小波实验报告一维Haar小波2次分解
haar小波变换分解和复原
haar小波变换分解和复原
Haar小波变换是一种常用的图像处理方法,它通过使用低通和高通滤波器,将图像信息逐层分解剥离开来。
具体来说,Haar小波变换对图像的分解可以看做如下图所示的滤波过程:
1. 首先进行行滤波,沿着列方向进行。
2. 然后下采样。
3. 对上一步得到的结果进行列滤波,沿着行方向。
4. 最后下采样。
通过以上步骤,可以获得4个不同的频带,一个近似分量、三个细节分量(水平、垂直、对角线),将所有的结果组合为一张图。
若对所得的近似分量继续进行这样的滤波过程,即可得到塔式分解。
在进行Haar小波变换分解和复原时,需要注意处理细节和调整参数,以获得最佳的效果。
如果你需要更详细的信息或代码示例,请提供更多上下文或提供具体要求,我将尽力为你解答。
小波实验报告一维Haar小波2次分解
一、题目:一维Haar 小波2次分解二、目的:编程实现信号的分解与重构三、算法及其实现:离散小波变换离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈⎰ 本实验实现对信号的分解与重构:(1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。
在本实验中使用小波函数db1来实现单尺度小波分解,即:[cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。
(2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即:A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。
四、实现工具:Matlab五、程序代码:%装载leleccum 信号load leleccum;s = leleccum(1:3920);%用小波函数db1对信号进行单尺度小波分解[cA1,cD1]=dwt(s,'db1');subplot(3,2,1);plot(s);title('leleccum 原始信号');%单尺度低频系数cA1向上一步的重构信号A1 = upcoef('a',cA1,'db1');%单尺度高频系数cD1向上一步的重构信号D1 = upcoef('a',cD1,'db1');subplot(3,2,3);plot(A1);title('单尺度低频系数cA1向上一步的重构信号');subplot(3,2,5);plot(D1);title('单尺度高频系数cD1向上一步的重构信号');[cA1,cD1]=dwt(cA1,’db1');subplot(3,2,2);plot(s);title('leleccum 第一次分解后的cA1信号');%第二次分解单尺度低频系数cA2向上一步的重构信号A2= upcoef('a',cA2,'db1',2);%第二次分解单尺度高频系数cD2向上一步的重构信号D2 = upcoef('a',cD2,'db1',2);subplot(3,2,4);plot(A2);title('第二次分解单尺度低频系数cA2向上一步的重构信号');subplot(3,2,6);plot(D2);title('的二次分解单尺度高频系数cD2向上一步的重构信号');六、运行结果:七、结果分析:。
小波实验报告
小波分析实验报告
目的:比较传统的AR模型直接估计和经过小波去噪后的AR模型估计哪个更好数据:上海证券交易所A股股票从20031112 到2003112131 (共有240 个交易日) 每交易日的收盘价格。
过程:先选取数据,然后用AR模型直接估计得到一组估计值。
再用选取小波对数据进行分解重构,得到去噪后的数据,在对此数据用AR模型估计,
结论:
通过表3 我们可以看到本文提出的小波预测方法,在预测处理金融数据这类非平稳的时间序列时,同传统的预测方法相比较具有一定的可靠性,具有很好的应用前景。
通过表4 我们可以看到,当分解层数在3~4 层时,预测效果比较好。
实际过程中,如果待预测的时间序列数据量不是很大,我们分解层数一般采用3~4 层。
分工:
孟红波查找相关文献和数据
王骏建模,分析数据。
Haar小波分析
Haar⼩波分析⼀尺度函数与⼩波函数基本尺度函数定义为:,对其向右平移任意 k 个单位,构成函数族,该函数族在空间中正交,证明如下:1 ;2 当 m 不等于 k 时,函数族构成⼀组正交基,并形成⼦空间。
在⼦空间中,任意函数均可表⽰为的线性组合,。
将函数族构造宽度缩⼩⼀半,则可形成宽度为的⼀组正交基,,同样,该函数族在空间中正交,并形成⼦空间。
在⼦空间中,任意函数均可表⽰为的线性组合,。
通过以上举例可得:设 j 为⾮负整数,j 级函数⼦空间可表⽰为,其对应正交基包括:,观察中可有中线性组合(中任意函数均可⽤中函数线性组合表达),则为得⼦空间。
各个⼦空间之间存在如下关系:。
使⽤不同⼦空间中尺度函数得线性组合,可以阶梯近似任意连续函数。
在噪声滤除应⽤中,需要提取⼀些属于(⾼频信息)但不属于(低频信息)的⽅法,⼩波函数即描述了这部分信息,也即⼩波函数描述相对于的正交补空间。
根据以上描述,⼩波函数应该满⾜⼀些特性:1 ⼩波函数仍然位于空间中,则他应该是空间基函数的线性组合;2 ⼩波函数位于⼦空间中,则它应于正交。
空间的基本⼩波函数表⽰为:,该函数位于空间,且与正交。
同样对⼩波函数向右平移 k 个单位,构成函数族:,该函数族在空间中正交。
空间的基本⼩波函数表⽰为:,该函数族在空间中正交。
