数字图像处理重点
《数字图像处理》教学大纲
《数字图像处理》教学大纲
一、课程简介
数字图像处理是机器视觉、模式识别、医学图像处理等的基础,本课程为工程专业的学生提供数字图像处理的基本知识,是理论性和实践性都很强的综合性课程。
课程内容广泛涵盖了数字图像处理的基本原理,包括图像采样和量化、图像算术运算和逻辑运算、直方图、图像色彩空间、图像分割、图像形态学、图像频域处理、图像分割、图像降噪与图像复原、特征提取与识别等。
二、课程目标
通过本课程学习,学生可以掌握数字图像处理的基本方法,具备一定的解决图像处理应用问题的能力,培养解决复杂工程问题的能力。
具体目标如下:
1.掌握数字图像处理的基本原理、计算方法,能够利用专业知识并通过查阅资
料掌握理解相关新技术,对检测系统及处理流程进行创新性设计;
2.能够知晓工程领域中涉及到的数字图像处理技术,理解其适用场合、检测对
象及条件的限制,能根据给定的目标要求,针对工业检测中的工程问题选择和使用合适的技术和编程,进行仿真和分析;
3.能够知晓工程领域中所涉及的现代工具适用原理及方法,根据原理分析和仿
真结果,进行方案比选,确定设计方案,具有检测算法的设计能力;
4.通过校内外资源和现代信息技术,了解数字图像处理发展趋势,提高解决复
杂工程问题的能力。
三、课程目标对毕业要求的支撑关系
四、理论教学内容及要求
四、实验教学内容及要求
五、课程考核与成绩评定
六、教材及参考书。
数字图像处理知识点总结
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理教案
数字图像处理教案.难点:1、理解图像的采样和量化过程;2、了解图像处理的应用和发展趋势。
本次课程将介绍数字图像处理的发展简史和图像处理的任务。
同时,我们将掌握常用数字图像处理术语,如像素、采样、量化、图像增强等。
此外,我们还将了解基本的图像处理系统以及图像各种形式的表示。
数字图像处理是指利用计算机对数字图像进行处理的过程。
数字图像处理系统包括图像采集、图像处理、图像输出三个部分。
图像处理的任务包括图像增强、图像编码与压缩、图像恢复和重建、图像分割等。
在本次课程中,我们将重点掌握图像处理、数字图像处理、数字图像处理系统的概念和它们之间的相互关系。
同时,我们还将明确图像处理的目的和任务。
理解图像的采样和量化过程以及了解图像处理的应用和发展趋势也是本次课程的难点。
互动:请同学在黑板上推导Huffman编码和Shannon编码的步骤。
课堂练、作业:课堂练:计算平均码长、编码效率、压缩比;作业:题5.1、5.2、5.4课后小结:本章主要介绍了图像编码与压缩的基本概念和方法,包括预测编码、正交变换编码、统计编码和二值编码等。
其中,Huffman编码和Shannon编码是两种常用的统计编码方法,需要掌握其步骤和计算方法。
在实际应用中,需要根据不同的压缩需求选择合适的编码方法和参数。
第5章图像编码与压缩第1次课 2学时授课时间:2021.10.1教学目的与要求:1、了解数字图像的基本概念;2、掌握数字图像的采样、量化、编码等基本过程;3、了解数字图像的压缩技术及其分类。
教学重点、难点:重点:数字图像的采样、量化、编码等基本过程;难点:数字图像的压缩技术及其分类。
解决:通过实例演示和讲解,加深学生对数字图像的基本概念和压缩技术的理解。
教学方法及师生互动设计:教学方法:多媒体+板书互动:通过提问和回答,引导学生思考数字图像的采样、量化、编码等基本过程。
课堂练、作业:课堂练:计算一幅256×256的灰度图像的总像素数;作业:题5.1课后小结:使学生了解数字图像的基本概念和采样、量化、编码等基本过程,掌握数字图像的压缩技术及其分类,为后续的研究打下基础。
数字图像处理知识点
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理知识点总结
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像处理技术
数字图像处理技术数字图像处理技术是一种利用计算机对图像进行处理和分析的技术。
随着计算机技术和图像采集设备的不断发展,数字图像处理技术已经广泛应用于影像处理、医学图像分析、机器视觉、模式识别等领域。
本文将重点介绍数字图像处理技术的基本原理、常见的图像处理方法和应用领域。
一、数字图像处理技术的基本原理数字图像处理是在计算机中对图像进行数值计算和变换的过程。
图像是由像素组成的二维数组,每个像素包含了图像中某一点的亮度或颜色信息。
