.如图,A,B,C,D是圆O上的四个点,点B是弧ABC的中点,如果∠ABC=72°,那么∠ADB=.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为.17.在Rt△AOB中,∠AOB=90°,OA=3,sin B =.动点M从点B出发,沿BO以1单位/秒的速度向点O运动;动点P从点B出发,沿BA以1单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.△PMO的面积为S,则s的最大值是.三、解答题(一)(3小题,每小题6分,共18分).18.(6分)计算:|1﹣|+(2020+π)0﹣2sin60°+2﹣2.19.(6分)先化简,再求值:,其中x =﹣3.20.(6分)如图,点A是∠MON边OM上一点,AE∥ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,直接写出∠OBE的大小.四、解答题(二)(8小题,每小题8分,共24分)21.(8分)某校九年级举行了“中国梦”演讲比赛活动,学校团委根据学生的成绩划分为A,B,C,D四个等级,并绘制了如下两个不完整的两种统计图.根据图中提供的信息,回答下列问题(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=;C等级对应的扇形的圆心角为度.(3)学校准备从获得A等级的学生中随机选取2人,参加全市举办的演讲比赛,请利用列表法或树状图法,求获得A等级的小明参加市比赛的概率.22.(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(8分)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD.BE⊥CD 于E,BE与AC交于F.CF=2BO.(1)求证:△BEC是等腰直角三角形;(2)求tan∠ACD的值.五、解答题(三)(2小题,每小题10分,共20分)24.(10分)如图,AB为⊙O的直径,点D为⊙O上任意一点,点C为劣弧BD的中点,连BD,BC并延长BC至P使得∠BDP=2∠CDP;(1)求证:DP为⊙O的切线;(2)若BC=DP时,求证:∠ABD =∠ABC;(3)在(2)的条件下,求DC:BD值.25.(10分)把一块含有30°的三角板△ABC,∠C=90°,∠B=30°,绕C点顺时针旋转,若A点落在AB边上时,得到△ODC,如图①所示,E为OD的中点,连CE.(1)求证:四边形ACEO是菱形;(2)如图②,以O为原点,AB所在直线为x轴,建立直角坐标系,若A(2,0),求经过点D、O、A三点的抛物线的关系式,并求出其的顶点坐标;(3)在(2)的条件下,如图③P(m,0)是x的正半轴上一点,过点P作y轴的平行线l,与直线DC交于点M,与抛物线交于点N,连接OM,ON.在图③中探究:是否存在点P,使△OMN是直角三角形;若存在,请直接写出P的坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.B.2.C.3.D.4.C.5.D.6.C.7.B.8.A.9.A.10.B.二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.(3m+n)(3m﹣n).12.1<x<3.13.8.14.40.15.54°.16.π﹣.17..三、解答题(一)(3小题,每小题6分,共18分). 18.解:原式=﹣1+1﹣2×+=﹣1+1﹣+=.19.解:当x =﹣3时,原式=÷[﹣]=÷=•==20.解:(1)如图,OB为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB =∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°﹣∠OBA=180°﹣24°=156°.四、解答题(二)(8小题,每小题8分,共24分)21.解:(1)参加演讲比赛的学生共有:8÷25%=32(人),B等级的人数为:32﹣4﹣12﹣8=8,补全的条形统计图如右图所示;(2)m%=×100%=37.5%,即m=37.5,C等级对应的扇形的圆心角为:360°×=135°,故答案为:37.5,135;(3)设小明用a表示,另外三名学生用b、c、d表示,树状图如下图所示,则获得A 等级的小明参加市比赛的概率是,即获得A等级的小明参加市比赛的概率是.22.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时最大利润是y=﹣50×34+15000=13300.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是13300元.23.证明:(1)∵AB=AD,CB=CD,∴AC垂直平分BD,∴BD=2BO,∵CF=2BO,∴CF=BD,∵∠DBE+∠BDE=90°,∠BDE+∠DCO=90°,∴∠DBE=∠FCE,又∵∠BED=∠CEF,∴△BDE≌△CFE(AAS),∴BE=CE,又∵BE⊥CD,∴△BEC是等腰直角三角形;(2)如图,连接DF,∵△BDE≌△CFE,∴DE=EF,∴DF=EF,∵AC垂直平分BD,∴BF=DF=EF,∴BE=BF+EF =(+1)EF,∴CE =(+1)EF,∴tan∠ACD==﹣1.五、解答题(三)(2小题,每小题10分,共20分)24.(1)证明:连接OD .∵点C为劣弧BD的中点,∴BC=CD,∴∠DBC=∠CDB,∵∠BDP=2∠CDP,∴∠BDC=∠CDP=∠DBC,∵∠OBD=∠ODB,∠BAC=∠CDB,∴∠ODB+∠CDB+∠CDP=∠OBD+∠BAC+∠DBC,∵AB为⊙O的直径,∴∠OBD+∠BAC+∠DBC=90°,∴∠ODB+∠CDB+∠CDP=90°,∴OD⊥DP,∴DP为⊙O的切线;(2)证明:∵BC=DP,BC=DC,∴CD=DP.设∠BDC=x,则∠DBC=∠PDC=x,∴∠P=∠DCP=2x=∠BDP,∵∠P+∠DBC+∠BDP=180°,∴5x=180°,解得x=36°,∴∠BDP=72°,∴∠ABD=∠ODB=90°﹣∠BDP=18°,∴∠ABC=∠ABD+∠DBP=18°+36°=54°,∴∠ABD =∠ABC;(3)解:过点作CH⊥BD于H,∵BC=CD,∴DH =BD,在DB上截取DM=DC,作∠DCM的平分线CN交DB于N,设DM=DC=a,DN=x,∴∠DCM=∠DMC=72°,∠MCN=∠DCN=36°,∴∠MNC=72°,∠CDN=∠DCN=36°,∴MC=NC=DN=x,MN=a﹣x,∵∠MCN=∠CDN=36°,∠DMC=∠CMN,∴△MCN∽△MDC,∴,即,解得x =,∵MC=NC,CH⊥BD,∴NH=,在直角三角形DCH中,DH=DN+NH=x +=,∴cos36°==,∴BD =,∴DC:BD=1:=.25.(1)证明:∵∠C=90°,∠B=30°,∴∠A=60°,∵OC=AC,∴△OCA为等边三角形,∵点E为OD的中点,∴CE=EO =OD =AB=OA=AC,∴四边形ACEO是菱形.(2)解:过点D作DM⊥x轴于点M,∵OD=AB=2OA=4,∠DOB=60°,∴OM=OB=2,DM=2,∴点M与点B重合,∴点D的坐标为(﹣2,2),设过点D、O、A三点的抛物线的关系式为y=ax(x﹣2),把点D的坐标代入解析式得﹣2a×(﹣4)=2,解得a =,∴抛物线解析式为y ==,∴抛物线的顶点坐标为(1,).(3)由点C(1,),D(﹣2,2)得直线CD的解析式为y =,∵MN⊥OA,∴∠NOP=∠NMO,∴△MOP∽△ONP,则OP:NP=MP:OP,∴OP2=MP•NP,则,解得,此时,,当∠OMN=90°时,如图2,M,P两点重合时,此时P3的坐标为(4,0)当∠ONM=90°,如图3,N,P,A三点重合时,此时点P4(2,0),综上所述,当△OMN为直角三角形时点P的坐标为(5+或(5﹣,0)或(4,0)或(2,0).。

数学中考二模试卷(含答案解析)