使⽤尺度函数与⼩波函数,可以将空间中函数进⾏分解:,其中为空间中的⼩波函数,继续以上分解,可得:⼆ Haar分解1 将函数离散化为,该函数位于空间中;2 由于,可以将空间中该函数分解为(更平滑尺度函数)与(⼩波函数),根据尺度函数与⼩波函数定义,有如下关系:(根据图形可验证结论正确),进⼀步有:;3 观察到分解⽅式不⼀致,需要将原函数改写为:;4 对改写后的分别使⽤更平滑尺度函数与对应⼩波函数再次改写,有:,整理得:;5 令,继续分解直到,可得:,其中,为相应的⼩波分量。
三 Haar重构1 函数被分解为,其中,;2 (根据图形可验证结论正确),进⼀步有:3 重构为;4 重构为;5 ,其中,由组合;6 继续重构与,直到重构。
10.28小波分解总结
小波概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
一维小波分解示意图:二维小波分解(尺度为2)示意图二维小波分解常用函数:1)[C,S] = WAVEDEC2(X,N,'wname');该函数实现小波的N尺度(层次)分解,得到分解系数C,S为数组,存放各尺度频率的尺寸。
2)A = APPCOEF2(C,S,'wname',N);提取指定尺度N上的低频系数3)D = DETCOEF2(O,C,S,N);提取分解结构[C,S]中指定尺度N上的高频系数,O = 'h' (or 'v' or 'd', respectively), at level N.1 <= N <= size(S,1)-2[H,V,D] = DETCOEF2('all',C,S,N)4)X = WRCOEF2('type',C,S,'wname',N);'type' = 'a',('h','v' or 'd', respectively),单支重构,即重构指定尺度N上的某个频率部分5)X = WAVEREC2(C,S,'wname')多尺度图像分解后重构6)CAT(DIM,A,B) concatenates the arrays A and B along the dimension DIM.沿着行或者列来进行向量的合成,可以用于小波分解后的系数C的重新组合。
1维离散小波变换w2,3
1维离散小波变换w2,3一维离散小波变换(Discrete Wavelet Transform,DWT)是一种信号处理技术,用于将信号分解成不同的频率子带。
在离散小波变换中,小波函数被用作基函数,将信号分解成低频和高频部分。
对于一维离散小波变换,我们需要选择一个小波基函数。
常用的小波基函数有Haar小波、Daubechies小波、Symlet小波等。
在这里,我们以Daubechies小波为例,来说明如何进行一维离散小波变换。
Daubechies小波是一类具有紧支集的正交小波基函数。
其中,Daubechies小波的系数是根据特定的滤波器设计算法计算得到的。
Daubechies小波函数具有一定的平滑性和良好的频率局部化特性。
现在,我们来计算一维离散小波变换的过程,以获取第2层、第3个小波系数。
1. 首先,将原始信号进行一次低通滤波和高通滤波,得到第一层的近似系数和细节系数。
2. 然后,将第一层的近似系数再次进行一次低通滤波和高通滤波,得到第二层的近似系数和细节系数。
3. 最后,将第二层的近似系数再次进行一次低通滤波和高通滤波,得到第三层的近似系数和细节系数。
根据你的问题,我们需要获取第2层、第3个小波系数。
假设原始信号为x,第一层的近似系数为A1,细节系数为D1,第二层的近似系数为A2,细节系数为D2,第三层的近似系数为A3,细节系数为D3。
具体步骤如下:1. 对原始信号x进行第一次小波变换,得到A1和D1。
2. 对A1进行第二次小波变换,得到A2和D2。
3. 对A2进行第三次小波变换,得到A3和D3。
4. 第2层、第3个小波系数即为D3的第3个元素。
需要注意的是,小波变换是一个迭代的过程,每一次变换都会将信号分解成近似系数和细节系数。
近似系数表示信号的低频成分,细节系数表示信号的高频成分。
希望以上解释能够帮助你理解一维离散小波变换,并获取第2层、第3个小波系数。
如果还有其他问题,请随时提问。
haar小波变换分解和复原 -回复
haar小波变换分解和复原-回复正如您所提到的,本文将介绍haar小波变换的分解与复原过程。
首先,我们将解释什么是小波变换,然后详细描述haar小波变换的分解过程,并给出该过程的示例,最后介绍如何通过分解过程实现图像复原。
小波变换是一种数学工具,用于将信号或图像分解成不同频率的子信号或子图像。
它在信号处理中拥有广泛的应用,可以帮助我们提取信号或图像的特征、降噪、压缩等。
haar小波变换是一种离散小波变换的类型,其中使用到了haar小波函数。
haar小波变换是最简单、最容易理解的小波变换之一,因此我们将以haar小波变换为例进行分解和复原。
首先,让我们了解haar小波变换的分解过程。
haar小波变换的分解包括两个步骤:平滑过程和细节过程。
在平滑过程中,我们将信号或图像的奇偶项进行平均,得到一个平滑的低频子信号或子图像。
而在细节过程中,我们将信号或图像的奇偶项进行差分,得到一个细节的高频子信号或子图像。
通过不断重复这两个过程,我们可以将信号或图像逐渐分解成低频和高频子信号或子图像的组合。
接下来,我们将通过一个简单的示例来展示haar小波变换的分解过程。
假设我们有一个8个像素的一维信号[1, 2, 3, 4, 5, 6, 7, 8]。
首先,我们将该信号的奇偶项进行平均,得到第一层的低频子信号[1.5, 3.5, 5.5, 7.5]和高频子信号[-0.5, -0.5, -0.5, -0.5]。
其中,低频子信号表示信号的整体趋势,而高频子信号表示信号的细节或局部变化。
然后,我们继续对低频子信号进行同样的分解过程,得到第二层的低频子信号[2.5, 6.5]和高频子信号[-1, -1]。
最后,在第三层分解中,我们得到最终的低频子信号[4.5]和高频子信号[0]。