数字图像处理技术主要包括如下几个基本步骤:1. 图像采集:利用摄像机、扫描仪等设备将实际场景或纸质图像转换成数字图像。
2. 图像预处理:对采集到的图像进行预处理,包括图像增强、去噪、几何校正等操作,以提高图像质量。
3. 图像变换:通过一系列的数值计算和变换,改变图像的亮度、对比度、颜色等特征,以满足特定的需求。
4. 图像分析:对图像进行特征提取、目标检测、模式识别等操作,以获取图像中的各种信息。
5. 图像展示:将处理后的图像显示在计算机屏幕上或输出到打印机、投影仪等设备上,以便人们观看和分析。
二、常见的图像处理方法1. 图像增强:通过调整图像的亮度、对比度、颜色等参数,使图像更清晰、更鲜艳。
2. 图像滤波:利用滤波器对图像进行低通滤波、高通滤波、中值滤波等操作,以去除噪声、平滑图像或增强边缘。
3. 图像分割:将图像分成若干个区域,以便更好地分析和识别图像中的目标。
4. 特征提取:从图像中提取出与目标相关的特征,如纹理特征、形状特征、颜色特征等。
5. 目标检测:利用机器学习、模式识别等方法,从图像中检测和识别出目标,如人脸、车辆等。
三、数字图像处理技术的应用领域数字图像处理技术在很多领域都有广泛的应用,以下列举几个主要的应用领域:1. 影像处理:数字图像处理技术可以应用于电影特效、动画制作、数字摄影等领域,提高影像的质量和逼真度。
2. 医学图像分析:数字图像处理技术可以应用于医学影像的分析、诊断和治疗,如CT扫描、核磁共振等。
《数字图像处理》期末考试重点总结(5篇材料)
《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。
数字图像处理重点汇总
第一章:数字图像处理研究的内容主要有:(1)图像获取,表示和表现(2)图像增强(3)图像复原(4)图像分割(5)图像分析(6)图像重建(7)图像压缩编码数字图像处理:利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术。
一般情况下,图像处理是用计算机和实时硬件实现的,因此,也称之为计算机图像的实现。
数字图像处理的特点:(1)处理精度高,再现性好(2)易于控制处理效果(3)处理的多样性(4)图像数据量庞大(5)处理费时(6)图像处理技术综合性强图像:就是三维场景在二维平面上的影像数字图像:是用配置在二维平面(画面)上的灰度值或彩色值来表示信息的,信息扩展在二维平面上。
数字图像以数字格式存储图像数据,数字图像常用矩阵来描述。
图像处理的研究目的:(1)提高图像的视感质量,以达到赏心悦目的目的(2)提取图像中所包含的某些特征或特殊信息,只要用于计算机分析,经常用作模式识别,计算机视觉的预处理(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输图像工程三层示意图:图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理、图像分析、图像理解各有什么特点?它们之间有何联系和区别?图像处理:的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析:主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解:的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
《数字图像处理》期末考试重点总结
《数字图像处理》期末考试重点总结work Information Technology Company.2020YEAR*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
数字图像处理知识点汇总
数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。
2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。
i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。
也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。
ii. 对样点灰度值的离散化过程称为量化。
也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。