数学中考二模试卷(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−120212.如图所示的几何体,从上面看得到的图形是()A.B.C.D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×1084.下列甲骨文中,不是轴对称图形的是()A.B.C.D.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +17.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.18.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.在同一平面直角坐标系中,函数y=x﹣k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A .20√3米B .10米C .10√3米D .20米11.如图,从一块直径为2m 的圆形铁皮⊙O 上剪出一个圆心角为90°的扇形ABC ,且点A 、B 、C 都在⊙O 上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 212.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = .14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 .15.若一个多边形的内角和等于其外角和的2倍,则它是 边形.16.方程6x 1+2x =11−2x +3的解是 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y (m )与小宁离开出发地的时间x (min )之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为米.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.20.(6分)解不等式组:{2(x−1)+1<x+2x−12>−1把解集在数轴上表示出来,并写出所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切(1)求证:点A平分BĈ;(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(2,m),B(n,1)两点,连接OA,OB.(1)求这个一次函数的表达式;(2)求△OAB的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,B,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−12021【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解析】2021的相反数是:﹣2021.故选:B.2.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解析】从上边看是一个六边形,中间为圆.故选:D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×108【分析】科学记数法的表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.其中a是整数数位只有一位的数,10的指数n比原来的整数位数少1.【解析】4 400 000 000=4.4×109,故选:B.4.下列甲骨文中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【解析】A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°【分析】根据平行线的性质和三角板的角度解答即可.【解析】∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +1【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘法法则、完全平方公式逐个计算得结论.【解析】∵x2与x不是同类项,不能合并,故选项A错误;(﹣2x3)2=4x6,故选项B正确;x2•x3=x5≠x6,故选项C错误;(x+1)2=x2+2x+1≠x2+1,故选项D错误.故选:B.7.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解析】原式=(x+1)(x−1)x−1=x +1. 故选:C .8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解析】由图可得,极差是:30﹣20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:20+22+24+26+28+28+307=2537℃,故选项D 错误, 故选:B .9.在同一平面直角坐标系中,函数y =x ﹣k 与y =k x (k 为常数,且k ≠0)的图象大致是( ) A . B .C.D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.【解析】∵函数y=x﹣k与y=kx(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=kx经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=kx经过第二、四象限,故选项C、D不符合题意,故选:A.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20√3米B.10米C.10√3米D.20米【分析】首先证明BD=AD=20米,解直角三角形求出BC即可.【解析】∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10√3(米),故选:C.11.如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 2【分析】根据题意,可以求得AB 和BC 的长,从而可以得到此扇形的面积.【解析】连接AC ,∵AB =CB ,∠ABC =90°,AC =2,∴AB =BC =√2,∴此扇形的面积是:90π×(√2)2360=π2m 2, 故选:A .12.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【解析】①y =ax 2+(2﹣a )x ﹣2=(x ﹣1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴有2个交点,∴△=(2﹣a )2+8a =(a +2)2>0,∴a ≠﹣2.∴该抛物线的对称轴为:x =a−22a =12−1a .无法判定的正负.故②不一定正确;③根据抛物线与y 轴交于(0,﹣2)可知,y 的最小值不大于﹣2,故③正确;④∵A (1,0),B (−2a ,0),C (0,﹣2),∴当AB =AC 时,√(1+2a )2=√12+(−2)2,解得 a =1+√52.故④正确. 综上所述,正确的结论有3个.故选:C .二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = m (m ﹣3) .【分析】首先确定公因式m ,直接提取公因式m 分解因式.【解析】m 2﹣3m =m (m ﹣3).故答案为:m (m ﹣3).14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 12 .【分析】骰子共有六个面,每个面朝上的机会是相等的,而偶数有2,4,6,根据概率公式即可计算.【解析】∵骰子六个面中偶数为2,4,6,∴P (向上一面为偶数)=36=12;故答案为:12. 15.若一个多边形的内角和等于其外角和的2倍,则它是 六 边形.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解析】设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=2×360°,解得n =6.故答案为:六.16.方程6x1+2x =11−2x+3的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为1500米.【分析】根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.【解析】由图可得,小宁跑步的速度为:(4500﹣3500)÷5=200m/min,则步行速度为:200×12=100m/min,设小宁由跑步变为步行的时刻为a分钟,200a+(35﹣a)×100=4500,解得,a=10,设小强骑车速度为xm/min,200(10﹣5)+(10﹣5)x=3500﹣1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500﹣10×200﹣(5+15﹣10)×100=1500m,故答案为:1500.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是①②④.【分析】由正方形的性质可得AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,由旋转的性质可得AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,由“HL”可证Rt△BEG≌Rt△BCG,可得∠EBG=∠CBG=22.5°,由“SAS”可证△BEH≌△BCH,可得CH=EH=EG=CG,∠BCH=∠BEH =45°,可求OH=2−√2,由等腰三角形的性质可求EH=√2OH=2√2−2,可求△BDG的面积.即可求解.【解析】∵四边形ABCD是正方形,∴AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,∵将△ABD绕着点B顺时针旋转45°得到△BEF,∴AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,∴BE=BC=2,在Rt△BEG和Rt△BCG中,{BE=BCBG=BG,∴Rt△BEG≌Rt△BCG(HL),故①正确;∴∠EBG=∠CBG=22.5°,∴∠BGC=67.5°,∠GHC=∠GBC+∠ACB=67.5°,∴∠BGC=∠GHC,∴CH=CG,在△BEH和△BCH中,{BE =BC ∠EBH =∠CBH BH =BH,∴△BEH ≌△BCH (SAS ),∴EH =CH ,∠BCH =∠BEH =45°,∴CH =EH =EG =CG ,∴四边形EHCG 是菱形,故②正确,∵∠BEH =45°,∠EOH =90°,∴∠OEH =∠OHE =45°,∴OH =OE =BE ﹣OB =2−√2,故④正确;∴EH =√2OH =2√2−2,∴CG =EH =2√2−2,∴DG =CD ﹣CG =4﹣2√2,∴△BDG 的面积=12×DG ×BC =12×(4﹣2√2)×2=4﹣2√2,故③错误, 故答案为:①②④.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.【分析】直接利用负指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解析】原式=3−1+2√3−√3=2+√3.20.(6分)解不等式组:{2(x −1)+1<x +2x−12>−1把解集在数轴上表示出来,并写出所有整数解. 【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解析】{2(x −1)+1<x +2①x−12>−1②, 解不等式①得x <3,解不等式②得x >﹣1,∴不等式组的解集为﹣1<x <3,数轴表示为:整数解为:0,1,2.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【分析】证明△AFD≌△AEB(SAS),即可得出BE=DF.【解析】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=12AB,AE=12AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解析】(1)此次共调查的学生有:40÷72°360°=200(名); (2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是2025=45.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切̂;(1)求证:点A平分BC(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.【分析】(1)连接OA交BC于F.只要证明OF⊥BC即可解决问题.(2)连接OB.连接OA交BC于F.首先证明BE=AB,设OF=x,则AF=13﹣x,可得132﹣x2=(4√13)2−(13−x)2,解方程可求出OF,则BF可求出,由垂径定理可得结果.【解析】(1)证明:如图1,连接OA交BC于F.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠CFO,∵AD是⊙O的切线,∴∠OAD=90°,∴∠OFC=90°,∴OF⊥BC,̂,∴OA平分BĈ=AĈ.即AB(2)如图2,连接OB.∵AB ∥DE ,∴∠BCE =∠ABC ,∴BÊ=AC ̂=AB ̂, ∴BE =AB =4√13,∵OA ⊥BC ,∴AB 2﹣AF 2=BF 2,OB 2﹣OF 2=BF 2,设OF =x ,则AF =13﹣x ,∴132﹣x 2=(4√13)2−(13−x)2,解得:x =5,∴BF =2−OF 2=√132−52=12,∴BC =2BF =24.24.(10分)某商店欲购进A 、B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元;若购进A 种商品6件和B 种商品8件共需440元;(1)求A 、B 两种商品每件的进价分别为多少元?(2)若该商店,A 种商品每件的售价为48元,B 种商品每件的售价为31元,且商店将购进A 、B 共50件的商品全部售出后,要获得的利润超过348元,求A 种商品至少购进多少件?【分析】(1)设A 种进价为x 元,B 种进价为y 元.由购进A 种商品5件和B 种商品4件需300元和购进A 种商品6件和B 种商品8件需440元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.根据获得的利润超过348元,建立不等式求出其解即可.【解析】(1)设A 种进价为x 元,B 种进价为y 元.由题意,得{5x +4y =3006x +8y =440, 解得:{x =40y =25, 答:A 种进价为40元,B 种进价为25元.(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.由题意,得8a +6(50﹣a )>348,解得:a >24,答:至少购进A 种商品24件.25.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (2,m ),B (n ,1)两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求△OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【解析】(1)∵点A (2,m ),B (n ,1)在反比例函数y 2=6x 上,∴2m =6,n =6,∴m =3,∴A (2,3),B (6,1),∵点A (2,3),B (6,1)在一次函数y 1=kx +b 上,∴{2k +b =36k +b =1, ∴{k =−12b =4, ∴一次函数的表达式为y 1=−12x +4;(2)如图1,记一次函数y 1=−12x +4的图象与x ,y 轴的交点为点D ,C ,针对于y1=−12x+4,令x=0,则y1=4,∴C(0,4),∴OC=6,令y1=0,则−12x+4=0,∴x=8,∴D(8,0),∴OD=8,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∵A(2,3),B(6,1),∴AE=2,BF=1,∴S△AOB=S△COD﹣S△AOC﹣S△BOD=12OC•OD−12OC•AE−12OD•BF=12×4×8−12×4×2−12×8×1=8;(3)存在,如图2,当AB和OB为邻边时,点B(6,1)先向左平移6个单位再向下平移1个单位到点O(0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P(2﹣6,3﹣1),即P(﹣4,2);当OA和OB为邻边时,点O(0,0)先向右平移2个单位再向上平移3个单位到点A(2,3),则点B也先向右平移2个单位再向上平移3个单位到点P'(6+2,1+3),即P'(8,4);当AB和OA为邻边时,点A(2,3)先向右平移4个单位再向下平移2个单位到点B(6,1),则点O也先向右平移4个单位再向下平移2个单位到点P''(0+4,0﹣2),即P'(4,﹣2);点P的坐标为(﹣4,2)或(4,﹣2)或(8,4).26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.【分析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,由勾股定理求得BD,根据正方形的性质和平行线的性质求得△AGF为等腰直角三角形,在Rt△BGF中根据勾股定理列出x的方程便可得出结果;②证明△ABE≌△ADP,得BE=DP,AE=AP,再由平行线得△BFQ的面积与△ABC的面积相等,从而得FQ与FB的比值,得∠DBF=30°,连接PF,证明△APF≌△AEF,得∠EFP=60°,根据三角函数关系得出PG=√3FG,便可得结论;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,当当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR =OQ的值最小,求出此时的OQ和OM便可求得MN+ND+√2NR的最小值.【解析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,如图1,∵四边形ABCD为正方形,AB=√2,∴∠DAG=∠BAD=∠ADC=∠ABC=90°,BD平分∠ADC和∠ABC,AB=AD=√2,∴∠ADB=45°,BD=√AB2+AD2=2,∵AF∥BD,∴∠DAF=∠ADB=45°,∴∠GAF=45°,∴∠AGF=∠GAF=45°,∴AG=GF,不妨设AG=GF=x,则BG=x+√2,∵BG2+GF2=BF2,BF=BD=2,∴x2+(x+√2)2=22,解得,x=√6−√22,或x=−√6+√22(舍),∴AF=√2AG=√3−1;②连接PF和DF,如图2,∵DG⊥BF,∴∠DGE=∠BAE=90°,∵∠AEB=∠DEG,∴∠ABE=∠GDE,∵∠BAE=∠DAP=90°,AB=AD,∴△ABE≌△ADP(ASA),∴BE=DP,AE=AP,设AB=a,则BF=BE=√2a,∵AF∥BD,∴S△FBD=S△ABD,∴12×√2a⋅FQ=12a2,∴FQ=√22a,∴sin∠QBF=FQBF=√22a√2a=12,∴∠QBF=30°,∵AF∥BD,∴∠AFB=∠DBF=30°,∠EAF=∠ADB=45°,∴∠EAF=∠P AF=45°,∵AF=AF,∴△AEF≌△APF(SAS),∴∠AFE=∠AFP=30°,∴∠EFP=60°,∴PG=√3FG,∵DG+PG=DP=BE,∴BE=DG+√3FG;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,如图3,则QR=DR,RK=BC,KL=OF,CR=BK,OL=FK,∵OE=OM=OB,∴∠OEM=∠OME,∠OBM=∠OMB,∵∠BME=135°,∴∠OEM+∠OBM=∠OME+∠OMB=135°,∴∠BOE=90°,∵四边形ABCD是正方形,AB=5,∴AB=BC=CD=AD=RK=6,∵AE=CR=1,∴QR=DR=5+1=6,BK=1,∴BE=√AB2+AE2=√26,∴OG=BG=12BE=12√26,OA=OB=OM'=√22BE=√13,∵∠BGH=∠BAE=90°,∠HBG=∠EBA,∴△BGH∽△BAE,∴GHAE=BGBA=BHBE,即GH1=12√265=√26,∴GH=110√26,BH=135,∴OH=OG﹣GH=25√26,∵∠OFH=∠BGH=90°,∠OHF=∠BHG,∴△OHF∽△BHG,∴HFHG=OHBH=OFBG,即HF110√26=25√26135=OF12√26,∴HF=25,OF=2,∴KL=OF=2,OL=FK=FH+BH+BK=4,∴QL=QR+RK+KL=12,∴OQ=√OL2+QL2=√42+122=4√10,由旋转知,∠PRN=90°,PR=RN,PQ=DN,∴PN=√2RN,∵OM+MN+ND+√2NR=OM+MN+PN+PQ≥OQ,∴当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR=OQ=4√10的值最小,∵OM=OB=√13,∴MN+ND+√2NR的最小值为:4√10−√13.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.【分析】(1)x2﹣(a+1)x+a=0,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,即可求解;(2)设点E(m,m2+2m﹣3),点F(﹣3﹣m,m2+4m),四边形EMNF的周长S=ME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可.【解析】(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=√2(x F﹣x E)=√2(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4√2)m﹣6√2,∵﹣2<0,故S有最大值,此时m=−3+2√22,故点E的横坐标为:−3+2√22;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC 平分四边形面积时, 则|x Q |=x B =1,故点Q (﹣1,﹣4); ﹣﹣﹣﹣当BQ 平分四边形面积时, 则S △OBQ =12×1×|y Q |,S 四边形QCBO =12×1×3+12×3×|x Q |, 则2(12×1×|y Q |)=12×1×3+12×3×|x Q |, 解得:x Q =−32,故点Q (−32,−154);②当点Q 在第四象限时, 同理可得:点Q (−5+√372,15−3√372); 综上,点Q 的坐标为:(﹣1,﹣4)或(−32,−154)或(−5+√372,15−3√372).。

2021年中考数学试题及解析:山东东营-解析版

2021年中考数学试题及解析:山东东营-解析版

2021年山东省东营市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1、(2021•东营)的倒数是()A、2B、﹣2C、﹣D、考点:倒数。

专题:计算题。

分析:根据倒数的定义即可解答.解答:解:的倒数是2.故选A.点评:本题主要考查了倒数的定义,正确理解定义是解题的关键.2、(2021•东营)下列运算正确的是()A、x3+x3=2x6B、x6÷x2=x4C、x m•x n=x nmD、(﹣x5)3=x15考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

专题:计算题。

分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、x3+x3=2x3,故本选项错误;B、x6÷x2=x4,故本选项正确;C、x m•x n=x n+m,故本选项错误;D、(﹣x5)3=﹣x15,故本选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3、(2021•东营)一个几何体的三视图如图所示,那么这个几何体是()A、B、C、D、考点:由三视图判断几何体。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从这个几何体的三视图上看,这个几何体一定是带棱的,故从C,D中选,D的主视图是三角形,俯视图是:,只有C的三视图符合条件.故选C.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4、(2021•东营)方程组的解是()A、B、C、D、考点:解二元一次方程组。

专题:计算题。

分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y,得到一个关于x的一元一次方程,解出x的值,再把x的值代入方程组中的任意一个式子,都可以求出y的值解答:解:,①+②得:2x=2,x=1,把x=1代入①得:1+y=3,y=2,∴方程组的解为:故选:A,点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.5、一副三角板如图叠放在一起,则图中∠α的度数为()A、75°B、60°C、65°D、55°考点:三角形的外角性质;三角形内角和定理。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

东营市2021年中考数学试题(含答案)

东营市2021年中考数学试题(含答案)

的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C .﹣D .2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A .B .C .D .4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A .B .C .D .9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC 上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()试卷集合A .B .C .D . 10.(3.00分)如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD +∠ECB=45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A .①②③④B .②④C .①②③D .①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 元.12.(3.00分)分解因式:x 3﹣4xy 2= . 13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 . 14.(3.00分)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .中小学数学复习题试卷15.(4.00分)如图,在Rt △ABC 中,∠B=90°,以顶点C 为圆心,适当长为半径画弧,分别交AC ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于EF 的长为半径画弧,两弧交于点P ,作射线CP 交AB 于点D .若BD=3,AC=10,则△ACD 的面积是 .16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 . 17.(4.00分)在平面直角坐标系内有两点A 、B ,其坐标为A (﹣1,﹣1),B (2,7),点M 为x 轴上的一个动点,若要使MB ﹣MA 的值最大,则点M 的坐标为 . 18.(4.00分)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2021中考备战的纵坐标是 .试卷 测试题19.(7.00分)(1)计算:|2﹣|+(+1)﹣3tan30°+(﹣1)﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2021中考备战年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题: 图书种类 频数(本) 频率名人传记 175a 科普图书b 0.30小说 110 c其他 65 d (1)求该校九年级共捐书多少本; (2)统计表中的a= ,b= ,c= ,d= ; (3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本; (4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧试卷 测试题(1)求证:∠CAD=∠BDC ;(2)若BD=AD ,AC=3,求CD 的长.23.(9.00分)关于x 的方程2x 2﹣5xsinA +2=0有两个相等的实数根,其中∠A 是锐角三角形ABC 的一个内角.(1)求sinA 的值;(2)若关于y 的方程y 2﹣10y +k 2﹣4k +29=0的两个根恰好是△ABC 的两边长,求△ABC 的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目: 如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题: 如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.25.(12.00分)如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C .﹣D .【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.D .【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D 不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A .B .C .D .【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.A .B .C .D .【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.中小学数学测试题是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011, 故答案为:4.147×1011 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 12.(3.00分)分解因式:x 3﹣4xy 2= x (x +2y )(x ﹣2y ) . 【分析】原式提取x ,再利用平方差公式分解即可. 【解答】解:原式=x (x 2﹣4y 2)=x (x +2y )(x ﹣2y ), 故答案为:x (x +2y )(x ﹣2y ) 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是. 【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.复习题由作图知CP 是∠ACB 的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S △ACD =•AC•DQ=×10×3=15,故答案为:15. 【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 20π .【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l 为5,然后根据圆锥的侧面积公式:S 侧=πrl 代入计算即可.【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r 为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π 【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一中小学数学 17.(4.00分)在平面直角坐标系内有两点A 、B ,其坐标为A (﹣1,﹣1),B (2,7),点M 为x 轴上的一个动点,若要使MB ﹣MA 的值最大,则点M 的坐标为 .【分析】要使得MB ﹣MA 的值最大,只需取其中一点关于x 轴的对称点,与另一点连成直线,然后求该直线x 轴交点即为所求. 【解答】解:取点B 关于x 轴的对称点B′,则直线AB′交x 轴于点M .点M 即为所求. 设直线AB′解析式为:y=kx +b 把点A (﹣1,﹣1)B′(2,﹣7)代入 解得 ∴直线AB′为:y=﹣2x ﹣3, 当y=0时,x=﹣ ∴M 坐标为(﹣,0) 故答案为:(﹣,0) 【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答. 18.(4.00分)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2021中考备战的纵坐标是 .【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x +∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x +解得b=∴OB2=5同理设点A3坐标为(a,b)把A2(5+b,b)代入y=x +解得b=以此类推,发现每个A 的纵坐标依次是前一个的倍则A2021中考备战的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2021中考备战﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,试卷 测试题组的解集是解(2)的关键.20.(8.00分)2021中考备战年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题: 图书种类 频数(本) 频率名人传记 175a 科普图书b 0.30小说 110c 其他65 d (1)求该校九年级共捐书多少本; (2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ; (3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本; (4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数; (2)根据频率=频数÷总数分别求解可得;【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A 是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形【解答】解:(1)根据题意得△=25sin A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC 的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,试卷 测试题【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=,BO :CO=1:3,求AB 的长. 经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= 75 °,AB= 4. (2)请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB 中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B 两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C 的横坐标为,又OC=,点C在x轴下方,解得:b=﹣,k=,∴y=x ﹣,又∵点C (,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x ,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x ,x ﹣),∴PQ=x ﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP =PQ(3﹣x)+PQ(x ﹣)=PQ=﹣x2+x ﹣,当x=﹣=时,S有最大值,四边形ABPC的面积最大,此时点P的坐标△BCP为(,﹣).【点评】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键.31。