现在,让我们来了解如何通过haar小波变换的分解过程实现图像的复原。
首先,我们将使用上述示例中的低频和高频子信号来说明复原的过程。
对于低频子信号,我们可以选择保留其中一部分低频分量,并舍弃其他频率的分量。
灰度图像的小波分解与重构
灰度图像的小波分解与重构摘要:本文概述了小波变换的基本理论,介绍了haar 小波的分解和重构过程,并在Matlab环境下实现了用haar 小波对灰度图像的三级分解与重构,最后对结果作了简要的分析与讨论。
关键词:小波;小波变换;图像分解;图像重构1.引言小波变换理论自80年代末成为国际上十分活跃的研究领域,是继Fourier 变换发展的一个新的里程碑。
由于小波变换克服了傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力 ,从而使小波理论在图像处理、故障诊断、量子场论、光学成像、数据压缩等领域得到了广泛的应用。
小波变换在图像处理中主要用于以下几个方面:图像分解、图像重构、图像融合、图像消噪等。
本文主要讨论了小波分解与重构过程,在此基础上进一步阐述了在Matlab 环境下利用haar 小波对灰度图像进行三级分解和重构的编码实现。
2.小波变换的基本理论2.1.小波变换的定义一个实值函数ψ)(x ,若它的频谱ψ)(x 满足允许条件(AdmissibleCondition )。
∞<=⎰∞+∞-dw w w C |||)(|2ψψ则ψ)(x 被称作一个基本小波或母小波(mother wavelet )。
由于W 在积分式的分母上,所以必须有ψ )(x =0, ψ )(+∞=0。
可以看到,ψ)(x 类似于一个带通滤波器的传递函数,是ψ)(x 的傅立叶变换。
小波是一个满足∫R ψ)(x dx =0的,通过平移和伸缩而产生的一个函数族ψa ,b )(x)()(,21abx ax b a -=-ψψ a ,b ∈R a 0≠ ψa ,b )(x 被称为小波基或小波。
设)(x f ∈L 2,定义其小波变换为:dx abx x f ab a wf )()(),(21-=⎰∞+∞--ψ由定义可见,参数a ,b 具有非常重要的意义,a 为伸缩因子,反映一个特定基函数的尺度,它的变化不仅改变连续小波的频谱结构,而且也改变其窗口的大小和形状。
【优质】小波实验报告-推荐word版 (7页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==小波实验报告篇一:小波分析实验报告小波分析实验报告姓名班级:学号:成绩: 教师签名篇二:小波课程实验报告小波变换与信号时频分析实验报告院班级:姓名:学号:指导老师:哈尔滨工业大学二维图像信号的小波分解与重构1.1 实验目的结合小波多分辨率分解与重构原理,掌握利用MATLAB实现二维图像信号小波分解与重构的具体实现方法,重点理解二维图像信号分解与重构过程中小波基选择、图像信号边缘延拓方式对于分解和重构质量的影响,进而加深对于小波正交特性、完善重建特性的理解。
1.2 实验内容主要利用MATLAB提供的小波工具箱Wavelet Toolbox实现小波分解与重构,具体包括:(1)小波基的选择(要求三种以上小波基)(2)延拓方式的选择(3)分解过程中的抽样与非抽样(4)重构结果的分析,要求分析不同小波基、不同延拓方式、抽样/非抽样对于小波重构的影响(5)分析小波对于图像信号表示的方向特性1.3 实验步骤1. 小波变换Matlab实现编程实现图片的分解与重构,程序如下:dwtmode('zpd');X=imread('BARB.BMP');X=im2double(X);nbcol = 255;[cA1,cH1,cV1,cD1] = dwt2(X,'haar');cod_X=wcodemat(X,nbcol);cod_cA1=wcodemat(cA1,nbcol);cod_cH1=wcodemat(cH1,nbcol);cod_cV1=wcodemat(cV1,nbcol);cod_cD1=wcodemat(cD1,nbcol);dec2d = [cod_cA1,cod_cH1;cod_cV1,cod_cD1];X1=idwt2(cA1,cH1,cV1,cD1,'haar');cod_X1=wcodemat(X1,nbcol);subplot(221);imshow(X,[],'InitialMagnification','fit');title('orig image');subplot(222);imshow(dec2d,[],'InitialMagnification','fit');title('dec image');subplot(223);imshow(cod_cA1,[],'InitialMagnification','fit');title('appro image');subplot(224);imshow(cod_X1,[],'InitialMagnification','fit');title('syn image');在Zero-padding延拓方式下,分别取Haar、db3、sym小波基得到的图像分解与重构的结果如下:1) Haar小波基orig imagedec imageappro imagesyn image2) Db3小波基orig imagedec imageappro imagesyn image3) Sym3小波基orig imagedec imageappro imagesyn image在采用db4小波实现图像的分析和重构,分别采用四种不同的延拓方式,得到的的结果如下:1) extension mode为Zero-padding模式,分解与重构的结果为orig imagedec imageappro imagesyn image。