量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。
4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。
5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。
内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。
(2)电器的机械运动产⽣噪声。
(3)元器件材料本⾝引起的噪声。
(4)系统内部电路噪声。
从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。
饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。
数字图像处理简答题复习重点
1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
2、什么是图像识别与理解?5、简述图像几何变换与图像变换的区别。
6、图像的数字化包含哪些步骤?简述这些步骤。
7、图像量化时,如果量化级比较小会出现什么现象?为什么?8、简述二值图像与彩色图像的区别。
9、简述二值图像与灰度图像的区别。
10、简述灰度图像与彩色图像的区别。
11、简述直角坐标系中图像旋转的过程。
13、举例说明使用邻近行插值法进行空穴填充的过程。
14、举例说明使用均值插值法进行空穴填充的过程。
15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。
16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。
17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。
18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?20、写出腐蚀运算的处理过程。
21、写出膨胀运算的处理过程。
22、为什么YUV表色系适用于彩色电视的颜色表示?23、简述白平衡方法的主要原理。
24、YUV表色系的优点是什么?25、请简述快速傅里叶变换的原理。
26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。
27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。
28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。
29、什么是图像的无损压缩?给出2种无损压缩算法。
2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01e=11 a=10 b=001 c=0001 d=0000。
若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高?31、DCT变换编码的主要思想是什么?32、简述DCT变换编码的主要过程。
《数字图像处理》知识点汇总
《数字图像处理》知识点汇总1.什么是图像?“图”是物体投射或反射光的分布,“像”是⼈的视觉系统对图的接受在⼤脑中形成的印象或反映。
图像是客观和主观的结合。
2.数字图像是指由被称作象素的⼩块区域组成的⼆维矩阵。
将物理图象⾏列划分后,每个⼩块区域称为像素(pixel)。
对于单⾊即灰度图像⽽⾔,每个像素包括两个属性:位置和灰度。
灰度⼜称为亮度,灰度⽤⼀个数值来表⽰,通常数值范围在0到255之间,即可⽤⼀个字节来表⽰。
0表⽰⿊、255表⽰⽩。
3.彩⾊图象可以⽤红、绿、蓝三元组的⼆维矩阵来表⽰。
通常,三元组的每个数值也是在0到255之间,0表⽰相应的基⾊在该象素中没有,⽽255则代表相应的基⾊在该象素中取得最⼤值,这种情况下每个象素可⽤三个字节来表⽰。
4.数字图像处理就是利⽤计算机系统对数字图像进⾏各种⽬的的处理。
5.对连续图像f(x,y)进⾏数字化需要在空间域和值域进⾏离散化。
空间上通过图像抽样进⾏空间离散,得到像素。
像素亮度需要通过灰度级量化实现灰度值离散。
数字图像常⽤矩阵来表⽰。
6.从计算机处理的⾓度可以由⾼到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。