2021人教版中考二模测试《数学试题》附答案解析

2021人教版中考二模测试《数学试题》附答案解析

人教版数学中考模拟测试卷第I 卷(选择题)一、单选题(1——10每小题3分11——16每小题2分共42分)1. 在2-,0,1,1-这四个数中,最大的数是( )A. 2-B. 0C. 1D. 1-2. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为( )A. 6750吨B. 67500吨C. 675000吨D. 6750000吨 3. 从数据43-,333.,9-,π,3-中任取一个数,则该数为无理数的概率为( ) A. 15 B. 25 C. 35 D. 454. 李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x 2(2x ﹣[]+1)=﹣6x 3+6x 2y ﹣3x 2,那么“[]”里应当是( )A. ﹣yB. ﹣2yC. 2yD. 2xy5. 下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A. 1B. 2C. 3D. 46. 小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( )A. (2.5,0.7)B. (2,1)C. (2,1.3)D. (2.5,1) 7. 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是( )A 4 B. 5 C. 6 D. 78. 下列因式分解中,正确的是( )A. 2()ax ax x ax a -=-B. ()2222221a b ab c b b a ac ++=++C. 222()x y x y -=-D. 256(2)(3)x x x x --=-- 9. 函数m y x=-与(0)y mx m m =-≠在同一平面直角坐标系中的大致图像是( ) A. B. C. D. 10. 如图,码头A 在码头B 的正西方向,甲,乙两船分别从A ,B 两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是( )A. 北偏东30B. 北偏东60C. 北偏东45D. 北偏西60 11. 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A . 甲B. 乙C. 丙D. 丁 12. 如图,已知点()A 0,6,()B 4,6,且点B 在双曲线k y (k 0)x=>上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且CD DE =,则线段CE 长度的取值范围是( )A. 6CE 8≤<B. 8CE 10≤≤C. 6CE 10≤<D. 6CE273≤< 13. 如图,已知AB ∥DE ,∠ABC=70°,∠CDE=140°,则∠BCD 的值为( )A. 20°B. 30°C. 40°D. 70°14. 如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A. ①②④B. ①②⑤C. ②③④D. ③④⑤ 15. 如图,点A ,B 为反比例函数y=k x 在第一象限上的两点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,若B 点的横坐标是A 点横坐标的一半,且图中阴影部分的面积为k ﹣2,则k 的值为( )A . 43B. 83C. 143D. 16316. 如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形ACD 和BCE,连结DE,则DE 长的最小值是( )A. 2B. 2C. 22D. 4第II卷(非选择题)二、填空题(每空3分共12分)17. 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.18. 在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.19. 如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y 轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n∁n,则A3的坐标为____,B5的坐标为_____.20. 李华同学准备化简:(3x2-5x-3)-(x2+2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-5x-3)-(x2+2x×6);(2)当x=1时,(3x2-5x-3)-(x2+2x□6)的结果是-2,请你通过计算说明“□”所代表的运算符号.21. 如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试求x+y的值;应用若n=22,则这些小桶内所放置的小球个数之和是多少?发现用含k(k为正整数)的代数式表示装有“4个球”的小桶序号.22. 在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.甲队五次预选赛成绩统计表比赛场次 1 2 3 4 5成绩(分)20 0 20 x 20乙队五次预选赛成绩条形统计图已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.(1)求出乙第四次预选赛的成绩;(2)求甲队成绩平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.23. 如图,已知射线OC为∠AOB的平分线,且OA=OB,点P是射线OC上的任意一点,连接AP、BP.(1)求证:△AOP≌△BOP;(2)若∠AOB=50°,且点P是△AOB的外心,求∠APB的度数;(3)若∠AOB=50°,且△OAP为钝角三角形,直接写出∠OAP的取值范围.24. 如图①,长为120 km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B,A后立刻返回到出发站停止,速度均为40 km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km),行驶时间为t(h).(1)图②已画出y甲与t的函数图象,其中a=____,b=____,c=____;(2)分别写出0≤t≤3及3<t≤6时,y乙与时间t之间的函数关系式;(3)在图②中补画y乙与t之间的函数图象,并观察图象计算出在整个行驶过程中两车相遇的次数.25. 如图,抛物线P:y1=a(x+2)2-3与抛物线Q:y2=12(x-t)2+1在同一个坐标系中(其中a、t均为常数,且t>0),已知抛物线P过点A(1,3),过点A作直线l∥x轴,交抛物线P于点B.(1)a=________,点B的坐标是________;(2)当抛物线Q经过点A时.①求抛物线Q的解析式;②设直线l与抛物线Q的另一交点记作C,求ACAB的值;(3)若抛物线Q与线段AB总有唯一的交点,直接写出t的取值范围.26. 如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.答案与解析第I卷(选择题)一、单选题(1——10每小题3分11——16每小题2分共42分)1. 在2-,0,1,1-这四个数中,最大的数是()A. 2-B. 0C. 1D. 1-【答案】A【解析】【分析】先化简绝对值,再根据有理数的大小比较法则即可得.-=【详解】22有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,负数绝对值大的反而小>>>-则2101->>>-即2101-因此,这四个数中,最大的数是2故选:A.【点睛】本题考查了化简绝对值、有理数的大小比较法则,掌握有理数的大小比较法则是解题关键.2. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为()A. 6750吨B. 67500吨C. 675000吨D. 6750000吨【答案】B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3. 从数据43-,333.,9-,π, ) A. 15 B. 25 C. 35 D. 45【答案】B【解析】【分析】根据概率=无理数个数与总情况数之比解答即可.【详解】解:无理数有π, ,所以取到无理数概率是25, 故选:B .【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.4. 李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x 2(2x ﹣[]+1)=﹣6x 3+6x 2y ﹣3x 2,那么“[]”里应当是( )A. ﹣yB. ﹣2yC. 2yD. 2xy 【答案】B【解析】【分析】 根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:(﹣6x 3+6x 2y ﹣3x 2)÷(﹣3x 2)﹣2x ﹣1=2x ﹣2y+1﹣2x ﹣1=﹣2y , 故选B .【点睛】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5. 下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 3=± 3412 (4) a a a ⋅= 532(5)a a a ÷= 其中做对了( )道 A. 1 B. 2 C. 3D. 4【答案】A 【解析】 【分析】 利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答. 【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误; 2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.6. 小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( )A. (2.5,0.7)B. (2,1)C. (2,1.3)D. (2.5,1)【答案】A【解析】【分析】等量关系为:3×春节前葡萄的价格+2×春节前苹果的价格=8;7×春节后葡萄的价格+5×春节后苹果的价格=21,把相关数值代入计算即可.【详解】解:设春节后购物时,(葡萄,苹果)每公斤的价格分别是x 元,y 元. ()()30.520.387521,x y x y ⎧-++=⎨+=⎩解得 2.50.7.x y =⎧⎨=⎩故选A .【点睛】考查二元一次方程组的应用;根据总价得到两个等量关系是解决本题的关键.7. 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【详解】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选B .【点睛】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8. 下列因式分解中,正确的是( )A. 2()ax ax x ax a -=-B. ()2222221a b ab c b b a ac ++=++C. 222()x y x y -=-D. 256(2)(3)x x x x --=--【答案】B【解析】【分析】分别利用提取公因式法以、公式法、十字相乘法分解因式,进而判断即可.【详解】解:A 、2(1)ax ax ax x -=-,故此选项错误; B 、()2222221a b ab c b b a ac ++=++正确; C 、22(+)()x y x y x y -=-,故此选项错误;D 、256(6)(+1)x x x x --=-,故此选项错误.故选:B .【点睛】此题主要考查了提取公因式法、公式法、十字相乘法分解因式,正确提取公因式、用对公式是解题关键.9. 函数m y x=-与(0)y mx m m =-≠在同一平面直角坐标系中的大致图像是( )A. B. C. D.【答案】A【解析】【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【详解】A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.10. 如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是()A. 北偏东30B. 北偏东60C. 北偏东45D. 北偏西60【答案】B【解析】【分析】解直角三角形ABC可得∠CAB的度数,根据余角的定义,可得∠DAC的度数,根据方向角的表示方法,可得答案.【详解】作AD∥BC,如图,设BC=t,则AC=2t,∴sin∠CAB=CBAC=12,∴∠CAB=30°,∴∠DAC=60°,甲的航向应该是北偏东60°.故选B .【点睛】本题考查了解直角三角形和方向角,解直角三角形是解题的关键.11. 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】 解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D .12. 如图,已知点()A 0,6,()B 4,6,且点B 在双曲线k y (k 0)x=>上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且CD DE =,则线段CE 长度的取值范围是( )A. 6CE 8≤<B. 8CE 10≤≤C. 6CE 10≤<D. 6CE 273≤<【答案】D【解析】【分析】过D作DF⊥OA于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由DF=8,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当CE⊥x 轴时,CE=OA=6,于是求得结果.【详解】过D作DF⊥OA于F.∵点A(0,6),B(4,6),∴AB⊥y轴,AB=4,OA=6.∵CD=DE,∴AF=OF=3.∵点B在双曲线ykx=(k>0)上,∴k=4×6=24,∴反比例函数的解析式为:y24x=.∵过点C的直线交双曲线于点D,∴D点的纵坐标为3,代入y24x=得:324x=,解得:x=8,∴D(8,3).当O与E重合时,如图2.∵DF=8,∴AC=16.∵OA=6,∴CE22273AC OA=+=;当CE⊥x轴时,CE=OA=6,∴6≤CE≤273.故选D.【点睛】本题考查了是反比例函数与几何综合题,考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.13. 如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A. 20°B. 30°C. 40°D. 70°【答案】B【解析】试题分析:延长ED 交BC 于F ,∵AB ∥DE ,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC ﹣∠MDC=70°﹣40°=30°,故选B .考点:平行线的性质.14. 如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).15. 如图,点A,B为反比例函数y=kx在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为()A. 43B.83C.143D.163【答案】B 【解析】【分析】根据反比例函数图象上点的坐标特征,设B(t,kt),则AC=2CE=2t,可表示出A(2t,k2t),由点B和点A的纵坐标可知BD=2OC,然后根据三角形面积公式得到关于k的方程,解此方程即可.【详解】解:设B(t,kt ),∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,B 点的横坐标是A 点横坐标的一半,∴AC =2CE =2t ,∴A (2t ,k 2t ), ∴BD =2OC=2BE ,在△OCM 和△BEM 中OCM MEB CMO EMB OC BE ==∠∠⎧⎪∠∠⎨⎪=⎩∴△OCM ≌△BEM ,∴CM =EM=1t 2, 同理可证:△ODN ≌△AEN ,∴EN =DN=k 4t, ∴阴影部分的面积=111t k 1k ME BE NE AE t k 222222t 24t ⨯+⨯=⨯⨯+⨯⨯=-. 解得:k=83故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,全等三角形的性质与判定,由几何图形的性质将阴影部分的面积进行转化是解题的关键.16. 如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是( )2B. 2C. 2D. 4【答案】B【解析】【分析】 设AC=x ,BC=4-x ,根据等腰直角三角形性质,得出CD=22x ,CE=22(4-x ),根据勾股定理然后用配方法即可求解.【详解】解:设 AC=x ,BC=4﹣x ,∵△CDA ,△BCE 均为等腰直角三角形,∴CD=22x ,CE=22(4﹣x), ∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE ²=CD ²+CE ²=()()2222114482422x x x x x +-=-+=-+ ∵根据二次函数的最值,∴当 x 取 2 时 ,DE 取最小值 ,最小值为:2.故答案为B.【点睛】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.第II 卷(非选择题)二、填空题(每空3分共12分)17. 如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.【答案】x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x >1时,x+b >ax+3;考点:一次函数与一元一次不等式.18. 在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.【答案】15【解析】【详解】设圆锥的底面圆的半径为r,根据题意得2πr=904180π⨯,解得r=1,所以所围成的圆锥的高=2241=15-考点:圆锥的计算.19. 如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y 轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n∁n,则A3的坐标为____,B5的坐标为_____.【答案】(1). (72,0)(2). (318,18)【解析】【详解】解:当x=0,y=4,当y=0时,﹣x+4=0,x=4,∴OE=OF=4,∴△EOF是等腰直角三角形,∴∠C1EF=45°∴△B1C1E是等腰直角三角形,∴B1C1=EC1,∵四边形OA1B1C1为正方形,∴OC1=C1B1=EC1=2,∴B1(2,2),A1(2,0),同理可得:C2是A1B1的中点,∴B2(2+1=3,1),A2(3,0),B3(2+1+12=72,12),A3(72,0),B4(72+14=154,14),A4(154,0),B5(154+18=318,18).故答案为(72,0),(318,18).20. 李华同学准备化简:(3x2-5x-3)-(x2+2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-5x-3)-(x2+2x×6);(2)当x=1时,(3x2-5x-3)-(x2+2x□6)的结果是-2,请你通过计算说明“□”所代表的运算符号.【答案】(1)2x2-17x-3;(2)“□”代表“-”.【解析】【分析】(1)先算乘法、再去括号、最后合并即可;(2)将x=1代入原式进行运算即可确定“□”所代表的运算符号.【详解】解:(1)原式=(3x2-5x-3)-(x2+12x)=3x2-5x-3-x2-12x=2x2-17x-3;(2)当x=1时,原式=(3-5-3)-(1+2□6)=-2,整理得:1+2□6=-3,即“□”代表“-”.【点睛】本题考查了整式的加减以及有理数的混合运算,熟练掌握相关运算法则是解答本题的关键.21. 如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试求x+y的值;应用若n=22,则这些小桶内所放置的小球个数之和是多少?发现用含k(k为正整数)的代数式表示装有“4个球”的小桶序号.【答案】尝试:x+y=9;应用:99;发现:装有“4个球”的小桶序号为4k-1.【解析】【分析】尝试:根据“任意相邻的四个小桶所放置的小球个数之和相等”列出等式即可得到x+y的值;应用:根据题意可分别求出x,y的值,可以发现以“6,3,4,5”为一组循环出现,故可求出n=22时,小桶内所放置的小球个数之和;发现:根据规律,用含有k的代数式表示即可.【详解】尝试:根据题意可得6+3+4+5=4+5+x+y,∴x+y=9;应用:∵6+3+4+5=3+4+5+x,又∵x+y=9,∴x=6,y=3,∴小桶内所放置的小球数每四个一循环,∵22÷4=5⋯⋯2,∴(6+3+4+5)×5+9=99发现:装有“4个球”的小桶序号分别为3=4×1-1,7=4×2-1,11=4×3-1…,∴装有“4个球”的小桶序号为4k-1.【点睛】题目考查了数字的变化规律,通过数字的变化,体会数字变化为学生们带来的快乐.题目整体较难,特别是(3)中的总结性,更能体现学生的解决问题能力.22. 在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.甲队五次预选赛成绩统计表比赛场次 1 2 3 4 5成绩(分)20 0 20 x 20乙队五次预选赛成绩条形统计图已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.(1)求出乙第四次预选赛的成绩;(2)求甲队成绩的平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.【答案】(1)乙队第4场的成绩为20分;(2)甲队成绩的平均数为16分,x=20;(3)49.【解析】【分析】(1)根据已知条件可判断出乙队成绩的众数为20分,则可求出第四场成绩为20分;(2)先计算出乙的平均成绩,据此可得甲的平均成绩,再根据平均数的公式列出关于x的方程,即可求解;(3)列表得出所有等可能结果,从中找到甲队成绩优于乙队成绩结果出,利用概率求解即可.【详解】解:(1)∵甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20分,∴乙队成绩的众数为20分,则乙队第4场的成绩为20分,补全条形统计图如解图:(2)∵乙队五次成绩的平均数为15×(10+10+20+20+20)=16(分),∴甲队成绩的平均数为16分,由15×(20+0+20+x+20)=16,解得x=20;(3)列表如下: 乙甲1010 20 20(20,10) (20,10) (20,20) 0(0,10) (0,10) (0,20) 20(20,10) (20,10) (20,20)由上表可知,共有9种等可能的结果,其中甲队成绩优于乙队成绩的结果有4种,∴P (选择到的甲队成绩优于乙队成绩)=49. 【点睛】本题考查了列表法和树状图法,利用列表法和树状图法展示所有等可能结果,再从中选出符合条件的结果进行计算,也考查了统计的有关概念.23. 如图,已知射线OC 为∠AOB 的平分线,且OA =OB ,点P 是射线OC 上的任意一点,连接AP 、BP . (1)求证:△AOP ≌△BOP ;(2)若∠AOB =50°,且点P 是△AOB 的外心,求∠APB 的度数;(3)若∠AOB =50°,且△OAP 为钝角三角形,直接写出∠OAP 的取值范围.【答案】(1)证明见解析;(2)∠APB =100°;(3)0°<∠OAP < 65°或90°<∠OAP<155°.【解析】【分析】(1)根据“SAS ”证明即可;(2)根据三角形外心定义得到PA =PB =PO ,根据等腰三角形性质和三角形的外角性质求出∠APC =50°,根据∠APO =∠BPO 即可求解;(3)根据题意得=155-APO OAP ∠︒∠,分OAP ∠为钝角和OPA ∠为钝角两种情况讨论即可.【详解】解:(1)∵OP 平分∠AOB ,∴∠AOP =∠BOP ,又∵OA =OB ,OP =OP ,∴△AOP ≌△BOP ;(2)∵∠AOB =50°,∴∠AOP =∠BOP =25°,∵点P 是△AOB 的外心,∴PA =PB =PO ,∴∠A =∠AOP =25°,∴∠APC =∠A +∠AOP =50°,∵△AOP ≌△BOP ,∴∠APO =∠BPO ,∴∠BPC =∠APC =50°,∴∠APB =100°;(3)∵∠AOB =50°, ∴1=252AOP AOB ∠∠=︒ ,∴18025=155OAP APO ∠+∠=︒-︒︒,∴=155-APO OAP ∠︒∠,如图1,当OAP ∠为钝角时,90°<∠OAP<155° ;如图2,当OPA ∠为钝角时,90°<∠OPA<155°,即90°<155-OAP ︒∠<155°,∴0°<∠OAP < 65°∴∠OAP 的取值范围为:90°<∠OAP<155°或0°<∠OAP < 65°.【点睛】本题考查了角平分线的定义,全等三角形判断,三角形的外心,等腰三角形性质,三角形分类等知识,熟悉相关知识点是解题关键.24. 如图①,长为120 km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为40 km/h ,设甲车,乙车距南站A 的路程分别为y 甲,y 乙(km ),行驶时间为t (h ).(1)图②已画出y 甲与t 的函数图象,其中a =____,b =____,c =____;(2)分别写出0≤t≤3及3<t≤6时,y 乙与时间t 之间的函数关系式;(3)在图②中补画y 乙与t 之间的函数图象,并观察图象计算出在整个行驶过程中两车相遇的次数.【答案】(1)120,3,6;(2)y 乙=40120(03)40120(36)t t t t -+⎧⎨-<⎩;(3)画图象见解析,整个行驶过程中两车相遇次数为2.【解析】【分析】(1)根据题意和函数图象可以得到a 、b 、c 的值;(2)根据题意和(1)中的答案可以分别求得当0≤t≤3及3<t≤6时,y 乙与时间t 之间的函数关系式; (3)根据题意可以画出相应的函数图象,根据函数图象可以得到在整个行驶过程中两车相遇的次数.【详解】解:(1)由题意和函数图象可得,a =120,b =120÷40=3,c =2×3=6;故答案为:120,3,6;(2)当0≤t≤3时,设y 乙与时间t 之间的函数关系式为:y 乙=kt +b ,2=⎧⎨+=⎩b 103k b 0,得40=-⎧⎨=⎩k b 120, 即当0≤t≤3时,y 乙与时间t 之间的函数关系式为:y 乙=-40t +120;当3<t≤6时,设y 乙与时间t 之间的函数关系式为:y 乙=mt +n ,36+=⎧⎨+=⎩m n 0m n 120,得40120=⎧⎨=-⎩m n , 即当3<t≤6时,y 乙与时间t 之间的函数关系式为:y 乙=40t -120;∴y 乙与时间t 之间的函数关系式为:y 乙=40120(03)40120(36)t t t t -+⎧⎨-<⎩; (3)y 乙与t 之间的函数图象如解图所示,由图象可知,两个函数图形有两个交点,故整个行驶过程中两车相遇次数为2.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25. 如图,抛物线P :y 1=a (x +2)2-3与抛物线Q :y 2=12(x -t )2+1在同一个坐标系中(其中a 、t 均为常数,且t >0),已知抛物线P 过点A (1,3),过点A 作直线l ∥x 轴,交抛物线P 于点B . (1)a =________,点B 的坐标是________;(2)当抛物线Q 经过点A 时.①求抛物线Q 的解析式;②设直线l与抛物线Q的另一交点记作C,求ACAB的值;(3)若抛物线Q与线段AB总有唯一的交点,直接写出t的取值范围.【答案】(1)23;(-5,3);(2)①抛物线Q的解析式为:y2=12(x-3)2+1;②ACAB=23;(3)0<t 3.【解析】【分析】(1)先利用待定系数法求出抛物线P的解析式,即可得出结论;(2)①利用待定系数法求出抛物线Q的解析式,即可得出结论;②先求出AC,AB即可得出结论;(3)利用平移的特点和AB,AC的长即可得出结论.【详解】解:(1)∵抛物线P:y1=a(x+2)2-3过点A(1,3),∴9a-3=3,∴a=23,∴抛物线P:y1=23(x+2)2-3,∵l//x轴,∴点B的纵坐标为3,∴3=23(x+2)2-3,∴x1=1(点A的横坐标),x2=-5,∴B(-5,3).(2)①∵抛物线Q:y2=12(x-t)2+1过点A(1,3),∴12(1-t)2+1=3,∴t1=-1(舍去),t2=3,∴抛物线Q的解析式为:y2=12(x-3)2+1;∵l//x轴,∴点C的纵坐标为3,∴3=12(x-3)2+1,∴x1=1(点A的横坐标),x2=5,∴C(5,3),∴AC=5-1=4,由(1)知,B(-5,3),∴AB=1-(-5)=6,∴ACAB=46=23;(3)∵抛物线Q:y2=12(x-t)2+1∴抛物线Q的开口大小一定,顶点坐标的纵坐标是1也是定值,∴抛物线Q只是左右移动,当抛物线Q向右平移的过程中,点A在抛物线Q的左侧时,抛物线Q和线段AB有一个交点A,此时,t=3,由(2)知,AC=4,将抛物线Q向左平移4个单位时,和线段AB有两个交点,此段,-1<t≤3时,抛物线Q与线段AB有一个交点,再继续把抛物线Q向左移动,移动到点B在抛物线Q的左侧时,此时,此时,t=-3,同上,抛物线Q与线段AB有一个交点,-7≤t<-3,∵t>0,即:0<t≤3,抛物线Q与线段AB有一个交点.【点睛】此题是二次函数综合题,主要考查了待定系数法,交点坐标的求法,平移的性质,利用平移的性质得出t的范围是解本题的关键.26. 如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM 长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.【答案】(1)83;(2)3或43;(3)565x≤<【解析】【分析】(1)设BP=a,则PC=8-a,由△MBP~△DCP知MB BPDC CP=,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知227465PM=+=.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,。