哈尔小波变换的原理及其实现(haar)
哈尔小波变换的原理及其实现(Haar)一、引言小波变换是近年来迅速发展并得到广泛应用的一个新学科。
它同时具有理论深刻和应用广泛的双重意义。
小波变换具有多分辨分析的特点,利用小波变换可以检测出数据中的突变和奇异点,这使得它在信号处理、图像处理、语音识别等领域取得了重要的应用。
在众多的小波变换中,Haar小波变换是最简单的一种,也是最容易理解的一种。
本篇文章将对Haar小波变换的原理及其实现进行详细的讨论。
二、Haar小波变换的原理Haar小波变换是一种离散小波变换,其基本思想是通过对输入信号进行逐级近似,逐步将信号分解为不同频率的子信号。
Haar小波变换的基本单位是Haar小波,它是一种简单的、具有正负交替的波形。
Haar小波的形状类似于一个阶梯函数,其时间分辨率固定,但频率分辨率可变。
Haar小波变换通过对输入信号进行逐级二分,实现了对信号的多尺度分析。
在Haar小波变换中,信号的分解过程可以形象地理解为对信号进行"拆分"。
具体来说,对于长度为2^n的输入信号,Haar小波变换将其拆分为2^n/2个子信号,其中每个子信号的长度为2^(n-1)。
每个子信号都由原信号中的一段连续信号组成,这些子信号构成了原信号的不同频率成分。
通过这种方式,Haar小波变换实现了对信号的多尺度分析。
此外,Haar小波变换还具有快速算法的特点。
由于Haar小波的特性,其变换矩阵是一个稀疏矩阵,因此其计算量较小,非常适合于快速计算。
这使得Haar小波变换在实时信号处理等领域得到了广泛的应用。
三、Haar小波变换的实现Haar小波变换的实现主要包括以下几个步骤:1.定义Haar小波:首先需要定义Haar小波的波形和参数。
Haar小波通常由一组正负交替的波形组成,其参数决定了小波的形状和频率分辨率。
2.计算Haar系数:Haar系数是小波变换的关键参数,它决定了Haar小波的形状和性质。
计算Haar系数的方法有很多种,常用的方法有递归法和离散傅里叶变换法等。
小波图像分解与合成的设计报告内容
小波图像分解与合成的设计报告内容小波图像分解与合成的设计报告内容一、小波图像分解与合成及阈值测试概述(一)、haar小波与Daubechies小波分解与重构概述根据haar函数定义,可得出当N=2时,哈尔(haar)正规化变换矩阵为,因为haar矩阵是正交矩阵,具可分离变换性质,对二维的像素矩阵,可由连续2次运用一维的haar小波变换来实现,如对图像像素矩阵的每一行求变换后,再对其每一列求变换可得二维haar小波变换,这叫标准分解,如果交替地对每一行和每一列像素值进行变换,则为非标准分解。
并且可利用矩阵形式的优点,对1×N的像素矩阵分解成若干个1×2的矩阵与上述N=2的haar正规化变换矩阵作一维的haar小波变换,减少计算量,实现haar小波分解。
因为正规化的haar变换矩阵为对称变换矩阵,其逆变换矩阵和正变换的相同,只要把原来每次变换后得到的矩阵数值再作一次变换,则可以实现重构。
Haar小波在时域上是不连续的,因此分析性能并不很好,但它的计算简单。
这里程序采用非标准分解方法。
在变换矩阵中,第一列变换得到图像像素均值,为图像像素低频分量,第二列得到图像像素差值,为高频分量,原像素值第i对像素分解的低频和高频分量值分别存在矩阵的i和N/2+i处。
重构时取回这两个数值,再与逆变换矩阵相乘存回原处,则实现重构。
根据Daubechies小波的定义,可设计出一组满足正交化要求的滤波器,利用卷积模板实现低通和高通功能,主要步骤为:1.利用Matlab中的Daubechies小波滤波器计算函数dbaux求出滤波器作模板系数,对dbN,滤波器长度为2N,这里求db9,其滤波器长度为18。
2.由于图像像素只有有限的2N个非零值,就需要解决边界问题。
Matlab软件里缺省的分解模式sym采用对称周期化扩展技术。
也就是将图像的四个边界先做对称处理的矩阵拓展,避免了边界的不连续性。
如图(这里以256×256为例,即从标号0到255):_________|______________________________________|______________ |—|—|—|—|—|—|—|———|——|——|——|——|——|——|——||2 |1 |0 |0 |1 |2 |3 |......|252 |253 |254 |255 |255 |254 |253 | |—|—|—|—|—|—|—|———|——|——|——|——|——|——|——|_________|______________________________________|______________对1×M的矩阵像数值,其dbN一次变换(低通、高通)后输出的总长度为M+2(N-1),矩阵拓展长度为M+4×(N-1)。
小波实验报告
小波实验报告小波实验报告引言小波分析是一种数学工具,可以将信号分解成不同频率的成分。
它在信号处理、图像处理、数据分析等领域有着广泛的应用。
本实验旨在通过对小波变换的实际应用,探索其在信号处理中的效果和优势。
一、实验背景小波分析是一种基于频域的信号分析方法,与传统的傅里叶变换相比,小波分析可以更好地捕捉信号的瞬时特性和局部特征。
它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和位置上的频谱信息。
二、实验目的1. 了解小波变换的基本原理和概念;2. 掌握小波变换的实现方法和工具;3. 分析小波变换在不同信号处理任务中的应用效果。
三、实验步骤1. 选择适当的小波基函数和尺度参数;2. 将待处理信号进行小波变换;3. 分析小波变换后的频谱信息;4. 根据实际需求,选择合适的尺度和位置,重构信号。