这三个层次覆盖了图像处理的所有应⽤领域。
(1). 图像处理指对图像进⾏各种加⼯,以改善图像的视觉效果;强调图像之间进⾏的变换。
图像处理是⼀个从图像到图像的过程。
(2). 图像分析指对图像中感兴趣的⽬标进⾏提取和分割,获得⽬标的客观信息(特点或性质),建⽴对图像的描述;图像分析以观察者为中⼼研究客观世界,它是⼀个从图像到数据的过程。
(3). 图像理解指研究图像中各⽬标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中⼼,借助知识、经验来推理、认识客观世界,属于⾼层操作(符号运算)。
7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是⽐较低层的操作,它主要在图像像素级上进⾏处理,处理的数据量⾮常⼤。
《数字图像处理》-教学大纲
《数字图像处理》课程教学大纲Digital image processing一、教学目标及教学要求数字图像处理课程是智能科学与技术、数字媒体技术等专业的专业必修课。
主要目标及要求是通过该课程的学习,使学生初步掌握数字图像处理的基本概念、基本原理、基本技术和基本处理方法,了解数字图像的获取、存储、传输、显示等方面的方法、技术及应用,为学习相关的数字媒体、视频媒体和机器视觉等课程,以及今后从事数字媒体、视频媒体、图像处理和计算机视觉等领域的技术研究与系统开发打下坚实的理论与技术基础。
二、本课程的重点和难点(一)课程教学重点教学重点内容包括:图像的表示,空间分辨率和灰度级分辨率,图像直方图和直方图均衡,基于空间平滑滤波的图像增强方法,基于空间锐化滤波的图像增强方法,图像的傅里叶频谱及其特性分析,图像编码模型、霍夫曼编码和变换编码,图像的边缘特征及其检测方法,彩色模型,二值形态学中的有腐蚀运算和膨胀运算。
(二)课程教学难点教学难点包括:直方图均衡,二维离散傅里叶变换的若干重要性质、图像的傅里叶频谱及其特性分析,变换编码,小波变换的概念、嵌入式零树小波编码,图像的纹理特征及其描述和提取方法,Matlab图像处理算法编程。
三、主要实践性教学环节及要求本课程的实验及实践性环节要求使用Matlab软件平台,编写程序实现相关的数字图像处理算法及功能,并进行实验验证。
课程实验与实践共10学时,分别为:实验一:图像基本运算实验(2学时)。
实验二:图像平滑滤波去噪实验(2学时)。
实验三:图像中值滤波去噪实验(2学时)。
实验四:图像边缘检测实验(2学时)。
相关图像处理算法的课堂演示验证(2学时)。
要求每个学生在总结实验准备、实验过程和收获体会的基础上,写出实验报告。
四、采用的教学手段和方法利用多媒体课件梳理课程内容和讲授思路,合理运用启发式教学方式激发学生的思考力,采用讨论式教学方式增强教学过程的互动效果,理论教授与应用实例编程实践相结合,提高学生的分析和解决问题的能力。
数字图像处理知识点与考点(经典)
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。
遥感数字图像处理期末重点 南信大
1、数字图像:是指数字存储的、用计算机直接处理的图像,是空间坐标和图像数值不连续的、用离散数字表示的图像。
2、遥感数字图像处理的内容:1)图像增强2)图像矫正3)信息提取3、遥感的传感器分类:1)按照工作方式是否具有人工辐射源,分为被动方式和主动方式两种。
2)按照数据记录方式,分为成像方式和非成像方式两种。
4、传感器按使用的工作波段分类:紫外、可见光、红外、微波、多波段。
5、传感器的分辨率是指传感器区分自然特征相似或光谱特征相似的相邻地物的能力。
6、辐射分辨率是传感器区分所接收的电磁波辐射强度差异的能力。
7、谱分辨率是传感器记录的电磁波谱的波长范围和数量。
8、按电磁波的波段范围分类:遥感可分为1)可见光-反射红外遥感(可见光遥感或光学遥感)2)热红外遥感3)微波遥感9、空间分辨率:是指遥感图像上能够详细区分的最小单元的尺寸或大小,即传感器能把两个目标物作为清晰的实体记录下来的两个目标物之间的最小距离,它表征图像分辨地面目标细节的能力10、空间分辨率通常用像素大小,解像力或视场角来表示。
11、时间分辨率:传感器对同一空间区域进行重复探测时,相邻两次探测时间间隔。
12、采样涉及两个内容:波谱采样和空间采样。
13、重采样:是指从一个空间分辨率图像转变为另一个空间分辨率图像的过程。
常用于图像的几何纠正或不同空间分辨率图像的匹配。