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。

2021年山东省东营市广饶县初中学业水平考试数学试题(二模)(含答案解析)

2021年山东省东营市广饶县初中学业水平考试数学试题(二模)(含答案解析)

2021年山东省东营市广饶县初中学业水平考试数学试题(二模)学校:___________姓名:___________班级:___________考号:___________一、单选题1.12021-的倒数是()A.12021B.-2021C.12021-D.20212.下列计算正确的是()A B.5xy2﹣3xy2=2C.(﹣x2)3=﹣x6D.(x﹣y)2=x2﹣y23.用计算器计算,按键顺序是2,xy,3,=,显示的结果是()A.23B.6C.8D.94.如图,ABCD,AE平分∠BAC,∠BAE=55°,则∠ACD的度数是()A.70B.65C.60°D.55°5.小明随机地在如图所示的圆及其内部区域投针,则针扎到其内接等边三角形(阴影)区域的概率为()A.12B C D6.如图,已知抛物线y=ax2+bx+c(a≠0)交x轴于点A(﹣1,0)和x轴正半轴于点B,且BO=3AO交y轴正半轴于点C.有下列结论:∠abc>0;∠2a+b=0;∠x=1时y有最大值﹣4a;∠3a+c=0,其中,正确结论的个数是()A.1B.2C.3D.47.如图,圆锥的轴截面是一个斜边为2的等腰直角三角形,则这个圆锥的侧面积是()AB C.2πD.8.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?()A.8尺B.12尺C.16尺D.18尺9.如图,在等边∠ABC中AB=2,点D从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B运动,过点D作AB的垂线,垂足为点E.设点D的运动时间为x秒,∆ADE的面积为y(当A,D,E三点共线时,不妨设y=0),则能够反映y与x之间的函数关系的图象大致是()A.B.C.D.10.如图,∠ABC中,∠BAC=120°,∠ACB=45°,分别以AB、AC为边向三角形ABC 外部作正方形ABDE和正方形ACFG,连接CE、BG交点为K,CE、AG交为N,延长CA交BG于点M,连接CG.则下列结论:∠∠ABG∠∠AEC:∠BG∠CE:∠AM=AN:∠2CF2=KG•CE,其中正确的有()个A.1B.2C.3D.4二、填空题11.2020年黄河口生态旅游区“十一”期间接待游客74000人次,实现旅游收入703万元,则703万元用科学记数法表示为___元.12.因式分解:ax2﹣8ax+16a=___.13.九年级1班学生经常采用“小组合作学习”的方式进行学习,老师每周对各小组合作学习的情况进行综合评分,下表是各小组其中一周的得分情况:这组数据的中位数是___.14.如图,在平面直角坐标系xOy中,菱形OABC满足点O在原点,点A坐标为(2,0),∠AOC=60°,直线y=﹣3x+b与菱形OABC有交点,则b的取值范围是___.15.如果关于x的一元二次方程﹣x2+mx﹣3=0有两个相等实数根,则m的取值是___.16.如图,己知正方形ABCD,点E在BC上延长线上,连接AE交CD于点F,∠CEF与四边形ABCF的面积分别为1和8,则∠ADF的面积为___.17.如图,AB 是半圆O 的直径,AC =AD ,OC =2,∠CAB =30°,E 为线段CD 上一个动点,连接OE ,则OE 的最小值为___.18.如图,点A 1在x 轴正半轴上且1OA A 1作x 轴的垂线交直线l :y 于点B 1,过点B 1作B 1A 2∠l ,交x 轴于点A 2,过点A 2作A 2B 2垂直x 轴,交直线于l 于点B 2,过点B 2作B 2A 3∠l ,交x 轴点A 3,按照此方法继续作下去,则线段B 2021B 2020的长度为___.三、解答题19.(1)计算101|1(2021)3tan 303π-⎛⎫+---︒ ⎪⎝⎭(2)化筒求值:35222a a a a -⎛⎫÷+- ⎪--⎝⎭,其中3a =. 20.如图,∠ABC 内接于圆O ,AB 为圆O 的直径,D 为BA 延长线上一点,连接CD ,过O 作OF ∠BC 交AC 于点E ,交CD 于点F ,∠ACD =∠AOF .(1)求证:CD 为圆O 的切线;(2)若sin D =14,BC =10,求EF 的长.21.小明与小华在一次数学实践活动中,想要测量他们家对面商业大厦的高MN,如图所示,小明爬到居民楼窗台B处,测得商业大厦顶部N的仰角∠1的度数为60°,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩又上了几层楼来到窗台C处测得大厦底部M的俯角∠2的度数为30°,已知A,B,C三点共线,CA∠AM,NM∠AM,AB=18m,BC=6m,试求商业大厦的高MN.22.随着经济的快速发展,环境问题越来越受到人们的关注.为了了解垃圾分类知识的普及情况,某校随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成如图两幅不完整的统计图:(1)本次被调查的学生有名,扇形统计图中,∠a=.(2)将条形统计图剩余的部分补充完整(包括未标记的数据):(3)估计该校1400名学生中“了解较少”与“不了解”的人数和是多少?(4)某环保小队有3名男生,1名女生,从中随机抽取2人在全校做垃圾分类知识交流,请用画树状图或列表法的方法,求恰好抽到都是男生的概率.23.某花店计划在母亲节来临之前购进一批康乃馨和百合花,已知购买2枝康乃馨和3枝百合共需40元:购买3枝康乃馨和1枝百合共需25元.(1)求每枝康乃馨和百合花的价格分别是多少元?(2)若该花店准备同时购进这两种花共300枝,并且康乃馨的数量不多于百合花数量的2倍,请设计出最省钱的购买方案,并说明理由.24.如图∠,抛物线y=ax2+bx+C(a≠0)经过点A(﹣4,0),点B(2,0)和点C (0,﹣4),它的对称轴为直线l,顶点为D.(1)求该抛物线的表达式:(2)如图∠,点P是直线AC下方该抛物线上的一个动点,连接AR.CP、AC,当∠APC 的面积取得最大值时,求点P的坐标;(3)如图∠,点E是直线AD下方该抛物线上的一个动点,过E点作EF∠直线l于F,连接DE,当以D、E、F为顶点的三角形与∠BOC相似时,求点E的坐标.25.已知:如图∠,在矩形ABCD中,AB=8,AD=6,连接AC,将三角形ABC沿AC翻折,使B点落在E点处,连接EC,AE,AE交DC于F点.(1)求DF的长.(2)若将∠CEF沿着射线CA方向平移,设平移的距离为m(平移距离指点C沿CA方向所经过的线段长度).当点F平移到线段AD上时,如图∠,求出相应的m的值.(3)如图∠,将∠CEF绕点C逆时针旋转一个角a(0°<a<∠ECB),记旋转中的∠CEF 为∠CE′F′,过E′作E′G∠AD于G点,在旋转过程中,当∠DCE′为等腰三角形时,求出线段E′G的长度.参考答案:1.B【解析】【分析】直接利用倒数的定义得出答案.【详解】12021-的倒数是:2021-, 故选:B .【点睛】本题考查了倒数的定义(两个数乘积为1,称这两个数互为倒数),正确掌握相关定义是解题的关键.2.C【解析】【分析】运用二次根式加减运算法则判定A ;运用合并同类项法则计算判定B ;运用幂的乘方法则计算判定C ;运用完全平方公式计算判定D .【详解】A .不是同类二次根式,不能合并,故A 错误;B .5xy 2-3xy 2=2xy 2,故B 错误;C .(-x 2)3=-x 6,故C 正确;D .(x -y )2=x 2-2xy +y 2,故D 错误.故选:C .【点睛】本题考查二次根式加减运算法则,整式加减运算,幂的乘方,完全平方公式.熟练掌握相关运算法则与计算公式是解题的关键.3.C【解析】【分析】根据按键顺序列式为:23,再根据乘方法则计算即可.【详解】解:由题意得:23=8.故选:C.【点睛】本题考查了计算器-有理数的乘方的应用,关键是考查学生的理解能力,题型较好,但是一道比较容易出错的题目.4.A【解析】【分析】由角平分线的定义可得∠BAC=2∠BAE=110°,再利用平行线的性质即可求∠ACD的度数.【详解】解:∠AE平分∠BAC,∠BAE=55°,∠∠BAC=2∠BAE=110°,∠AB∥CD,∠∠ACD=180°-∠BAC=70°.故选:A.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.5.C【解析】【分析】求扎到阴影区域(不包括边界)的概率就是求正三角形面积与圆的面积的比.【详解】解:设扎到阴影区域的正三角形的概率为P,圆的半径为R,记圆的圆心为点O,过O作OD∠BC与D,连接OA,OB,OC,∠∠ABC 是正三角形,∠AB =BC =AC ,∠∠AOB =∠BOC =∠COA ,∠∠BOC =3601203︒=︒ , ∠OB =OC , ∠1260BOD BOC ,∠30OBD ∠=︒∠OB =R ,∠2R OD =,cos30BD OB =⋅︒= ,∠2BC BD == , ∠21324BOC S BC OD R == , ∠OA =OB =OC ,∠AOB =∠BOC =∠AOC ,∠∠AOB ∠∠BOC ∠∠AOC ,∠AOB BOC AOC SS S == , ∠2334ABC BOC SS == , ∠2O S R π= ,∠224P R π==. 故选:C .【点睛】本题主要考查了几何概率,等边三角形的性质,三角形的外接圆,熟练掌握概率的概念是解决问题的关键.6.C【解析】【分析】根据抛物线开口方向得到a <0;对称轴在y 轴的右侧,a 与b 异号,得到b >0,又抛物线与y 轴的交点在x 轴上方,则c >0,于是可判断∠错误;根据OB =3OA =3,确定点B 的坐标,可得抛物线的对称轴为直线x =1,于是可判断∠正确;根据A (-1,0)和点B (3,0)确定抛物线的解析式,并化为顶点式,于是可判断∠正确;根据a -b +c =0和b =-a 可判断∠正确.【详解】解:∠∠抛物线开口向下,∠a <0,又∠对称轴在y 轴的右侧,∠x =-2b a>0,∠b >0, 又∠抛物线与y 轴的交点在x 轴上方,∠c >0,∠abc <0,所以∠错误;∠∠A (-1,0),∠OA =1,∠OB =3OA ,∠OB =3,∠B (3,0),∠对称轴为:直线x =132-+=1, 即-2b a =1, ∠2a +b =0,所以∠正确;∠∠抛物线y =ax 2+bx +c (a ≠0)交x 轴于点A (-1,0)和点B (3,0),∠y =a (x +1)(x -3)=a (x -1)2-4a ,∠a <0,∠x =1时,y 有最大值-4a ,所以∠正确;∠当x =-1时,a -b +c =0,由∠知:b =-2a ,∠a +2a +c =0,∠3a +c =0,所以∠正确.正确结论有∠∠∠,共有3个.故选:C .【点睛】本题考查了二次函数的顶点式,与x 轴的交点及二次函数y =ax 2+bx +c (a ≠0)的图象与系数的关系:当a <0,抛物线开口向下;抛物线的对称轴为直线x=-2b a;抛物线与y 轴的交点坐标为(0,c );解题的关键是熟练掌握二次函数的图象和性质,属于中考常考题型. 7.B【解析】【分析】首先可求得圆锥的底面半径及母线长,再根据圆锥的侧面积公式,即可求得.【详解】解:∠圆锥的轴截面是一个斜边为2cm 的等腰直角三角形,∠底面半径=1cm ,母线长=AB AC ,底面周长=2πcm ,∠圆锥的侧面积()2122cm π=⨯, 故选:B .【点睛】本题考查了圆锥的侧面积计算,利用了圆的周长公式和扇形面积公式求解,解题的关键是牢记有关公式.8.A【解析】【分析】设井深x 尺,则绳长可以表示为3(x +4)或4(x +1),列方程即可.【详解】解:井深x 尺,根据题意得3(x +4)=4(x +1),解得x =8,故井深8尺,故答案为A.【点睛】本题考查一元一次方程的应用,解决问题的关键是找到满足题意的等量关系.9.C【解析】【分析】根据点D 的运动可知,分两种情况分析问题:(1)当点D 在边AC 上,即01x ≤≤时;(2)当点D BC 在边上,即12x ≤≤时.【详解】解: 当点D 在AC 上,即01x ≤≤时,如图,由点D 的运动可知,2AD x =,ABC ∆是等边三角形,∴60A ∠︒=,DE AB ⊥,∴90AED ∠︒=,∴30ADE ∠︒=,∴AD x =,DE ,21122y AE DE x ∴=•==, 此函数图象是开口向上,过原点关于y 轴对称的抛物线,在01x ≤≤范围应是y 随x 的增大而增大,当1x =时,y 当点D 在BC 上,即12x ≤≤时,如图,由点D 的运动可知,2AC CD x +=,42BD x ∴-=,ABC ∆是等边三角形,60B ∴∠︒=,DE AB ∵⊥,90DEB ∴∠︒=,30BDE ∴∠︒=,2BE x AE x ∴-=,=,)2DE x ∴-,)211222y AE DE x x ∴=•=-=此函数图象是开口向下,当1x =12x ≤≤范围应是y 随x 的增大而减小.综上,图象C 满足条件.故选:C .【点睛】本题考查了动点问题的函数图象,二次函数的性质,等边三角形的性质,含30度角的直角三角形的性质,数形结合并熟练写出相关函数的解析式是解题的关键.10.D【解析】【分析】根据正方形的性质易证∠EAC =∠BAG ,即可证明∠EAC ∠∠BAG ,即可判断∠;由∠EAC ∠∠BAG ,可得CE =BG ,∠AEC =ABG ,即可证明CE ∠BG ;可判断∠;然后证明∠MAG ∠∠NAC ,可得AM =AN ,进而判断∠;证明∠KGC ∠∠CGB ,可得2CG KG BG =⋅,由BG =CE ,CG CF ,即可判断∠.【详解】解:∠正方形ABDE 和正方形ACFG ,∠∠EAB =∠GAC =90°,AB =AE ,AG =AC ,∠∠EAB +∠EAG =∠GAC +∠EAG∠∠BAG =∠EAC ,在∠ABG ∠和∠AEC 中,AB AE BAG EAC AG AC =⎧⎪∠=∠⎨⎪=⎩∠∠ABG ∠∠AEC (SAS),故∠正确;∠∠AGB =∠ACE ,∠∠ACE +∠ANC =90°,∠∠AGB +∠ANC =90°,∠∠GNK =∠ANC ,∠∠AGB +∠GNK =90°,∠∠GKN =90°,∠BG ∠CE ,故∠正确;∠∠ABG ∠∠AEC ,∠∠MGA =∠NCA ,在∠MAG 和∠NAC 中,MGA NCAAG AC MAG NAC∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠MAG ∠∠NAC (ASA),∠AM =AN ,故∠正确;∠∠ACB =45°,∠ACG =45°,∠∠BCG =90°,∠BG ∠CE ,∠∠CKG =∠BCG =90°,∠∠ABG ∠∠AEC ,∠BG =CE ,∠∠KGC =∠CGB ,∠∠KGC ∠∠CGB , ∠KGCGCG BG =,∠2CG KG BG =⋅,∠BG=CE,CG,∠22CF KG CE=⋅,故∠正确.∠其中正确的有∠∠∠∠,共4个.故选:D.【点睛】本题属于几何综合题,考查了全等三角形的判定与性质,相似三角形的判定与性质,正方形的性质,解决本题的关键是综合运用知识解决问题.11.6⨯7.0310【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a<10,n为整数.确定n的值时,看小数点移动了多少位,n的绝对值与小数点移动的位数相同.小数点向左移动时,n是正整数;小数点向右移动时,n是负整数.据此求解即可.【详解】解:703万=7030000=7.03×106,故答案为:7.03×106.