四、实验结果与分析本实验选择了一段音频信号进行小波变换。
首先,选择了Daubechies小波作为基函数,并调整尺度参数。
经过小波变换后,得到了信号在不同频率上的能量分布图。
通过分析能量分布图,可以清晰地观察到信号的频率成分和时域特征。
进一步分析小波变换的结果,可以发现小波变换具有良好的局部化特性。
不同于傅里叶变换将整个信号分解成各个频率的正弦波,小波变换可以将信号分解成不同频率的局部波包。
这种局部化特性使得小波变换在信号分析和处理中更加灵活和精确。
五、实验应用1. 信号去噪小波变换可以将信号分解成不同频率的成分,通过滤除高频噪声成分,实现信号的去噪。
在音频处理和图像处理中,小波去噪已经成为一种常用的方法。
2. 图像压缩小波变换可以将图像分解成不同频率的局部波包,通过保留重要的低频成分,可以实现对图像的压缩。
小波压缩在数字图像处理和视频编码中有着重要的应用。
3. 时频分析小波变换可以提供信号在不同时间和频率上的分布信息,通过时频分析,可以更好地理解信号的时域和频域特性。
在语音识别、心电图分析等领域,时频分析是一种常用的方法。
图像小波分解以及重构
图像小波分解1 一级分解及重构1.1程序a=imread('lena.jpg');x=rgb2gray(a);[cA,cH,cV,cD]=dwt2(x,'haar');subplot(2,2,1);imshow(cA,[]);subplot(2,2,2);imshow(cH,[]);subplot(2,2,3);imshow(cV,[]);subplot(2,2,4);imshow(cD,[]);x_idwt=idwt2(cA,cH,cV,cD,'haar');figure(2);imshow(x_idwt,[]);1.2 结果图1 小波一级分解图2一级分解重构2 小波二级分解2.1 思路一我们在一级分解的基础上,对低频分量进行再次一级分解,即可得到小波二级分解。
程序:[cA2,cH2,cV2,cD2]=dwt2(cA,'haar');figure(3);subplot(2,2,1);imshow(cA2,[]);subplot(2,2,2);imshow(cH2,[]);subplot(2,2,3);imshow(cV2,[]);subplot(2,2,4);imshow(cD2,[]);图3 小波一级分解图4 小波二级分解通过上面两张图片对比,我们可以看出,二级小波分解的低频分量和一级小波分解的低频分量相差不大,说明图像经过一级分解已经将大部分的水平,垂直,斜向分量提取,所以两个低频分量相差不大。
2.2 思路二我们使用函数waverec2函数进行小波变换,其格式为:[c,s]=wavedec2(X,N,'wname')我们用它对图像X用wname小波基函数实现N层分解,将结果储存在一个行向量c里。
程序:[c,s]=wavedec2(x,2,'haar');cA2=reshape(c(1,1:125^2),125,125);figure(4);subplot(2,2,1);imshow(cA2,[]);cH2=reshape(c(1,125^2+1:125*250),125,125);subplot(2,2,2);imshow(cH2,[]);cV2=reshape(c(1,125*250+1:125*250+125^2),125,125);subplot(2,2,3);imshow(cV2,[]);cD2=reshape(c(1,250*375+1:250*375+125^2),125,125);subplot(2,2,4);imshow(cD2,[]);图5 思路二的小波二级分解(有误)但是,通过观察上图的第四幅图即斜向分量明显有误,于是我又查阅了函数waverec2的结构:c=[A(N)|H(N)|V(N)|D(N)|H(N-1)|V(N-1)|D(N-1)|H(N-2)|V(N-2)|D(N-2)|...|H(1)|V(1) |D(1)];所以,取数的顺序是正确的。
基于Harr小波图像分解与重构
基于Haar 小波的图像分解与重构徐恺 20152022391 引言在众多正交函数中,Haar 小波函数是最简单的正交函数,与其它正交函数相比,它具有构造简单、对应的滤波器具有线性相位性、计算方便的特点。
因此Haar 小波函数引起人们的普遍关注。
Haar 函数的正交集是一些幅值为+ 1或- 1的方波,而且在一段区间有值,其他区间为零。
这使得 Haar 小波变换比其它小波函数要快。
2 Haar 小波2.1 Haar 基函数基函数是一组线性无关的函数,可以用来构造任意给定的信号。
Haar 基函数是由一组分段常值函数组成的函数集,其定义为O (x ) = {1,0≤ x < 10,其他定义 Haar 基尺度函数为规范化Haar 基尺度函数为其中,j 为尺度因子,改变j 使函数图形缩小或者放大;i 为平移参数,改变i 使函数沿x 轴方向平移。
常数因子2j 2⁄用来满足内积等于1的条件,如果小波函数不是在[0, 1)区间中定义的函数,常数因子将改变。
用小波基构成的矢量空间V j 定义为其中,sp 表示线性生成。
2.2 Haar 小波函数小波函数通常用J i j(x )表示。
与框函数相对应的小波称为基本Haar 小波函数,其定义如下:Haar 小波尺度函数J i j(x )定义为规范化Haar 小波尺度函数为:其中:j 为尺度因子,改变 j 使函数图形缩小或者放大;i 为平移参数,改变 i 使函数沿 x 轴方向平移。
常数因子2j 2⁄同规范化 Haar 基。
用小波函数构成的矢量空间W j 定义为用Haar 小波J i j (x )生成的矢量空间W j 包含在矢量V j+1空间。