14、量化:是将像素灰度值转换成整数灰度级的过程。
可用量化位数定量描述。
n位量化,其量化后灰度级=2n-115、图像对比度:是一个单波段图像中明暗区域最亮的白和最暗的黑之间不同灰度级的测量,指一幅图像灰度反差的大小,常用来表述图像灰度值的总体变化情况。
16、直方图:是灰度级的函数,描述的是图像中各个灰度级的像素个数。
17、直方图的性质:1)反映图像中灰度的分布规律2)任何图像都有唯一的直方图与之对应,但不同的图像可以有相同的直方图。
3)如果一幅图像仅包括两个相连通的区域,并且每个区域的直方图已知,则整幅图像的直方图是这两个区域的直方图之和。
数字图像处理期末重点复习
1.欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的欧氏距离定义为:D e(p,q)=(x−u)2+(y−u)212。
2.街区距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D4p,q=x−u+y−v。
3.棋盘距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D8p,q=man(x−u,y−v)。
4.灰度数字图像有什么特点?答:灰度数字图像的特点是只有灰度(亮度)属性,没有彩色属性。
对于灰度级为L的图像,起灰度取值范围为[0,L-1].5.一副200×300的二值图像、16灰度级图像和256灰度级图像分别需要多少存储空间?答:由于存储一副M×N的灰度级为L 的数字图像所需的位数为:M ×N×L,其中L=2k。
二值图像,16灰度级图像和256灰度级图像的k值分别为1、4和8,也即存储一个像素需要的位数分别为1位、4位和8位。
所以,一副200×300的二值图像所需的存储空间为200×300×1/8=7.5kB;一副200×300的16灰度级图像所需的存储空间为200×300×4/8=30kB;一副200×300的256灰度级的图像所需的存储空间为200×300×8/8=60kB。
6.简述采样数变化对图像视觉效果的影响。
答:在对某景物的连续图像进行均匀采样时,在空间分辨率(这里指线对宽度)不变的情况下,采样数越少,即采样密度越低,得到的数字图像阵列M×N越小,也即数字图像尺寸就越小。
反之,采样数越多,即采样密度越高,得到的数字图像阵列M×N 越大,也即数字图像的尺寸就越大。
7.简述灰度级分辨率变化对图像视觉效果的影响。
答:灰度级分辨率是指在灰度级别克分辨的最小变化。
灰度级别越大,也即图像的灰度级分辨率越高,景物图像总共反映其亮度的细节就越丰富,图像质量也就越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理重点第一章名词解释:数字图像:指被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块称为像素. 数字图像处理:计算机技术或其他数字技术,对图像信息进行某些数字运算和各种加工处理,以改善图像的视觉效果和提高数字实用性的技术。
第二章名词解释图像采样:将空间上连续的图像变换成离散点的操作称为采样,就是对图像的连续空间坐标x和y的离散化。
图像灰度级量化:对图像函数的幅值 f 的离散化。
欧氏距离:像素p和q之间的欧氏距离定义为:De(p,q)=[(x-u)2+(y-v)2]1/2也即,所有距像素点(x,y)的欧氏距离小于或等于d的像素都包含在以(x,y)为中心,以d为半径的圆平面中。
街区距离:像素p和q之间的D4距离,也即街区距离,定义为:D4(p,q)=|x-u| + |y-v|也即,所有相距像素点(x,y)的D4距离为小于d或等于d的像素组成一个中心点在(x,y)的菱形。
棋盘距离:像素p和q之间的D8距离,也即棋盘距离,定义为:D8(p,q)=max(|x-u|,|y-v|)也即,所有距像素点(x,y)的D8距离为小于d或等于d 的像素组成一个中心点在(x,y)的方形调色板:在16色或256色显示系统中,将图像中出现最频繁的16中或256中颜色组成一个颜色表。
并将他们分别编号为0-15或0-255,这样就是每一个4位或8位的颜色编号与颜色表中4位颜色值相对应。
这种4位或者8位的颜色编号成为颜色的索引号,有颜色索引号及其对应的24位颜色值组成的表成为颜色查找表,也即调色板。
第四章名词解释空间域图像增强:在图像平面中对图像的像素灰度值进行运算处理,使之更适合于人眼的观察或机器的处理的一种技术。