【点睛】本题主要考查科学记数法.解题关键是正确确定a的值以及n的值.12.2a x-(4)【解析】【分析】先提内参因式a,再运用公式法分解即可.【详解】解:ax2-8ax+16a=a(x2-8x+16)=a(x-4)2,故答案为:a(x-4)2.【点睛】本题考查提公因式法和运用公式法分解因式.先提公因式,再用公式分解是解题的关键.注意:因式分解要分解到不能再分解为止.13.90【分析】中位数是一组数据按一定顺序排列后中间的数据.根据这一定义求解即可;【详解】解:这组数据按照从小到大的顺序排列为:85,88,90,90,90,92,95,则中位数为:90.故答案为:90【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.≤≤0≤b≤√3+9b09【解析】【分析】作CM∠OA于点M,BN∠OA于点N,求出B的坐标,然后代入一次函数解析式中,求出b 的最大值,再将原点代入一次函数解析式中求出b的最小值即可.【详解】解:作CM∠OA于点M,BN∠OA于点N,∠∠AOC=60°,∠CMO=90°,OC,∠OM=12∠在菱形OABC中,A(2,0),∠OC=OA=2=CB,∠OM=1,∠CM,∠C(1,∠B的横坐标为3,∠BN =CM∠BB (3,当y =-3x +b 过O (0,0)时,b 最小,最小值为0,当y =-3x +b 过B (3时,b 最大,把B (3代入y =-3x +b ,解得:b,∠b 的取值范围为:0⩽b,故答案为:0⩽b.【点睛】本题考查了菱形的性质和待定系数法,关键是求出点B 的坐标.15.±【解析】【分析】根据方程的系数结合根的判别式,即可得出有关m 的方程,然后求解即可.【详解】解:∠关于x 的一元二次方程﹣x 2+mx ﹣3=0有两个相等的实数根,∠2244(1)(3)0b ac m ∆=-=-⨯-⨯-= ,∠m =±.故答案为:±【点睛】本题考查了一元二次方程根的判别式,牢记“当∆=0时,一元二次方程有两个相等的实数根”是解题的关键.16.4【解析】【分析】根据四边形ABCD 是正方形,可得BC =AD ,BC AD ∥,AB CD ∥,得∠EFC ∠∠EAB ,∠EFC ∠∠AFD ,根据相似三角形面积的比等于相似比的平方即可得结果.【详解】解:∠四边形ABCD 是正方形,∠BC =AD ,BC AD ∥,AB CD ∥,∠∠EFC ∠∠EAB ,∠EFC ∠∠AFD , ∠2EFC EAB S EC S EB ⎛⎫= ⎪⎝⎭,2EFC AFD S EC S AD ⎛⎫= ⎪⎝⎭, ∠∠CEF 与四边形ABCF 的面积分别为1和8,∠S △EAB =9, ∠13EC EB =, ∠12EC EC BC AD ==, ∠∠ADF 的面积为:4.故答案为:4.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,解决本题的关键是掌握相似三角形面积的比等于相似比的平方.∽17【解析】【分析】过O 点作OF ∠CD 于F ,如图,利用等腰三角形的性质和三角形内角和计算出∠ACD =∠ADC =75°,再利用圆周角定理得到∠BOC =2∠A =60°,则∠OCD =45°,利用等腰直角三角形的性质得到OF ,然后根据垂线段最短求解.【详解】解:过O 点作OF ∠CD 于F ,如图,∠AC =AD ,∠(11180180307)()522ACD ADC CAB ∠=∠=︒-∠=︒-︒=︒, ∠∠BOC=2∠A =60°,∠∠OCD =180°−∠DOC −∠ODC =180°−60°−75°=45°,∠∠COF为等腰直角三角形,∠cos452OF OC=︒⋅==∠OE.【点睛】本题考查了圆周角定理,解直角三角形,等腰三角形的判定与性质,根据垂线段最短,找到OE最短的点是解决本题的关键.18.2020 1423⎛⎫⨯ ⎪⎝⎭【解析】【分析】在Rt∠A1B1O中,OA11y=,可求出11tan A OB∠=,可得1130AOB∠=︒,OB1=2,根据30°直角三角形的性质,依次求出B1B2,B2B3的线段长度,找出其规律即可.【详解】解:在Rt∠A1B1O中,OA1∠1y===,∠点B1的坐标),11tan AOB∠=∠1130AOB∠=︒,OB1=2,在Rt∠A2OB1中,12cos30OBOA︒==∠2OA==∠2224tan303A B OA=⋅︒==,∠1130AOB∠=︒,A2B2∠x軸,∠2260A B O∠=︒,又∠B1A2∠l,∠12230B A B∠=︒,∠122212142323B B A B ===⨯, 同理223814923B B ⎛⎫==⨯ ⎪⎝⎭, 以此类推,线段2020202120201423B B ⎛⎫=⨯ ⎪⎝⎭, 故答案为:2020202120201423B B ⎛⎫=⨯ ⎪⎝⎭【点睛】 本题考查了一次函数图象上点的坐标特征,30°角的直角三角形的性质,解题关键是分析数据找出规律.19.(1)-1;(2)13a + 【解析】【分析】(1)根据去绝对值符号法则、零次幂及负整数指数幂的运算法则、特殊角的三角函数值、开立方运算,即可求得;(2)首先进行分式的化简运算,化成最简分式后,再把3a 代入化简后的式子,即可求得.【详解】解:(1)101|1(2021)3tan 303π-⎛⎫+---︒ ⎪⎝⎭11332+--1132=+-1=-; (2) 35222a a a a -⎛⎫÷+- ⎪--⎝⎭ 234522a a a a ---=÷-- ()()32332a a a a a --=⋅--+ 13a =+当3a=时,原式=.【点睛】本题考查了去绝对值符号法则、零次幂及负整数指数幂的运算法则、特殊角的三角函数值、开立方运算,分式的化简求值问题,熟练掌握和运用各运算法则是解决本题的关键.20.(1)见解析(2)3【解析】【分析】(1)根据平行线的性质,等腰三角形的性质以及圆周角定理可得∠ACD+∠ACO=90°,即OC∠CD,进而得到CD为圆O的切线;(2)根据平行线分线段成比例可得OE=12BC=5,再根据sinD=14,得到45DODB=,再由相似三角形的性质可得OF,进而求出EF.(1)如图,连接OC,∠OF∠BC,∠∠FOA=∠ABC,∠∠ACD=∠AOF.∠∠ACD=∠ABC,∠OB=OC,∠∠OBC=∠BCO,∠AB是∠O的直径,∠∠ACB=90°,即∠ACO+∠BCO=90°,∠∠ACD+∠ACO=90°,即OC ∠CD ,∠OC 是∠O 的半径,∠CD 为圆O 的切线;(2)∠OF ∠BC ,OA =OB ,∠OE =12BC =5, ∠sin ∠CDA =14, ∠1 4OC OD = , ∠AD =3OC =3OA ,∠OF ∠BC , ∠4 5DO DB =, 即4 105OF = , ∠OF =8,∠EF =OF -OE =8-5=3.【点睛】本题考查切线的判定和性质,圆周角定理、相似三角形的性质以及解直角三角形,掌握切线的判定和性质以及相似三角形的性质是解决问题的关键.21.90m【解析】【分析】过点C 作CE MN ⊥于点E ,过点B 作BF MN ⊥于点F ,可得四边形AMEC 和四边形AMFB 均为矩形,24ME AC m ==,再通过解直角三角形,即可求得.【详解】解:如图,过点C 作CE MN ⊥于点E ,过点B 作BF MN ⊥于点F ,90CEF BFE ∴∠=∠=︒,CA AM ⊥,NM AM ⊥,∴四边形AMEC 和四边形AMFB 均为矩形,CE BF ∴=,()18624ME AC m ==+=,在Rt CEM ∆中,230∠=︒,)tan30ME CE m ∴==︒,BF ∴=,在Rt BFN ∆中,160∠=︒,()tan 6072NF BF m ∴=⋅︒=,由矩形性质可知:18MF AB m ==,721890()MN NF MF m ∴=+=+=.答:商业大厦的高MN 为90m .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,正确作出辅助线构造直角三角形是解题的关键.22.(1)150,108°(2)见解析(3)924名 (4)12【解析】【分析】(1)由“了解”的人数及其所占百分比求出总人数,再用360°乘以“不了解”对应的百分比即可;(2)用总人数乘以各类人所占的百分比求出其对应人数,补全图形即可;(3)用总人数乘以“了解较少”与“不了解”所占的百分比之和即可;(4)画出树状图展示出所有等可能的结果,找出符合要求的结果数,用概率公式求解即可.(1)解:本次被调查的学生有36÷24%=150(名),∠“不了解”对应的百分比为1﹣(24%+10%+36%)=30%,∠扇形统计图中,∠α=360°×30%=108°,故答案为:150,108°;(2)“非常了解”的人数为150×10%=15(名),“了解较少”的人数为150×36%=54(名),“不了解”的人数为150×30%=45(名),补全图形如下:(3)估计该校1400名学生中“了解较少”与“不了解”的人数和是:1400×(36%+30%)=924(名);(4)画树状图为:共有12种等可能的结果数,其中抽到都是男生的结果数为6,所以恰好抽到都是的概率为61 122=.【点睛】本题考查了条形统计图、扇形统计图有关知识以及概率计算方法,利用树状图法或列表法展示了所有等可能的结果,再从中选中符合条件的结果数,利用概率公式计算求解是需要重点掌握的内容.23.(1)每枝康乃馨5元,每枝百合10元(2)购买康乃馨200枝,百合100枝,见解析【解析】【分析】(1)设每枝康乃馨x元,每枝百合y元,根据购买2支康乃馨和3支百合共需40元;购买3支康乃馨和1支百合共需25元,可以列出相应的二元一次方程组,然后求解即可;(2)根据题意,先设出购买康乃馨m支,费用为W元,即可得到W关于m的函数式,再根据康乃馨的数量不多于百合花数量的2倍,可以求得m的取值范围,然后根据一次函数的性质,即可得到最省钱的方案.(1)解:设每枝康乃馨x元,每枝百合y元,根据题意得:2340325x yx y+=⎧⎨+=⎩,解得510xy=⎧⎨=⎩,答:每枝康乃馨5元,每枝百合10元;(2)最省钱的购买方案是购买康乃馨200枝,百合100枝,理由:设购买康乃馨m枝,则购买百合(300)m-枝,费用为W元,510(300)53000W m m m=+-=-+,∠m≤2(300)m-,∠m ≤200,∠当200m =时,W 取得最小值,此时W =2000,300100m -=,即最省钱的购买方案是购买购买康乃馨200枝,百合100枝.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程,写出相应的函数关系式,利用一次函数的性质解答. 24.(1)2142y x x =+- (2)点P 的坐标为(2-,4)-(3)点E 的坐标为(2-,4)-【解析】【分析】(1)将点A (-4,0),点B (2,0),点C (0,-4)代y =ax 2+bx +c ,即可求解; (2)过P 点作x 轴垂线交AC 于点Q ,直线AC 的解析式为y =-x -4,设P (t ,12t 2+t -4),则Q (t ,-t -4),S △ACP =-(t +2)2+4,当t =-2时,S △ACP 有最大值,即可求P 点坐标;(3)抛物线的对称轴为x =-1,顶点D (-1,-92),设E (m ,12m 2+m -4),则F (-1,12m 2+m -4),求出EF =-1-m ,DF =12m 2+m -4+92=12m 2+m +12,在Rt∠OCB 中求得OB =2,OC =4,当∠EDF =∠OCB 时,∠EDF ∠∠BCO ,则有2(-1-m )=12m 2+m +12,此时m 不存在;当∠FED =∠OCB 时,∠EDF ∠∠DBO ,则有2(12m 2+m +12)=-1-m ,即可求E (-2,-4). (1)解:设抛物线解析式为(4)(2)y a x x =+-,抛物线与y 轴交于点4C -(0,), ∴ 48a -=-,解得,12a =; ∴抛物线解析式为211(4)(2)422y x x x x =+-=+-;(2)如图,过点P 作y 轴的平行线PQ ,交直线AC 于点Q ,(4,0)-A ,(0,4)C -,∴直线AC 的解析式为4y x =--;设P 点坐标为21(4)(4m 0)2m m m +--<<,,则Q 点坐标为(4)m m --, 2122PQ m m ∴=-- 12ACP S PQ AO ∆∴=⨯ 211(2)422m m =⨯--⨯ 2(2)4m =-++.∴当2m =-时,APC ∆面积的最大值为4,此时点P 的坐标为(2-,4)-;(3)解:∠21194(1)222y x x x =+-=+-, ∴顶点D 坐标为9(1)2--,,对称轴为1x =-;在R t ∠OCB 中,OB =2,OC =4,设E 点坐标为(n ,214)(41)2n n n +--<<-,则F 点坐标为(1-,214)2n n +- 1EF n ∴=--,21122FD n n ∴=++ ∠当EFD BOC ∆∆时,EF FD BO OC=, 21112224n n n ++--∴=,解得11n =-(舍去),25n =-(舍去) ∠当EFD COB ∆∆时,EF FD CO OB=, 21112242n n n ++--∴=,解得11n =-(舍去),22n =-此时点E 的坐标为(2-,4)-.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,三角形相似的判定及性质是解题的关键.25.(1)74(2)3516(3)4或234 【解析】【分析】(1)利用矩形性质、折叠性质找出DF 、AF 之间关系,利用勾股定理解Rt ADF ∆即可; (2)利用平移性质、平行线性质,ADC ∆、AF C ''∆对应边成比例,列式即可求解; (3)分DE''CE =,DE'CD =两种情况,分别进行计算.(1)解:(1)如图①,四边形ABCD 是矩形,AB =8,AD =6,AB ∴‖CD ,90ADC ∠=︒,由折叠可知∠1=∠2,又AB ‖CD ,∴∠1=∠3,∴∠2=∠3,∴AF =CF ,设AF =CF =x ,则DF =8x -,在Rt ADF ∆中,6AD =,AF x =,DF =8x -,由勾股定理得:2226(8)x x +-=, 解得254x =, 则DF =257844-=. (2)设平移中的三角形为△C E F ''',如图∠所示:由勾股定理得:10AC =,由(1)知254CF AF ==, 由平移性质可知,CD//C F '', 254CF C F =''=, DCA F C A ''∴∠=∠,又DAC F AC ''∠=∠,DAC F AC ''∴∆∆,'C F AC CD AC''∴=, 25'4810AC ∴=, 解得125'16AC =, 12535''101616m CC AC AC ∴==-=-=. (3)①当DE''CE =时,△DCE'为等腰三角形,E'在DC 的垂直平分线上,过E'作E'H ⊥CD 于点H ,则四边形DGE'H 为矩形,11'8422GE DH DC ∴===⨯=.②当DE'8CD ==时,△DCE'为等腰三角形,过E'作E 'H ⊥CD 于点H ,则四边形DGE 'H 为矩形,连接DE ',设DH x =,则8CH x =-,由勾股定理得:222222'',''DE DH HE CE CH HE -=-=,综合可得:2222''DE DH CE CH -=-,222286(8)x x ∴-=--,解得234x =, 23'4GE DH ∴==. 【点睛】本题考查折叠的性质、平移的性质、矩形的性质、等腰三角形判定、勾股定理等知识点,综合性较强,有一定难度,特别是第(3)问需要分类讨论,不要出现遗漏.。