Harr 基函数O i j(x )和Haar 小波函数J i j (x )生成的矢量空间V j 和W j 具有下面的性质:其中,符号“⊕”表示直和。
这就是说,在矢量空间V j+1中,生成矢量空间W j 的所有函数与生成矢量空间V j 的所有函数都是正交的,即子空间W j 是子空间V j 的正交补,矢量空间W j 中的小波可用来表示一个函数在矢量空间V j 中不能表示的部分。
小波实验报告
小波实验报告
《小波实验报告》
小波分析是一种用于信号处理和数据分析的强大工具。
在本次实验中,我们将探索小波分析的基本原理,并通过实验验证其在信号处理中的有效性。
首先,我们介绍了小波分析的基本概念和原理。
小波分析是一种基于窗口函数的信号分析方法,它可以将信号分解成不同频率和时间尺度的成分。
与傅里叶变换不同,小波分析可以同时提供频域和时域的信息,因此在处理非平稳信号和非线性系统时具有独特优势。
接下来,我们进行了一系列实验,验证了小波分析在信号处理中的应用。
我们首先使用小波分析对一段包含多个频率成分的信号进行了分解,并成功地提取出了各个频率成分的时域和频域信息。
接着,我们对一个非平稳信号进行了小波变换,并观察到了小波分析在处理非平稳信号时的优越性。
最后,我们还利用小波分析进行了信号去噪和压缩,结果表明小波分析在这些应用中具有良好的效果。
通过本次实验,我们深刻理解了小波分析的原理和应用,并验证了其在信号处理中的有效性。
小波分析不仅可以帮助我们更好地理解信号的时频特性,还可以在实际工程中发挥重要作用。
我们相信,在未来的研究和应用中,小波分析将会得到更广泛的应用和发展。
哈工大小波实验报告
小波理论实验报告院(系)专业学生学号日期2015年12月实验报告一一、 实验目的1. 运用傅立叶变换知识对常用的基本函数做基本变换。
2. 加深对因果滤波器的理解,并会判断因果滤波器的类型。
3. 运用卷积公式对基本信号做滤波处理并分析,以加深理解。
4. 熟悉Matlab 中相关函数的用法。
二、 实验原理1.运用傅立叶正、反变换的基本公式:()ˆ()() ()(),11ˆ()(),22i x i t i ti t i t f f x e dx f t e dt f t e f t fe df t e ωωωωωωωωππ∞∞---∞-∞∞--∞=====⎰⎰⎰及其性质,对所要处理信号做相应的傅里叶变换和逆变换。
2.运用卷积的定义式:1212()()()()+∞-∞*=-⎰f t f t f f t d τττ对所求信号做滤波处理。
三、 实验步骤与内容1.实验题目:Butterworth 滤波器,其冲击响应函数为,0()0,0若若α-⎧≥=⎨<⎩t Ae t h t t 1. 求$()hω 2. 判断是否因果;是低通、高通、带通还是带阻? 3. 对于信号3()(sin 22sin 40.4sin 2sin 40),-=++t f t et t t t 0π≤≤t ,画出图形()f t4. 画出滤波后图形()*f h t ,比较滤波前后图形,你会发现什么,这里取10α==A5. 取()(sin5sin3sin sin 40),-=+++tf t e t t t t 采用不同的变量值α=A (初始设定A=α=10) 画出原信号图形与滤波后图形,比较滤波效果。
2.实验步骤及分析过程:1.求$()hω 由傅里叶变换的定义式可得:()0ˆαϖαϖωαω+∞+∞-----∞=⋅=⋅=+⎰⎰t i t t i t Ah Ae e dt Ae e dt i (1) 故该滤波器的幅频特性为:()ω==H ,转折频率τα=;假定1,2A α==,绘制该滤波器的幅频特性曲线如下:图1.1滤波器的幅频特性曲线2. 判断是否因果;是低通、高通、带通还是带阻?(1)观察滤波器响应函数可知,只有在输入信号到达后,该滤波器才会有输出响应,此外实际应用的滤波器均是因果滤波器,所以,题中滤波器是因果滤波器。
小波分解重构算法的实践
引言小波分解重构算法的实践天津大学建筑工程学院岩土工程专业1015205008 林澍小波是一种震荡形式,具有正负相间的振幅。
这种震荡形式因为具有衰减性,长度有限,均值为0,且具有波动性,所以称为小波。
小波分析是通过选取适合的小波作为空间基底来对信号进行处理,能够通过伸缩平移运算将信号的细部信息体现出来。
小波分析不仅在时域上将信号进行了局部化处理,而且能够在频率上进行调节。
信号的小波分解是利用小波作为基底,将信号依照不同频率段分解为若干层。
小波重构是分解的逆过程,是将若干层信号重新组合成一个信号。
本次实践仅将信号做分解重构处理,不进行其他处理。
二、小波基选取可供选择的小波基非常多,常用的有Haar小波,Daubechies小波,Biorthogonal小波,Symlets小波等。
不同小波各有优缺点,应根据信号特征选取适合的小波。
本次实践不对信号进行其他处理,因此仅选用一种小波对信号进行分解重构处理。
选用db1小波,即Haar小波。
Haar小波是一个正交函数系,其表达式为b 其它Haar小波函数的一般形式为j,k(t)-- (2j t—k),k=0,1,2, ••丿-2A=CAl+roipCAI=CA2+CD2A-CAS+CD 3+CD2+CD 1亠三、实践结果本次实践通过MATLAB 进行,对地震波信号进行三层分解,再重构回原信号,并将原是新号和重构信号进行对比。
信号的分解和重构过程示意图如图 1所示。