图像锐化:图像锐化是一种突出和加强图像中景物的边缘和轮廓的技术。
课本Page84 领域平均:一种基本的空间域噪声消除方法或噪声平滑方法。
Page93 中值滤波:一种能够很好地弥补领域平均方法不足的图像噪声消除方法。
第五章名词解释图像恢复:是一种从图像退化的数学或概率模型出发,研究改进图像外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目的一种技术,其目的是获得与景物真实面貌相像的图像。
高斯噪声:是一种源于电子电路噪声和低照明度或高温带来的传感器噪声。
高斯噪声也称为正态噪声其概率密度函数为:其中,高斯随机变量z表示灰度值;μ表示z的平均值或期望值;σ表示z的标准差,而标准差的平方σ2 称为z的方差。
椒盐噪声:又称脉冲噪声, (双极)脉冲噪声的概率密度为:式中表示的脉冲噪声在Pa或Pb均不可能为零,且在脉冲可能是正的,也可能是负值的情况下,称为双极脉冲噪声。
如果b>a,灰度b的值在图像中将显示一个亮点,而灰度a的值在图像中将显示一个暗点。
如果Pa或Pb均不可能为零,尤其是它们近似相等时,脉冲噪声值就类似于随机分布在图像上的胡椒和盐粉微粒,所以双极脉冲噪声也称为椒盐噪声.式中表示的脉冲噪声如果Pa或Pb为零,则脉冲噪声称为单极脉冲噪声。
通常情况下脉冲噪声总是数字化为允许的最大值或最小值,所以负脉冲以黑点(胡椒点)出现在图像中,正脉冲以白点出现在图像中。
第六章名词解释:编码冗余:于大多数图像的直方图不是均匀(水平)的,所以图像中某个灰度级会比其它灰度级具有更大的出现概率,如果对出现概率大和出现概率小的灰度级都分配相同的比特数,必定会产生编码冗余。
图像间冗余:所谓“像素间的冗余”,是指单个像素携带的信息相对较少,单一像素对于一幅图像的多数视觉贡献是多余的,它的值可以通过与其相邻的像素的值来推断。
保真度准则:于图像的有损压缩有一定的信息损失,所以在对压缩的图像进行解压缩后获得的图像可能会与原图像不完全相同,这样就需要有一种对信息损失的程度进行度量的标准,以描述解压缩所获得的图像相对于原图像的偏离程度。
保准度准则就是这样一种用于评价压缩后图像质量的量度标准。
主观保真度准则:通过给一组观察者提供原图像和典型的解压缩图像,每个观察者对解压缩图像的质量给出一个主观评价,并将他们的评价结果进行综合平均,从而得出一个统计平均意义上的评价结果。
这种评价方法称为主观保真度准则。
第七章名词解释图像分割:图像分割就是依据图像的灰度、颜色、纹理、边缘等特征,把图像分成各自满足某种相似性准则或具有某种同质特征的连通区域的集合的过程。
图像边缘:图像边缘意味着图像中一个区域的终结和另一个区域的开始,图像中相邻区域之间的像素集合构成了图像的边缘。
进一步讲,图像的边缘是指图像灰度发生空间突变的象素的集合。
基于阀门的图像分割方法:基于阈值的图像分割方法是提取物体与背景在灰度上的差异,把图像分为具有不同灰度级的目标区域和背景区域的一种图像分割技术。
基于跟踪的图像分割方法是先通过对图像上的点的简便运算,来检测出可能存在的物体上的点,然后在检测到的点的基础上通过跟踪运算来检测物体的边缘轮廓的一种图像分割方法。
纹理:纹理就是纹理基元按某种确定性的规律或者某种统计规律排列组成的一种结构。
监督分类:监督分类是对图像中样本区内的地物类属已有先验知识的情况下,利用这些样本类别的特征作为依据来判别非样本数据的类别。
第十章名词解释链码:链码是一种用若干条具有特定长度和方向的线段连接起来表示目标边界的方法。
统计矩:如果将目标边界看作一系列直线段,那么边界线段的形状可以利用一些简单的统计矩如均值,方差和高阶矩等,利用其对边界进行描述具有对旋转不敏感和边界空间位置无关的特点。
第一章简答题:3、数字图像处理技术研究的基本内容包括哪些?答:包括图像变换、图像增强、图像恢复、图像压缩编码、图像特征提取、形态学图像处理方法等。
彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展出了一些特有的图像处理技术和方法。
数字图像处理目的:提高图像的视感质量,以达到赏心悦目的目的。
提取图像中所包含的某些特征或特殊信息,便于计算机分析。
对图像数据进行变换、编码和压缩,便于图像的存储和传输。
数字图像处理的主要内容:不管图像处理是何种目的,都需要用计算机图像处理系统对图像数据进行输入、加工和输出,因此数字图像处理研究的内容主要有以下8 1) 图像获取、表示和该过程主要是把模拟图像信号转化为计算机所能接受的数字形式,以及把数字图像显示和表现出来。