山东省东营市2021年中考数学试题和答案解析详解完整版

山东省东营市2021年中考数学试题和答案解析详解完整版
【答案】B
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.
11.2021年5月11日,第七次全国人口普查数据显示,全国人口比第六次全国人口普查数据增加了7206万人.7206万用科学记数法表示________.
【答案】
(1)求证:DF是 的切线;
(2)求线段OF的长度.
【答案】(1)见解析;(2) .
22.“杂交水稻之父”——袁隆平先生所率领 科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
【答案】
三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.
19.(1)计算: .
(2)化简求值: ,其中 .
【答案】(1) ;(2) .
20.为庆祝建党100周年,让同学们进一步了解中国科技 快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:
3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上.
第Ⅰ卷(选择题共30分)

东营市2021版中考数学二模试卷C卷

东营市2021版中考数学二模试卷C卷

东营市2021版中考数学二模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七下·同安期中) 下列正确是()A .B .C .D .2. (2分)下列各式中,正确的是()A . m5•m5=2m10B . m4•m4=m8C . m3•m3=m9D . m6+m6=2m123. (2分)下列汉字中,是轴对称图形的是()A .B .C .D .4. (2分)不等式组的解集是()A . x>﹣2B . x<﹣2C . x>3D . x<35. (2分)某市大约有100万人口,随机抽查了2000人,具有大专以上学历的有120人,则在该市随便调查一个人,他具有大专以上学历的概率为()A . 6%B . 12%C . 20%D . 以上都不正确6. (2分) (2018九上·西安期中) 下面的三视图对应的物体是()A .B .C .D .7. (2分)(2019·二道模拟) 若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法判断8. (2分)如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A . m=nB . x=m+nC . x>m+nD . x2=m2+n2二、二.填空题 (共8题;共8分)9. (1分)用科学记数法表示250 200 000 000为________.10. (1分)(2011·南宁) 一组数据﹣2、0、﹣3、﹣2、﹣3、1、x的众数是﹣3,则这组数据的中位数是________.11. (1分) (2018九上·耒阳期中) 函数y= 中,自变量x的取值范围是________.12. (1分)把函数y=x2+2x绕原点旋转180°,所得的函数解析式为________.13. (1分) (2016九下·澧县开学考) 如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为________.14. (1分)(2020·南京模拟) 如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=________°.15. (1分) (2019七下·栾城期末) 如图,小红作出了面积为1的正△ABC,然后分别取△ABC三边的中点A1 , B1 , C1 ,作出了正△A1B1C1 ,用同样的方法,作出了正△A2B2C2 ,….由此可得,正△A8B8C8的面积是________.16. (1分) (2020七上·天桥期末) 下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,则第20个图中小正方形的个数是________三、解答题 (共10题;共100分)17. (5分)计算:|1﹣ |﹣2sin45°+2﹣1﹣(﹣1)2018 .18. (10分) (2019八上·涡阳月考) 如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为(1)求点小的坐标。