图1信号分解和重构示意图所使用的MATLAB 程序代码如下:clear all;clc;A=textread('NS.txt');%提取地震波信号N=le ngth(1:1024);Time=(0:(N-1))*0.02;figure(1)plot(Time,A); title('原始地震波信号');[c,l]=wavedec(A,3,'db1');%用db1小波对地震波信号A 进行3层小波分解 cd1= detcoef(c,l,1);%提取第一层细节系数 cd2=detcoef(c,l,2);%提取第二层细节系数 cd3=detcoef(c,l,3);%提取第三层细节系数 ca3=appcoef(c,l,'db1',3); %使用小波分解框架[c,l ]计算第三层小波系数近似值ca2=appcoef(c,l,'db1',2); %使用小波分解框架[c,l]计算第二层小波系数近似值ca1=appcoef(c,l,'db1',1); %使用小波分解框架[c,l]计算第一层小波系数近似值figure(2);subplot(3,2,1);plot(ca3); title('a3');title('第3 层低频分解');ylabel('ca3');subplot(3,2,3);plot(ca2); title('a2'); title('第2 层低频分解');ylabel('ca2');subplot(3,2,5);plot(ca1); title('al'); title('第1 层低频分解');ylabel('ca1');subplot(3,2,2);plot(cd3); title('h3'); title('第3 层高频分解');ylabel('cd3');subplot(3,2,4);plot(cd2); title('h2'); title('第2 层高频分解');ylabel('cd2');subplot(3,2,6);plot(cd1); title('h1'); title('第1 层高频分解');ylabel('cd1');%进行重构计算figure(3);A2=waverec(c,l,'db1'); % 将信号重构subplot(2,1,1),plot(Time,A);title('原始地震波信号');subplot(2,1,2),plot(Time,A2);title('重构地震波信号');通过运行上述代码,可以得到如下结果。
小波图像分解与重构自编的程序
用自编的程序实现小波图像分解与重构收藏去年11月发布了一系列有关小波变换和图像处理的文章,把学习小波过程中的心得体会和编写的程序放在网上和大家共享交流。
半年来,感谢大家的关注和帮助,在相互的讨论交流中,我不断地从大家提出的问题中拓展自己的知识面,对小波的理论及其应用有了更深入的了解和掌握。
根据和大家讨论交流中发现的问题,对博客中的程序进行修正。
有关小波图像分解和重构的两篇文章中分享的程序,存在下列问题:(1)程序所用的小波函数只有非标准的Haar小波,其滤波器组为Lo_D=[1/2 1/2], Hi_D=[-1/2 1/2],是固化在mydwt2.m 的程序中的,不能选择其他的小波函数;(2)非标准的Haar小波,其分解出来的系数矩阵中,高频系数的细节内容(轮廓、边缘等特征)不明显;(3)函数mydwt2 中列变换的矩阵对象为输入矩阵,这是错误的,其矩阵对象应该是行变换后的缓存矩阵;(4)函数mydwt2 的输出用[LL,HL,LH,HH]表示,不是很规范,应改为[cA,cV,cH,cD]来表示,即一级小波变换输出的系数矩阵有4个部分:平均部分、垂直细节部分、水平细节部分和对角线细节部分。
(5)函数mywavedec2 的输出y 是与输入矩阵x 相同大小的矩阵,并且已将N级分解后所有的平均、细节系数组合成一体的。
实际上,这种定义只对Haar小波有效。
(6)原程序中要调用modmat 函数对图像矩阵进行修剪,使之能被2 的N 次方整除,主要是为了生成塔式结构图像而设的,对上述问题修正后,这个modmat 函数已不需使用了。
针对上述问题,我对程序作了修正,发布在今天的3篇文章里,请大家点击查看。
新修正的程序更为简洁易懂,功能也有所增强,可以用任意的小波函数进行小波分解,可根据小波分解系数矩阵重构出指定分解级的低频系数和原始图像。
1、《小波图像分解与重构程序存在的问题与解决办法》上一篇文章中我们实现了小波的一维、二维信号分解与重构,其中的二维信号分解与重构,只要稍作修改,就可以实现图像的分解和重构了。
python haar小波分解
python haar小波分解小波分解是一种信号处理技术,可以将信号分解成多个频率范围的子信号。
Haar小波是其中一种常用的小波函数。
以下是使用Python进行Haar小波分解的示例代码:```pythonimport numpy as npdef haar_wavelet_decomposition(signal):n = len(signal)output = []while n > 1:coeffs = []for i in range(0, n, 2):average = (signal[i] + signal[i+1]) / 2difference = (signal[i] - signal[i+1]) / 2coeffs.extend([average, difference])output.append(coeffs)signal = coeffsn = len(coeffs)output.append(signal)return output# 示例信号signal = [1, 2, 3, 4, 5, 6, 7, 8]# 进行Haar小波分解decomposition = haar_wavelet_decomposition(signal)# 打印分解结果for level, coeffs in enumerate(decomposition):print(f"Level {level+1}: {coeffs}")```输出结果为:```Level 1: [1.5, 0.5, 4.5, 0.5, 7.5, 0.5, 6.5, 0.5]Level 2: [1.0, 3.0, 6.0, -2.0]Level 3: [2.0, 4.0]Level 4: [3.0]```以上代码实现了一个名为`haar_wavelet_decomposition`的函数,该函数接受一个信号作为输入,并返回一个包含多个层级的分解结果。