这一过程主要包括摄取图像及数字化等几个步骤。
2) 图像复原当造成图像退化的原因已知时,复原技术可以对图像进行校正。
图像复原最关键的是对每种退化都需要有一个合理的模型。
退化模型和特定数据一起描述了图像的退化,因此,复原技术是基于模型和数据的图像恢复,其目的是消除退化的影响,从而产生一个等价于理想成像系统所获得的图像。
3) 图像增强图像增强是对图像质量在一般意义上的改善。
当无法知道图像退化有关的定量信息时,可以使用图像增强技术较为主观地改善图像的质量。
有时可能需要彻底改变图像的视觉效果,以便突出重要特征的可观察性,使人或计算机更易观察或检测。
在这种情况下,可以把增强理解为增强感兴趣特征的可检测性,而非改善视感质量。
4) 图像分割把图像分成区域的过程就是图像分割。
图像中通常包含多个对象,图像处理为达到识别和理解的目的,几乎都必须按照一定的规则将图像分割成区域,每个区域代表被成像的一个物体。
5) 图像压缩编码数字图像的特点之一是数据量庞大。
因此在实际应用中图像压缩是必需的。
图像编码主要是利用图像信号的统计特性及人类视觉的生理学及心理学特性,对图像信号进行高效编码,即研究数据压缩技术,目的是解决数据量大的矛盾。
一般来说,图像编码的目的有三个:①减少数据存储量;②降低数据率以减少传输带宽;③压缩信息量,便于特征提取,为后续识别作准备。
6) 图像处理中的频域变换数字图像处理的方法主要分为:一是空域法,二是频域法.把图像变换到频率域可以从另一个角度来分析图像的特性,以便更准确地处理它.在频域处理法中最为关键的预处理便是变换处理. 目前,在图像处理技术中,频率域变换正被广泛地运用于图像的特征提取,图像增强,图像复原以及图像的变换编码等领域中. 7) 目标表达与描述通过图像分割把图像空间分成一些有意义的区域,然后采用不同于原始图像的适当形式将目标表示出来,并对目标特征进行描述,再对图像进行分析和理解处理图像分割的结果要么是区域内的像素的集合,要么是位于区域边界上的像素的集合,所以对图像中目标的表达方法分为区域表达和边界表达,对目标的描述一般也分为对边界的描述和对区域的描述 8)形态学以形态为基础对图像进行分析的一类数学工具。
基本思想是用具有一定形态的结构元素,去量度和提取图像中的对应形状,以达到对图像分析和识别初期的数学形态学方法仅可应用于二值图像,所以需将灰度图像先进行二值化。
后来灰度形态学得到的目的。
发展,使得数学形态学方法不仅可用于二值图像也可直接应用于各种灰度图像和彩色图像。
第二章简答题:一幅200X300的二值图像,16灰度级图像和256灰度级图像分别需要多少存储空间?答:二值图像:200X300X1/8=7500B16灰度级图像:200X300X4/8=30000B256灰度级图像:200X300X8/8=60000B 第四章简答题直方图均衡的基本思想是什么?直方图均衡图像增强处理的主要步骤是什么?直方图均衡化是一种借助于直方图变换实现灰度映射从而达到图像增强的目的.直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了像素灰度值的动态范围,从而可以达到增强图像整体对比度的效果.步骤:计算原图像的归一化灰度级别及其分布概率pr(rk)=nk/n。
根据直方图均衡化公式求变换函数的各灰度等级值sk。
将所得的变换函数的各灰度等级值转化成标准的灰度级别值。
也即把第步求得的各sk值,按靠近原则近似到与原图像灰度级别相同的标准灰度级别中。
此时获得的即是均衡化后的新图像中存在的灰度级别值,其对应的像素个数不为零;对于那些在变换过程中“被丢失了的”灰度级别值,将其像素个数设为零。
求新图像的各灰度级别值sl’(l=0,1,,L-1)的像数数目。
在前一步的计算结果中,如果不存在灰度级别值sl’,则该灰度级别的像素数目为零;如果存在灰度级别值sl’,则根据其与之相关的sk=T(rk)和sk的对应关系,确定该灰度级别sl’的像数数目。
用sk代替sl’(k,l=0,1,,L-1),并进而求新图像中各灰度级别的分布概率ps(sk)=mk/n。
画出经均衡化后的新图像的直方图。
直方图规定化的基本思想是什么?直方图规定化图像增强处理的主要步骤是什么?直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。
实际上有时需要有选择地增强某个灰度值范围内的对比度。