2021年山东省东营市垦利区中考二模数学试题解析

2021年山东省东营市垦利区中考二模数学试题解析

二〇二一年学业水平模拟考试(考试时间:120分钟 分值:120分) 注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分.2.数学试题答题卡共4页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束后上交答题卡.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上. 第Ⅰ卷(选择题 共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.)1. 下列图形既是轴对称图形,又是中心对称图形的是( ) A.B.C. D.答案:D解:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此, A 、不是轴对称图形,是中心对称图形,故本选项错误; B 、是轴对称图形,但不是中心对称图形,故本选项错误; C 、是轴对称图形,但不是中心对称图形,故本选项错误; D 、既是轴对称图形,又是中心对称图形,故本选项正确. 故选D .2. 下列运算正确的 ( ) A. 255235x x x +=B. 326236x x x =C. 3222x x x ÷=D. 236(2)2x x =答案:C根据合并同类项,单项式乘法法则;单项式除法法则,积的乘方的性质,对各选项分析判断后利用排除法求解.解:A. 22x 与53x 不是同类项,不能合并,故本选项错误; B. 应为3252?36x x x =,故本选项错误; C.3222x x x ÷=,正确; D. 应为()32628x x =,故本选项错误.故选C.【点睛】考查同底数幂的除法,合并同类项,幂的乘方与积的乘方,单项式乘单项式,比较基础,掌握运算法则是解题的关键.3. 将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A. 43°B. 47°C. 30°D. 60°答案:B解:如图,延长BC 交刻度尺的一边于D 点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,4. 某物体的三个视图如图所示,该物体的直观图是()A. B. C. D.答案:A主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,.据此逐一判断即可得答案.解:观察三视图可知:主视图有两层,是两个大小不同的长方形,左视图有两层,是两个大小相同的长方形,俯视图是长方形,中间是直径与长方形的宽相等的圆,A.主视图、左视图与俯视图都与直观图的三视图相同,故该选项符合题意,B.左视图、俯视图与直观图的三视图不相同,故该选项不符合题意,C.主视图、左视图、俯视图与直观图的三视图都不相同,故该选项不符合题意,D.俯视图与直观图的三视图不相同,故该选项不符合题意,故选:A.【点睛】本题考查三视图的概念,正确判断各直观图的三视图是解题关键.5. 将抛物线y=x 2-4x+5的顶点A 向左平移2个单位长度得到点A ',则点A '的坐标是( ) A. (2,3) B. (2,-1) C. (4,1) D. (0,1)答案:D解:试题分析:抛物线()224521y x x x =-+=-+,所以其顶点A 的坐标为(2,1),向左平移2个单位长度得到点A '的坐标是(0,1) 故选D .考点:二次函数的平移.6. 已知在同一直角坐标系中二次函数2y ax bx =+和反比例函数cy x=的图象如图所示,则一次函数cy x b a=-的图象可能是( )A. B. C. D.答案:B根据反比例函数图象和二次函数图象位置可得出:a ﹤0,b ﹥0,c ﹥0,由此可得出ca﹤0,一次函数图象与y 轴的交点在y 轴的负半轴,对照四个选项即可解答. 解:由二次函数图象可知:a ﹤0,对称轴2bx a=-﹥0, ∴a ﹤0,b ﹥0,由反比例函数图象知:c ﹥0, ∴ca﹤0,一次函数图象与y 轴的交点在y 轴的负半轴,对照四个选项,只有B选项符合一次函数cy x ba=-的图象特征.故选:B·【点睛】本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键·7. 一个圆锥的侧面展开图是半径为6、圆心角为120°的扇形,那么这个圆锥的底面圆的半径为()A. 1B. 2C. 3D. 4答案:B解:试题分析:设这个圆锥的底面圆的半径为r,圆锥的底面圆的周长=侧面展开图的扇形的弧长,据此可得2πr=1206180π⨯⨯,解得r=2.故选B.考点:圆周长公式;扇形的弧长公式.8. 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x米,根据题意可列方程为()A.4804804(150%)x x-=+B.4804804(150%)x x-=-C. 4804804(150%)x x-=+D.4804804(150%)x x-=-答案:C解:关键描述语:“提前了4天完成任务”;等量关系为:原计划用时-实际用时=4,根据等量关系列式.解:原计划用时,而实际工作效率提高后,所用时间为.方程应该表示为:-=4.故选C.本题主要考查由实际问题抽象出分式方程的知识点,列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.9. 一个盒子里有完全相同三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程2x px q 0++=有实数根的概率是( ) A.14B.13C.12D.23答案:A解:解:列表如下: -2 14-2 --- (1,-2) (4,-2) 1 (-2,1) --- (4,1) 4(-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x 的方程x 2+px+q=0有实数根,即满足p 2-4q≥0的情况有4种,则P (满足方程的根)=42=63故选:A .10. 如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N 、下列结论:①APE AME ∆∆≌;②PM PN AC +=;③222PE PF PO +=;④POF BNF ∆∆∽;⑤当PMN AMP ∆∆∽时,点P 是AB 的中点.其中正确的结论有( )个A. 5个B. 4个C. 3个D. 2个答案:B依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 解:解:∵四边形ABCD 是正方形 ∴∠BAC =∠DAC =45°. ∵在△APE 和△AME 中,PAE MAE AE AEAEP AEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APE ≌△AME (ASA ),故①正确;∴PE =EM 12=PM , 同理,FP =FN 12=NP .∵正方形ABCD 中AC ⊥BD , 又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE ∴四边形PEOF 是矩形. ∴PF =OE , ∴PE +PF =OA , 又∵PE =EM 12=PM ,FP =FN 12=NP ,OA 12=AC , ∴PM +PN =AC ,故②正确; ∵四边形PEOF 是矩形, ∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2, ∴PE 2+PF 2=PO 2,故③正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故④错误; ∵△AMP 是等腰直角三角形,当△PMN ∽△AMP 时,△PMN 是等腰直角三角形. ∴PM =PN ,又∵△AMP 和△BPN 都是等腰直角三角形, ∴△AMP ≌△BPN∴AP =BP ,即P 是AB 的中点,故⑤正确. 故选:B【点睛】本题考查正方形的性质、矩形的判定、三角形相似、勾股定理等知识,认识△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形是关键.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分,只要求填写最后结果.)11. 国务院总理温家宝在政府工作报告中指出,我国2012年国内生产总值51.9万亿元.51.9万亿元用科学计数法表示为_________元. 答案:135.1910⨯首先把51.9万亿化为51900000000000,再用科学记数法表示,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解:解:51.9万亿=51900000000000=5.19×1013, 故答案为:5.19×1013.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 12. 分解因式:3222a a b ab -+=__________. 答案:()2a ab -先提取公因式a ,再利用完全平方公式继续分解. 解:解:3222a a b ab -+,()222a a ab b =-+,()2a ab =-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 13. 某中学足球队9名队员的年龄情况如下:则该队队员年龄的众数和中位数分别是__________ 答案:15;15根据中位数和众数的定义即可直接求解. 解:解:数据15出现了四次最多,即众数为15;从小到大排列此数据,处在中间第五位的数据为15,即中位数为15. 故答案为:15,15.【点睛】本题考查中位数和众数的定义.充分理解中位数和众数的定义是解答本题的关键.14. 如图,Rt OAB ∆的顶点О与坐标原点重合,90AOB ∠=︒,2AO BO =,当A 点在反比例函数()10y x x=>的图象上移动时,B 点坐标满足的函数解析式为_________.答案:12y x=-作AC x ⊥轴于点C ,BD x ⊥轴于点D .由题意易证ACO ODB ,且相似比为2AOBO=由相似三角形面积比等于相似比的平方结合反比例函数比例系数的几何意义即可求出14ODB S =,即B 点坐标满足的函数解析式为反比例函数,设其解析式为ky x=.再根据反比例函数比例系数的几何意义即可求出其解析式.【详解】如图,作AC x ⊥轴于点C ,BD x ⊥轴于点D . ∵90AOC OAC ∠+∠=︒,90AOC BOD ∠+∠=︒ ∴OAC BOD ∠=∠,∵90ACO ODB ∠=∠=︒, ∴ACOODB ,且相似比为2AOBO= ∴2()2ACOODBS AO SBO==. 由反比例函数比例系数的几何意义可知11122ACOS =⨯=. ∴14ODBS=. ∴B 点坐标满足的函数解析式为反比例函数,设其解析式为k y x=. ∴122ODBk S==, ∴12k =±.∵点B 在第二象限,即0k <,∴12k=-.∴B点坐标满足的函数解析式为12yx =-.故答案为:12yx =-.【点睛】本题考查余角,相似三角形的判定和性质,反比例函数比例系数k的几何意义.正确的作出辅助线是解答本题的关键.15. 若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是___.答案:0或1解:分析:需要分类讨论:①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1是二次函数,根据题意得:△=4﹣4m=0,解得:m=1.∴当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点.16. 某校研究性学习小组测量学校旗杆AB高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为_______米.答案:9.解:如图,过B作BE⊥CD于点E,设旗杆AB 的高度为x ,在Rt ABC ∆中,AB tan ACB AC ∠=, ∴AB x 3AC x tan ACB tan 6033====∠︒. 在Rt BDE ∆中,3BE AC x ==,BDE 60∠=︒,BE tan BDE DE ∠=, ∴3x BE 13DE x tan BDE 33===∠. ∵CE=AB=x ,∴DC CE DE =-,即1x x 63-=,解得x=9. ∴旗杆的高度为9米.17. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.答案:2首先证明点P 在以AB 为直径的⊙O 上,连接OC 与⊙O 交于点P ,此时PC 最小,利用勾股定理求出OC 即可解决问题.解:如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P 在以AB 为直径的⊙O 上,连接OC 交⊙O 于点P ,此时PC 最小,在RT △BCO 中,∵∠OBC=90°,BC=4,OB=3, 在中,2222345OC OB BC =+=+=,∴PC=OC-OP=5-3=2.∴PC 最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P 位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.18. 如图,已知直线L :3y x =,过点()11,0A 作x 轴的垂线交直线L 于点1B ,在线段11A B 右侧作等边三角形111A B C ,过点1C 作x 轴的垂线交x 轴于2A ,交直线L 于点2B ,在线段22A B 右侧作等边三角形222A B C ,按此作法继续下去则n B 的纵坐标为__________.(n 为正整数)11532n n --先确定B 1的坐标为(1,再根据等边三角形的性质得到A 1C 1=A 1B 1B 1A 1C 1=60°,利用锐角三角函数的定义可得A 1A 230°=32,则A 2的坐标为(52,0),于是可确定B 2的坐标为(52),同理得到B 3的坐标为(254,然后观察B 1、B 2、B 3的坐标,可得到它们的规律,再写出B n 的坐标.解:解:把x =1代入y ,得y∴B 1的坐标为(1,∵△A 1B 1C 1为等边三角形,∴A 1C 1=A 1B 1B 1A 1C 1=60°,∴A 1A 230°=32, ∴A 2的坐标为(52,0),把x =52代入y ,得y ,∴B 2的坐标为(52),即;同理得到B 3的坐标为(254;∴B n 的坐标为1152n n --⎛ ⎝.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了等边三角形的性质.三、解答题(本大题共7小题,共62分.解答要写出必要的文字说明,证明过程或演算步骤.)19. (1)计算:()101 3.142cos 452021π-⎛⎫--++︒ ⎪⎝⎭ (2)先化简,再求代数式231122x x x -⎛⎫-÷ ⎪++⎝⎭的值,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解.答案:(1)2020;(2)11x +;14 (1)针对负整数指数幂,零指数幂,去绝对值,特殊角的三角函数值,二次根式化简分别进行计算,然后根据实数的运算法则求得计算结果即可. (2)先将括号内通分,再根据分式的除法进行化简,然后求出不等式组的整数解代入求值即可. 解:解:(1)原式121(232)223122021=-+-+⨯- 20211232223=-+-+-2020=.(2)原式()()112322x x x x x +-+-=÷++ ()()12211x x x x x -+=⋅++- 11x =+. 解不等式组20218x x ->⎧⎨+<⎩, 得722x , 因为x 是整数,所以3x =.当3x =时,原式11314==+. 【点睛】本题考查实数的混合通运算,特殊角的三角函数值,分式的化简求值以及解一元一次不等式组.掌握各运算法则是解答本题的关键.20. 为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.答案:(1)80;(2)见解析;(3)72º;(4)图表见解析,5 9(1)根据题目中已知B的占比和人数已知,可求出总人数;(2)用总人数减去其他人数可求出D的人数,然后补全条图即可;(3)先算出A的占比,再用占比乘以360°即可;(4)根据列表法进行求解即可;解:(1)由题可知:1822.5%=80÷(人),∴参加学生的人数是80人;(2)由(1)可得:D的人数为80-16-18-20-8=18,画图如下:(3)由(1)可得,A的占比是16 80,∴163607280α︒︒=⨯=.(4)列表如下:C男C女1 C女2E男1 (C男,E男1)(C女1,E男1)(C女2,E男1)E男2 (C男,E男2)(C女1,E男2)(C女2,E男2)E女(C男,E女)(C女1,E女)(C女2,E女)得到所有等可能的情况有9种,其中满足条件的有5种:(C 女1,E 男1),(C 女2,E 男1),(C 女1,E 男2),C 女2,E 男2),(C 男,E 女)所以所选两名同学中恰好是1名男生1名女生的概率是59. 【点睛】本题主要考查了条形统计图与扇形统计图的结合,在解题过程中准确理解题意,列表格求概率是关键.21. 如图,直线y mx n =+与双曲线k y x=相交于()1,2A -,()2,B b 两点,与x 轴交于点E ,与y 轴相交于点C .(1)求m ,n 的值;(2)若点D 与点C 关于x 轴对称,求ABD ∆的面积;答案:(1)11m n =-⎧⎨=⎩;(2)3 (1)根据点A 在双曲线k y x =上,则可求得k 的值,再由点B 也在双曲线k y x =上,从而求得b 的值,再根据直线y mx n =+分别过点A 、B ,用待定系数法可求得m 、n 的值;(2)先求出C 、D 的坐标,再根据面积公式计算即可.解:解:(1)∵点()1,2A -在双曲线k y x =上, ∴21k =-, 解得,2k =-, ∴反比例函数解析式为:2y x =-, ∵()2,B b∴212b =-=-,则点B 的坐标为()2,1-,把()1,2A -,()2,1B -代入y mx n =+得:122m n m n -=+⎧⎨=-+⎩, 解得11m n =-⎧⎨=⎩; (2)由(1)知直线y mx n =+的解析式为1y x =-+,对于1y x =-+,当0x =时,1y =,∴点C 的坐标为()0,1,∵点D 与点C 关于x 轴对称,∴点D 的坐标为()0,1-,∴BD ∥x 轴,BD =2,∵点A 到BD 的距离h =3,∴ABD ∆的面积=1123322BD h =⨯⨯=. 【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式,平面直角坐标系中求图形面积等知识,涉及数形结合的思想、方程思想. 22. 如图,在菱形ABCD 中,P 是对角线AC 上的一点,且PA=PD ,⊙O 为△APD 的外接圆.(1)试判断直线AB 与⊙O 的位置关系,并说明理由;(2)若AC=8,tan ∠DAC=,求⊙O 的半径.答案:(1)直线AB 与⊙O 相切;(255. 解:试题分析:(1)连结OP 、OA ,OP 交AD 于E ,由PA=PD ,得到弧AP=弧DP ,得到OP ⊥AD ,AE=DE ,则∠1+∠OPA=90°,而∠OAP=∠OPA ,所以∠1+∠OAP=90°,再由四边形ABCD 为菱形,得到∠1=∠2,所以∠2+∠OAP=90°,从而得到直线AB 与⊙O 相切;(2)连结BD ,交AC 于点F ,由菱形的性质得DB 与AC 互相垂直平分,则AF=4,tan ∠DAC=DF AF =12,DF=2,由勾股定理得出AD=25,所以AE=5,在Rt △PAE 中,由tan ∠1=PE AE =12,得到PE=5,设⊙O 的半径为R ,则OE=5R -,OA=R ,在Rt △OAE 中,由勾股定理即可求出R 的值.试题解析:(1)直线AB 与⊙O 相切.理由如下:连结OP 、OA ,OP 交AD 于E ,如图,∵PA=PD ,∴弧AP=弧DP ,∴OP ⊥AD ,AE=DE ,∴∠1+∠OPA=90°,∵OP=OA ,∴∠OAP=∠OPA ,∴∠1+∠OAP=90°,∵四边形ABCD 为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA ⊥AB ,∴直线AB 与⊙O 相切;(2)连结BD ,交AC 于点F ,如图,∵四边形ABCD 为菱形,∴DB 与AC 互相垂直平分,∵AC=8,tan ∠DAC=12,∴AF=4,tan ∠DAC=DF AF =12,∴DF=2,∴AD=22AF DF +=25,∴AE=5,在Rt △PAE 中,tan ∠1=PE AE =12,∴PE=5,设⊙O 的半径为R ,则OE=5R -,OA=R ,在Rt △OAE 中,∵222OA OE AE =+,∴2225()(5)R R =-+,∴R=55,即⊙O 的半径为55.考点:1.切线的判定;2.菱形的性质;3.探究型.23. 为切实做好新冠疫情防控工作,我区某校准备在药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示. 答案:(1)每盒口罩和每盒水银体温计的价格各是200元,50元;(2)5m 盒(1)设每盒水银体温计和每盒口罩的价格各是x 元,(x+150)元,根据题意列出分式方程即可; (2)根据配套问题,购买口罩m 盒,共有口罩100m 个,需要发放1002m 支水银体温计,则可以表示出水银体温计的盒数.解:(1)设每盒水银体温计的价格是x元,则每盒口罩的价格是(x+150)元,由题意得:1200300150x x=+,解得:x=50,经检验:x=50是原方程的解,50+150=200元,答:每盒口罩和每盒水银体温计的价格各是200元,50元;(2)∵购买口罩m盒,∴共有口罩100m个,∵给每位学生发放2只口罩和1支水银体温计,∴需要发放1002m支水银体温计,∴需要购买1001052mm÷=盒水银体温计.【点睛】本题考查分式方程的应用,能够根据题意列出准确的分式方程是解题的关键.24. 【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM 为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.答案:见解析(1)利用SAS可证明△BAM≌△CAN,继而得出结论.(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到AB ACAM AN=,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论.解:解:(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°.∴∠BAM=∠CAN.∵在△BAM和△CAN中,AB AC{BAM CAN? AM AN=∠=∠=,∴△BAM≌△CAN(SAS).∴∠ABC=∠ACN.(2)结论∠ABC=∠ACN仍成立.理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°.∴∠BAM=∠CAN.∵在△BAM和△CAN中,AB AC{BAM CAN? AM AN=∠=∠=,∴△BAM≌△CAN(SAS).∴∠ABC=∠ACN.(3)∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN.∴△ABC∽△AMN.∴AB AC AM AN=.又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN.∴△BAM∽△CAN.∴∠ABC=∠ACN.25. 已知,经过点A(-4,4)的抛物线y=ax2+bx与x轴相交于点B(-3,0).(1)求抛物线的解析式;(2)如图1,过点A作AH⊥x轴,垂足为H,平行于y轴的直线交线段AO于点Q,交抛物线于点P,当四边形AHPQ为平行四边形时,求∠AOP的度数;(3)如图2,,试探究:在抛物线上是否存在点C,使∠CAO=∠BAO?若存在,请求出直线AC 解析式;若不存在,请说明理由.答案:(1)y=x 2+3x ;(2)90°;(3)134=-+y x . (1)将点A 、B 、C 的坐标代入抛物线的解析式求解即可;(2)由已知A (-4,4)则可得到OA 的解析式,设点P 的坐标为(m ,m 2+3m ),则点Q 的坐标为(m ,-m ).由题意可知QP=4,则-m-(m 2+3m )=4,则可求得a 的值,于是得到P (-2,-2),Q (-2,2),最后利用勾股定理的逆定理证明△OPQ 为直角三角形即可;(3)设AC 交y 轴于点D ,根据题意证明△ABO ≌△AOD ,则OD=OB=3,设AC 的解析式为y=px+q ,将点A 和点D 的坐标代入求解即可.解:(1)抛物线的解析式为23y x x =+(2)设点P 坐标为()23m m m +,,其中40m -<< ∵点A (-4,4),∴直线OA 的解析式为y x =-,从而点Q 的坐标为()m m -,,∴()23PQ m m m =--+=24m m -- 当四边形AHPQ 为平行四边形时,PQ =AH =4, 即244m m --=,解得2m =-,此时点P 坐标为()22--,∴∠AOP=∠AOH+∠POH=45o +45o =90o .(3)设AC 交y 轴于点D ,由点A (-4,4)得,45o AOB AOD ∠=∠=,∵∠CAO =∠BAO ,AO AO =,∴AOD ∆≌AOB ∆∴3OD OB ==,点D 坐标为(0,3)设直线AC 解析式为y px q =+,则443p q q -+=⎧⎨=⎩解得14p =-,3q =,∴直线AC 解析式为134y x =-+. 【点睛】本题考查了二次函数的综合知识,解题的关键是熟练的掌握二次函数的应用.。