基于小波变换的红外目标去运动模糊的研究
基于小波变换的红外目标去运动模糊的研究李静;王敏;沙杰峰;徐冰【摘要】To remove the motion blur of image and restore the image,an infrared target motion deblurring method based on haar wavelet transform is proposed. The wavelet transform is used to extract and analyze the high frequency information of image’ s level subband to determine whether the motion blur exists. The blur direction and blur dimension of image are got by rotating image. The optimized Wiener filtering algorithm is used to compile the program to deblur the blur areas and restore the image. The experimental results show that the proposed method can effectively remove the image blur generated by motion,and provide the clear infrared images for the further image processing,and has strong robustness,good real⁃time performance and high appli⁃cation value.%针对去除图像运动模糊,对图像进行复原,提出一种基于haar小波变换的红外目标去运动模糊的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、题目:一维Haar小波2次分解
二、目的:编程实现信号的分解与重构
三、算法及其实现:离散小波变换
离散小波变换是对信号的时—频局部化分析,其定义为:(Wf)( j,k)二a。
』2 :Y (t)「(a o」t _k)dt, f (t)・ L2(R)
本实验实现对信号的分解与重构:
(1)信号分解:用小波工具箱中的dwt函数来实现离散小波变换,函数dwt将信号分解为两部分,分别称为逼
近系数和细节系数(也称为低频系数和高频系数) ,实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但
dwt只能实现原始信号的单级分解。
在本实验中使用小波函数db1来实现单尺度小波分解,即:[cA1,cD1] = dwt(s, 'dbl',其中s是原信号;再通过[cA2,cD2] = dwt(cA1, 'dbl '进行第二次分解,长度又为cA2的一半。
(2)信号重构:用小波工具箱中的upcoef来实现,upcoef是进行一维小波分解系数的直接重构,即:
A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。
四、实现工具:Matlab
五、程序代码:
%装载leleccum信号
load leleccum;
s = leleccum(1:3920);
%用小波函数db1对信号进行单尺度小波分解
[cA1,cD1]=dwt(s,'db1');
subplot(3,2,1);
plot(s);
title('leleccum 原始信号');
%单尺度低频系数cA1向上一步的重构信号
A1 = upcoef('a',cA1,'db1');
%单尺度高频系数cD1向上一步的重构信号
D1 = upcoef('a',cD1,'db1');
subplot(3,2,3);
plot(A1);
title('单尺度低频系数cA1向上一步的重构信号’);
subplot(3,2,5);
plot(D1);
title('单尺度高频系数cD1向上一步的重构信号’);
[cA1,cD1]=dwt(cA1, 'b1');
subplot(3,2,2);
plot(s);
title('leleccum第一次分解后的cA1信号');
%第二次分解单尺度低频系数cA2向上一步的重构信号
A2= upcoef('a',cA2,'db1',2);
%第二次分解单尺度高频系数cD2向上一步的重构信号
D2 = upcoef('a',cD2,'db1',2);
subplot(3,2,4);
plot(A2);
title('第二次分解单尺度低频系数cA2向上一步的重构信号');
subplot(3,2,6);
plot(D2);
title('的二次分解单尺度高频系数cD2向上一步的重构信号');
六、运行结果:
七、结果分析:
单尺度低频系数匕禹向上一步的重构信号第二次分解望尺度低频系数tA2向上一步的重构信号
的二次分解单尺度高频系數M2向上一步的重构信号
50 I -------------- ■------------- ,----------- ■-------------
单尺度高频系数向上一步的重构信号
1000 2000 3000 4000。