山东省东营市2021年数学中考二模试卷D卷

山东省东营市2021年数学中考二模试卷D卷

山东省东营市2021年数学中考二模试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·香洲模拟) 如果是二次根式,那么x的取值范围()A . x>﹣1B . x≥﹣1C . x≥0D . x>02. (2分)(2017·武汉模拟) 如图,水杯的俯视图是()A .B .C .D .3. (2分) (2016七上·夏津期末) 已知x2-xy=3,3xy+y2=5,则2x2+xy+y2的值是()A . 8B . 2C . 11D . 134. (2分)(2017·大冶模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:课外名著阅读量(本)89101112学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是()A . 中位数是10B . 平均数是10.25C . 众数是11D . 阅读量不低于10本的同学占70%6. (2分)(2017·襄阳) 如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为()A . 65°B . 60°C . 55°D . 50°7. (2分)在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值是A .B .C .D .8. (2分)(2018·潜江模拟) 如图,P(m,m)是反比例函数y= 在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A .B . 3C .D .二、填空题 (共6题;共11分)9. (1分) (2018七上·昌图期末) 如果﹣的相反数恰好是有理数a的绝对值,那么a的值是________.10. (5分) (2019九下·东台月考) 我国是一个严重缺水的国家,大家应加倍珍惜水资源,节约用水,据测试,拧不紧的水龙头每秒钟会滴下 2 滴水,每滴水约 0.05 毫升.小明同学在洗手后,没有把水龙头拧紧,当小明离开 4 小时后水龙头滴了约________毫升水(用科学记数法表示).11. (1分)(2019·云南) 若点(3,5)在反比例函数的图象上,则k=________.12. (1分)(2019·香坊模拟) 把多项式x2y﹣y3分解因式的结果是________.13. (2分)如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=________.14. (1分)(2018·河源模拟) 如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D ,若AC∶BC=4∶3,AB= 10cm,则OD的长为________ __cm.三、解答题 (共9题;共53分)15. (5分) (2017九上·镇雄期末) 计算:2tan60°﹣|1﹣ |+(2015﹣π)0﹣()﹣1 .16. (2分)如图,菱形ABCD中,点E、F分别是BC、CD边的中点.求证:AE=AF.17. (2分)(2019·河南模拟) 《中国诗词大会》以“赏中华诗词,寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵,自开播以来深受广大师生的喜爱,某中学为了解学校学生的诗词水平,从八、九年级各随机抽取了20名学生进行了测试,并将八、九年级测试成绩(百分制,单位:分)整理如下:收集数据八年级93 92 84 55 85 82 66 74 88 67 87 87 67 61 87 61 78 57 72 75九年级68 66 79 92 86 87 61 86 90 83 90 78 70 67 53 79 86 71 61 89(1)整理数据按如下分数段整理数据,并补全表格:测试成绩x(分)年级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100八2________4________________九15563说明:测试成绩x(分),其中x≥80为优秀,70≤x<80为良好,60≤x<70为合格,0≤x<60为不合格)分析数据补全下列表格中的统计量:年级平均数中位数众数八75.976.5________九77.17986(2)得出结论:在此次测试中,有位同学的成绩是78分,在他所在的年级属于中等偏上,则这位同学属于哪个年级?(3)若九年级有800名学生,估计九年级诗词水平达到优秀的学生有多少名?18. (10分) (2018九上·青海期中) 在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.(1)求暗箱中红球的个数;(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).19. (10分) (2017七下·濮阳期中) 在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4________,A8________;(2)写出点A4n的坐标(n为正整数)________;(3)蚂蚁从点A2014到点A2017的移动方向________.20. (10分)(2018·漳州模拟) 已知抛物线(a、b、c是常数, )的对称轴为直线.(1) b=________;(用含a的代数式表示)(2)当时,若关于x的方程在的范围内有解,求c的取值范围;(3)若抛物线过点(, ),当时,抛物线上的点到x轴距离的最大值为4,求a的值.21. (10分)(2018·苏州) 如图如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线设线段MN所在直线的函数表达式(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.22. (2分)(2019·武汉模拟) 如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D 为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.23. (2分) (2017九上·义乌月考) 如图,已知抛物线与x轴交于A(-1,0),B(4,0),与y轴交于C(0,-2).(1)求抛物线的解析式;(2) H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x 轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共53分)15-1、16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、。

2021年山东省东营市三校联考中考数学二模试题

2021年山东省东营市三校联考中考数学二模试题
17.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为_____.
18.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)
(1)请先在一个等腰直角三角形内探究tan22.5°的值;
A. B.
C. D.
6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组 至少有四个整数解,且关于x的分式方程 =1有非负整数解的概率是( )
A. B. C. D.
7.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为 ,则这块圆形纸片的直径为( )
三、解答题
19.(1)计算: .
(2)先化简,再求值: ,其中 .
20.据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题.
(1)接受问卷调查的学生共有名,扇形统计图中“基本了解”部分所对应扇形的圆心角为;请补全条形统计图;
(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解””和“基本了解”程度的总人数;
(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东营市2021年中考数学二模试卷D卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分)下列计算正确的是()
A . a+2a2=3a3
B . 2a·4a=8a
C . a3•a2=a6
D . (a3)2=a6
2. (2分) (2016九上·仙游期末) 若直线y=3x+m经过第一、三、四象限,则抛物线y=(x-m) +1的顶点在第象限()
A . 一
B . 二
C . 三
D . 四
3. (2分)如图是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()
A . 30 cm
B . 20 cm
C . 10 cm
D . 5 cm
4. (2分) (2019九上·新兴期中) a,b,c,d是成比例线段,其中a=3cm,c=6cm,d=4m,则b=()
A . 8cm
B . cm
C . cm
D . 2 cm
5. (2分)在正五边形ABCDE中,对角线AD , AC与EB分别相交于点M , N .下列结论错误的是()
A . 四边形EDCN是菱形
B . 四边形MNCD是等腰梯形
C . △AE M与△CBN相似
D . △AEN与△EDM全等
6. (2分)已知M是△ABC内的一点,且•=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为, x,y,则+的最小值是()
A . 20
B . 18
C . 16
D . 9
二、填空题 (共12题;共12分)
7. (1分) (2020八下·哈尔滨月考) 若无实数解,则m的取值范围是________.
8. (1分) (2017八下·定安期末) 方程﹣ =0的解是________.
9. (1分)(2018·嘉定模拟) 已知点在线段上,且 ,那么 ________.
10. (1分)(2011·苏州) 如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于________(结果保留根号).
11. (1分)(2020·荆州模拟) 如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为________米.(精确到0.1米,参考数据:,,)
12. (1分)(2017·广陵模拟) 如图,当小明沿坡度i=1:3的坡面由A到B行走了100米,那么小明行走的水平距离AC=________米.(结果可以用根号表示).
13. (1分) (2018九上·金华期中) 如果抛物线y=(a﹣1)x2的开口向下,那么a的取值范围是________.
14. (1分)(2017·青浦模拟) 已知在△ABC中,点D在边AC上,且AD:DC=2:1.设 = , =
.那么 =________.(用向量、的式子表示)
15. (1分)如图,△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=________,AC=________.
16. (1分) (2018九上·安陆月考) 在平面直角坐标系xOy中,将抛物线平移后得到抛物线 .请你写出一种平移方法. 答:________.
17. (1分)(2020·惠山模拟) 如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=12,那么线段GE的长为________.
18. (1分)如图,OP=1,过P作PP1⊥OP ,得OP1= ;再过P1作P1P2⊥OP1且P1P2=1,得OP2= ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018=________.
三、解答题 (共7题;共62分)
19. (5分)(2018·安顺) 计算: .
20. (5分)(2020·赤峰) 先化简,再求值:,其中m满足: .
21. (10分) (2018九下·龙岩期中) 已知抛物线y=﹣x2+bx+c的部分图象如图所示.
(1)求b、c的值;
(2)求y的最大值;
(3)写出当y<0时,x的取值范围.
22. (2分)(2015·舟山) 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.
(1)求∠CAO′的度数.
(2)显示屏的顶部B′比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?
23. (10分)如图.点D是Rt△ABC斜边BC的中点,⊙O是△ABD的外接圆,交AC于点F. DE平分∠ADC ,交AC于点E.
(1)求证:DE是⊙O的切线
(2)若CE=4,DE=2,求⊙O的直径.
24. (15分)(2020·宜兴模拟) 如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB 的延长线相交于点P,AD与PC延长线垂直,垂足为D,CE平分∠ACB,交⊙O于E.
(1)求证:PC与⊙O相切;
(2)若AC=6,tan∠BEC= ,求BE的长度以及图中阴影部分面积.
25. (15分) (2017九上·辽阳期中) 已知,如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD 边于M、N两点,且∠MAN=45°.
(1)求证:MN=BM+DN.
(2)若AM、AN交对角线BD于E、F两点,设BF=y,DE=x,求y与x的函数关系式.
参考答案一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共12题;共12分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共62分)
19-1、
20-1、21-1、
21-2、21-3、
22-1、
22-2、22-3、
23-1、
23-2、
24-1、
24-2、
25-1、
25-2、。

相关文档
最新文档